TECHNICAL PAPERS
Jul 1, 2007

Numerical Sensitivity Study of Unsteady Friction in Simple Systems with External Flows

Publication: Journal of Hydraulic Engineering
Volume 133, Issue 7

Abstract

This paper investigates the importance of unsteady friction effects when performing water hammer analyses for pipe systems with external fluxes due to demands, leaks, and other system elements. The transient energy equation for a system containing an orifice-type external flow is derived from the two-dimensional, axial momentum equation. A quasi-two-dimensional flow model is used to evaluate the relative energy contribution of total friction, unsteady friction, and the external flow, in a 1,500m pipeline, with orifice flows ranging from steady-state flows of 2–70% of the mean pipe flow, and a Reynolds number of 600,000. It is found that for initial lateral flows larger than around 30% of the mean flow, unsteady friction effects can probably be neglected, whereas for external flows smaller than this, unsteady friction should generally be considered. Overall, the relative role of unsteady friction is found to diminish as the external flux increases, implying that unsteady friction is not critical for systems with large external flows. These results imply that unsteady friction may have a significant impact on the validity of transient leak detection techniques that have been derived assuming quasi-steady friction. To demonstrate this point, an existing transient leak detection method, originally derived under quasi-steady conditions, is tested with unsteady friction included.

Get full access to this article

View all available purchase options and get full access to this article.

References

Axworthy, D. H., Ghidaoui, M. S., and McInnis, D. A. (2000). “Extended thermodynamics derivation of energy dissipation in unsteady pipe flow.” J. Hydraul. Eng., 126(4), 276–287.
Bergant, A., Simpson, A. R., and Vitkovsky, J. (2001). “Developments in unsteady pipe flow friction modeling.” J. Hydraul. Res., 39(3), 249–257.
Brunone B., Golia U. M., and Greco M. (1991). “Some remarks on the momentum equation for fast transients.” Proc., Int. Conf. on Hydr. Transients with Water Column Separation, IAHR, Valencia, Spain, 201–209.
Ghidaoui, M. S., and Mansour, S. (2002). “Efficient treatment of the Vardy-Brown unsteady shear in pipe transients.” J. Hydraul. Eng., 128(1), 102–112.
Karney, B. W. (1990). “Energy relations in a closed-conduit flow.” J. Hydraul. Eng., 116(10), 1180–1196.
McInnis, D. A., Karney, B. W., and Axworthy, D. H. (1999). TransAM reference manual, HydraTek Associates, Toronto, Canada.
Nixon, W., Karney, B., Zhao, M., Ghidaoui, M. S., and Naser, Gh. (2004). “Boundary condition representation and behavior in transient 2-D models.” Proc., 9th Int. Conf. Pressure Surges, BHR Group Ltd., Chester, U.K.
Pezzinga, G. (2000). “Evaluation of unsteady flow resistances by quasi-2D or 1D models.” J. Hydraul. Eng., 126(10), 778–785.
Silva-Araya, W. F., and Chaudhry, M. H. (1997). “Computation of energy dissipation in transient flow.” J. Hydraul. Eng., 123(2), 108–115.
Vardy, A. E., and Brown, J. M. B. (1995). “Transient, turbulent, smooth pipe friction.” J. Hydraul. Res., 33(4), 435–456.
Vardy, A. E., and Hwang, K. L. (1991). “A characteristic model of transient friction in pipes.” J. Hydraul. Res., 29(5), 669–684.
Vardy, A. E., Hwang, K. L., and Brown, J. M. B. (1993). “A weighting function model of transient turbulent pipe friction.” J. Hydraul. Res., 31(4), 533–548.
Wang, X. J., Lambert, M. F., Simpson, A. R., Liggett, J. A., and Vitkovsky, J. P. (2002). “Leak detection in pipelines using the damping of fluid transients.” J. Hydraul. Eng., 128(7), 697–711.
Zhao, M., and Ghidaoui, M. S. (2003). “Efficient quasi-two-dimensional model for water hammer problems.” J. Hydraul. Eng., 129(12), 1007–1013.
Zielke, W. (1968). “Frequency-dependent friction in transient pipe flow.” J. Basic Eng., 90(1), 109–115.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 133Issue 7July 2007
Pages: 736 - 749

History

Received: Feb 15, 2005
Accepted: Jan 18, 2007
Published online: Jul 1, 2007
Published in print: Jul 2007

Permissions

Request permissions for this article.

Authors

Affiliations

William Nixon [email protected]
MPhil Student, Dept. of Civil Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. E-mail: [email protected]
Mohamed S. Ghidaoui, M.ASCE [email protected]
Professor, Dept. of Civil Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share