TECHNICAL PAPERS
Jan 1, 2001

Impact of Turbidity Currents on Reservoir Sedimentation

This article has a reply.
VIEW THE REPLY
Publication: Journal of Hydraulic Engineering
Volume 127, Issue 1

Abstract

All lakes created on natural rivers are subjected to reservoir sedimentation. The construction of a dam significantly modifies the flow conditions of natural streams inside and downstream of an artificial lake. The sediment concentration is often high during the flood season, and the entering flow shows a greater density than the ambient fluid. Suspended load can therefore be carried along the reservoir bottom to the dam in the form of turbidity currents. This paper presents research results that help to better understand this physical phenomenon, which contributes to reservoir sedimentation. It is based on in situ measurements, a laboratory scale model of turbidity currents and numerical flow simulations. The study of a thousand-year flood in the Luzzone Reservoir in the Swiss Alps using the developed computer model revealed the potential of such a tool. In particular, the impact on the sediment deposits was analyzed. A valuable evaluation of the incidence of such a turbidity flow is presented and its effects are compared to observations. Significant progress has been made in understanding the importance of turbidity currents in reservoir sedimentation.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Akiyama, J., and Stefan, H. (1985). “Turbidity current with erosion and deposition.”J. Hydr. Engrg., ASCE, 111(12), 1473–1496.
2.
Akiyama, J., and Stefan, H. G. ( 1986). “Prediction of turbidity currents in reservoirs and coastal regions.” Proc., 3rd Int. Symp. on River Sedimentation, University of Mississippi, University, Miss., 1295–1305.
3.
Altinakar, M. S. ( 1988). “Weakly depositing turbidity current on a small slope.” PhD thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland.
4.
Bell, H. S. ( 1942). “Some evidence regarding the kind and quantity for sediment transported by density currents.” Trans. Am. Geophys. Union, 67–73.
5.
Boillat, J.-L., and De Cesare, G. ( 1994). “Dichteströmungen im Bereich des Grundablasses des Stausees Luzzone—Modellversuche.” Proc., Symp. Betrieb, Erhaltung und Erneuerung von Talsperren und Hochdruckanlagen, Graz, Austria, 183–192 (in German).
6.
CFDS-CFX4 Release 4.1, user guide. (1995). Computational Fluid Dynamics Services, Harwell Lab., Oxfordshire, U.K.
7.
Chikita, K. ( 1989). “A field study on turbidity currents initiated from Spring Runoffs.” Water Resour. Res., 25(2), 257–271.
8.
Chu, F. H., Pilkey, W. D., and Pilkey, O. H. ( 1979). “An analytical study of turbidity current steady flow.” Marine Geol., 33, 205–220.
9.
De Cesare, G. ( 1998). “Alluvionnement des retenues par courants de turbidité.” PhD thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland (in French).
10.
De Cesare, G., and Schleiss, A. ( 1999). “Turbidity current monitoring in a physical model flume using ultrasonic Doppler method.” Proc., 2nd Int. Symp. on Ultrasonic Doppler Method for Fluid Dyn. and Fluid Engrg., PSI, Villigen, Switzerland.
11.
Fan, J., and Morris, G. L. (1992a). “Reservoir sedimentation. I: Delta and density current deposits.”J. Hydr. Engrg., ASCE, 118(3), 354–369.
12.
Fan, J., and Morris, G. L. (1992b). “Reservoir sedimentation. II: Reservoir desiltation and long-term storage capacity.”J. Hydr. Engrg., ASCE, 118(3), 370–384.
13.
Farrel, G. J., and Stefan, H. (1988). “Mathematical modeling of plunging reservoir flows.”J. Hydr. Res., Delft, The Netherlands, 26(5), 525–537.
14.
Ford, D. E., and Johnson, M. C. ( 1981). “Field observations of density currents in impoundments.” Proc., Symp. on Surface Water Impoundments, ASCE, New York, 2, 1239–1248.
15.
Forel, F. A. ( 1892). “Théorie du ravin sous-lacustre.” Le léman, Vol. 1, F. Rouge, Lausanne, Switzerland, 381–386 (in French).
16.
Garcia, M. H. ( 1992). “Turbidity currents.” Encyclopedia of earth system science, Vol. 4, 399–408.
17.
Garcia, M. H., and Parker, G. ( 1993). “Experiments on the entrainment of sediment into suspension by a dense bottom current.” J. Geophys. Res., 98(C3), 4793–4807.
18.
Graf, W. H. ( 1984). “Storage losses in reservoirs.” Int. Water Power and Dam Constr., 36(4).
19.
Graf, W. H., and Altinakar, M. S. ( 1998). “Chapter 7: Turbidity currents.” Fluvial hydraulics—Flow and transport processes in channels of simple geometry, Wiley, New York.
20.
Grover, N. C., and Howard, C. L. ( 1938). “The passage of turbid water through Lake Mead.” Trans. ASCE, ASCE, 103, 720.
21.
Hager, W. H. ( 1985). “A simplified rainfall-runoff model.” J. Hydro., Amsterdam, 74, 151–170; 80, 395–398.
22.
Hermann, F. ( 1990). “Experimente zur Dynamik von Staublawinen in der Auslaufzone.” PhD thesis, ETH-Zürich, Zurich (in German).
23.
Hermann, F., Issler, D., and Keller, S. ( 1994). “Towards a numerical model of powder snow avalanches.” ECCOMAS 94, Wiley, New York.
24.
Howard, C. S. ( 1953). “Density currents in Lake Mead.” Proc., 5th IAHR Congr., International Association for Hydraulic Research, Delft, The Netherlands, 335–368.
25.
Jervez, L. E. ( 1985). “Corrientes de densidad en el Embalse Amaluza del Proyecto Hidroelectrico Paute.” Proc., 4th Congr. Nacional De Hidraulica, Association Ecuatoriana de Hidraulica, Portoviejo, Ecuador (in Spanish)
26.
Lambert, A. ( 1982). “Trübeströme des Rheins am Grunde des Bodensees.” Wasserwirtschaft, Germany, 72(4) (in German).
27.
Lambert, A., and Giovanoli, F. ( 1988). “Records of riverborne turbidity currents and indications of slope failures in the Rhone delta of Lake Geneva.” Limnology and Oceanography, 33(3).
28.
Mulder, T., and Syvitsky, J. P. M. ( 1995). “Turbidity currents generated at river mouths during exceptional discharges to the world oceans.” J. Geology, 103, 285–299.
29.
Nizery, A., Braudeau, G., and Bonnin, J. ( 1953). “La station du Sautet pour l'étude de l'alluvionnement des réservoirs.” Proc., Deuxièmes journées de l'hydraulique, transport hydraulique et décantation des matériaux solides, France, 180–215 (in French).
30.
Olsen, N., Jimenez, O. F., Løvoll, A., and Abrahamsen, L. ( 1994). “Calculation of water and sediment flow in hydropower reservoirs.” Proc., Conf. on Modeling, Testing and Monitoring for Hydro Powerplants, Budapest, 571–581.
31.
Olsen, N., and Skoglund, M. ( 1994). “Three-dimensional numerical modeling of water and sediment flow in a sand trap.” J. Hydro. Res., Delft, The Netherlands, 32(6).
32.
Parker, G., Fukushima, Y., and Pantin, H. M. ( 1986). “Self-accelerating turbidity currents.” J. Fluid Mech., 171, 145–181.
33.
Parker, G., et al. (1987). “Experiments on turbidity currents over an erodible bed.”J. Hydr. Res., Delft, The Netherlands, 25(1), 123–147.
34.
Pyrkin, Y. G., et al. ( 1978). “Transport of suspended sediments in the Nurek Hydroelectric Station Reservoir by a density current and calculation of siltation of the reservoir.” Gidrokekhnicheskoe Stroitel'stvo, Plenum, New York, 9–12.
35.
Rambaud, J., et al. ( 1988). “Expérience acquise dans les vidanges de retenues par Electricité de France et al. Compagnie Nationale du Rhône.” Proc., 16th ICOLD Congr., ICOLD, San Francisco, Q.60–R.30 (in French).
36.
Schleiss, A., Feuz, B., Aemmer, M., and Zünd, B. ( 1996). “Verlandungsprobleme im Stausee Mauvoisin. Ausmass, Auswirkungen und mögliche Massnahmen.” Proc., Internationales Symposium “Verlandung von Stauseen und Stauhaltungen, Sedimentprobleme in Leitungen und Kanälen,” Mitt. VAW-ETHZ, Zürich, 37–58 (in German).
37.
Simpson, J. E. ( 1987). Gravity currents in the environment and the laboratory, Ellis Horwood, Chichester, U.K.
38.
Sinniger, R., and De Cesare, G. ( 1996). “Spülung von Grundablassstollen—Theorie und Modellversuche.” Proc., Internationales Symposium “Verlandung von Stauseen und Stauhaltungen, Sedimentprobleme in Leitungen und Kanälen,” Mitt. VAW-ETHZ, Zürich, 93–110 (in German).
39.
Sinniger, R., Martini, O., and De Cesare, G. ( 1994). “Apports de sédiments dans une retenue par courant de densité. Mesures in situ.” Proc., 18th ICOLD Congr., ICOLD, Durban, South Africa, Q.69–R.7 (in French).
40.
Stow, D. A., and Bowen, A. J. ( 1980). “A physical model for the transport and sorting of fine-grained sediment by turbidity currents.” Sedimentology, 27, 31–46.
41.
Thévenin, M. J. ( 1960). “La sédimentation des barrages-réservoirs en Algérie et les moyens mis en oeuvre pour préserver les capacités.” Annales de l'institut technique du bâtiment et des travaux publiques, Algeria, 156 (in French).
42.
Weirich, F. H. ( 1984). “Turbidity currents: monitoring their occurrence and movement with a three-dimensional sensor network.” Sci., 224, 384–387.
43.
Weirich, F. H. ( 1986). “The record of density-induced underflows in a glacial lake.” Sedimentology, 33, 261–277.
44.
Young, D. L., and Lin, Q. H. ( 1991). “Density currents during a storm in Te-Chi reservoir of Taiwan.” Proc., 24th IAHR Congr., International Association for Hydraulic Research, Delft, The Netherlands, 801–810.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 127Issue 1January 2001
Pages: 6 - 16

History

Received: Jun 21, 1999
Published online: Jan 1, 2001
Published in print: Jan 2001

Permissions

Request permissions for this article.

Authors

Affiliations

Res. Assoc., Lab. of Hydr. Constr., Swiss Fed. Inst. of Technol., EPFL-LCH, CH-1015 Lausanne, Switzerland.
Prof., Dept. of Civ. Engrg., Lab. of Hydr. Constr., Swiss Fed. Inst. of Technol., EPFL-LCH, CH-1015 Lausanne, Switzerland.
Res. Assoc., Lab. of Hydr., Hydro. and Glaciology, Swiss Fed. Inst. of Technol., ETHZ-VAW, CH-8092 Zurich, Switzerland.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share