TECHNICAL PAPERS
Jun 1, 1999

Numerical Investigation of Plunging Density Current

Publication: Journal of Hydraulic Engineering
Volume 125, Issue 6

Abstract

When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. The entrainment rate is strongly dependent on the Richardson number and reaches a constant value well downstream of the plunge point. This study is concerned with the analysis of the plunging phenomenon and the determination of the entrainment. A k-ε model including buoyancy effects, both in a sloping and a diverging channel, is used to reproduce the main flow characteristics. A relation between the depth at the plunge point in a channel of constant width and in a diverging channel is established, and theoretical results for the calculation of the dense layer thickness are provided. The latter indicates that the spreading rate of the dense layer in a diverging channel is a function of both the entrainment rate and the channel width. The predictions of the plunge line location are in agreement with most semiempirical equations.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Akiyama, J., and Stefan, H. G. (1984). “Plunging flow into a reservoir.”J. Hydr. Engrg., ASCE, 110, 484–499.
2.
Akiyama, J., and Stefan, G. (1987). “Onset of underflow in slightly diverging channels.”J. Hydr. Engrg., ASCE, 113, 825–844.
3.
Alavian, V., Jirka, G. H., Denton R. A., Johnson, M. C., and Stefan, H. G. (1992). “Density currents entering lakes and reservoirs.”J. Hydr. Engrg., ASCE, 118, 1464–1489.
4.
Alavian, V., and Ostrowski, J. (1992). “Use of density current to modify thermal structure of TVA reservoirs.”J. Hydr. Engrg., ASCE, 106, 39–55.
5.
Alavian, V. (1986). “Behavior of density current on an incline.”J. Hydr. Engrg., ASCE, 112, 27–42.
6.
Anwar, H. O. ( 1980). “Measurements on entrainment through a front.” Proc., 2nd Int. Symp. on Stratified Flows, Norwegian Institute of Technology, Trondheim, Norway, 143–153.
7.
ASCE Task Committee on Turbulence Models in Hydraulic Computations. (1988). “Turbulent modeling of surface water flow and transport: Part 1.”J. Hydr. Engrg., ASCE, 114(9), 970–991.
8.
Ashida, K., and Egashira, S. ( 1975). “Basic study on turbidity currents.” Proc., Jap. Soc. Civ. Engrg., Tokyo, 237, 37–50.
9.
Buchak, E., and Edinger, J. ( 1984). “Simulation of density underflow into Wellington reservoir using longitudinal-vertical hydrodynamics.” Tech. Rep. No. 84/18/R, J. E. Edinger Associates, Wayne, Pa.
10.
Carmack, E. C., Pharo, C. H., and Daley, R. J. ( 1979). “Importance of lake-river interaction on seasonal patterns in the general circulation of Kamloops Lake, British Columbia.” Limnol. Oceanogr., 21, 634–644.
11.
Carmack, E. C., Wiegand, R. C., Daley, R. J., Gray, B. J., Jasper, S., and Pharo, C. H. ( 1986). “Mechanisms influencing the circulation and distribution of water mass in a medium residence-time lake.” Limnol. Oceanogr., 31, 249–265.
12.
Chikita, K. ( 1992). “The role of sediment-laden underflows in lake sedimentation: Glacier-Fed Peyto Lake, Canada.” J. Fac. Sco. Hokkaido Univ., 9, 211–224.
13.
Christodoulou, G. (1986). “Interfacial mixing in stratified flows.”J. Hydr. Res., Delft, The Netherlands, 24, 77–92.
14.
Chu, V. H., and Vanvari, M. R. ( 1976). “Experimental study of turbulent stratified shearing flow.' J. Hydr. Div., ASCE, 102(6), 691–706.
15.
Denton, R. A. ( 1985). “Density current inflows to run of the river reservoirs.” Proc., 21st IAHR Congr.
16.
Ellison, T. H., and Turner, J. S. ( 1959). “Turbulent entrainment in stratified flows.” J. Fluid Mech., Cambridge, England, 6, 423–448.
17.
Farrell, G., and Stefan, H. (1988). “Mathematical modeling of plunging reservoir flows.”J. Hydr. Res., Delft, The Netherlands, 26, 525–537.
18.
Farrell, G., and Stefan, H. ( 1986). “Buoyancy induced plunging flow into reservoirs and coastal regions.” Tech. Rep. No. 241, St. Anthony Falls Hydr. Lab., University of Minnesota, Minneapolis.
19.
Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., and Brooks, N. H. ( 1979). Mixing in inland and coastal waters. Academic, New York.
20.
Fischer, H. B., and Smith, R. D. ( 1983). “Observation of transport to surface waters from a plunging inflow to Lake Mead.” Limnol. Oceanogr., 28, 258–272.
21.
Fukushima, Y., and Watanabe, M. ( 1990). “Numerical simulation of density underflow by the k-ε turbulence model.” J. Hydrosci. Hydr. Engrg., 8, 31–40.
22.
Hamblin, P. F., and Carmack, E. C. ( 1978). “River induced currents in a fjord lake.” J. Geophys. Res., 83, 885–899.
23.
Hauenstein, W., and Dracos, T. (1984). “Investigation of plunging density currents generated by inflows in lakes.”J. Hydr. Res., Delft, The Netherlands, 22, 157–179.
24.
Hebbert, B., Imberger, J., Loh, I., and Patterson, J. (1979). “Collie river underflow into the Wellington reservoir.”J. Hydr. Div., ASCE, 106, 533–545.
25.
Henderson-Sellers, B. ( 1984). Engineering limnology. Pitman Advanced Publishing Program, London.
26.
Imberger, J., and Patterson, J. ( 1981). “A dynamic reservoir simulation model—DYRESM:5.” Transport models for inlands and coastal waters, Academic, New York, 310–360.
27.
Johnson, T., Ellis, C., and Stefan, H. (1989). “Negatively buoyant flow in diverging channel. IV: Entrainment and dilution.”J. Hydr. Engrg., ASCE, 115, 437–456.
28.
Johnson, T., Farrell, G., Ellis, C., and Stefan, H. (1987). “Negatively buoyant flow in a diverging channel. I: Flow regimes.”J. Hydr. Engrg., ASCE, 113, 716–730.
29.
Jokela, J., and Patterson, J. ( 1985). “Quasi-two-dimensional modelling of reservoir inflow.” Proc., 21st IAHR Congr.
30.
Kranenburg, C. (1993). “Gravity-current fronts advancing into horizontal ambient flow.”J. Hydr. Engrg., ASCE, 119, 369–379.
31.
Lofquist, K. ( 1960). “Flow and stress near an interface between stratified liquids.” Phys. of Fluid, 3, 72–182.
32.
Parker, G., Garcia, M., Fukushima, M., and Yu, W. (1987). “Experiments on turbidity currents over an erodable bed.”J. Hydr. Res., Delft, The Netherlands, 25, 123–147.
33.
Patankar, S. ( 1980). Numerical heat transfer and fluid flow. McGraw-Hill, New York.
34.
Patankar, S., and Spalding, D. ( 1972). “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows.” J. Heat Mass Transfer, 15, 1787.
35.
Rodi, W. ( 1984). Turbulence models and their application in hydraulics: A state of the art review. IAHR, Delft, The Netherlands.
36.
Rodi, W. ( 1987). “Examples of calculation methods for flow and mixing in stratified fluids.” J. Geophys. Res., 92, 5305–5328.
37.
Savage, S. B., and Brimberg, J. (1975). “Analysis of plunging phenomena in water reservoirs.”J. Hydr. Res., Delft, The Netherlands, 13, 187–205.
38.
Schläpfer, D. B., Bühler, J., and Dracos, T. ( 1987). “Dense inflows into narrow reservoirs.” Proc., 3rd Int. Symp. on Stratified Flows.
39.
Serruya, S. ( 1974). “The mixing patterns of the Jordon River in Lake Kinneret.” Limnol. Oceanogr., 19, 175–181.
40.
Singh, B., and Shah, C. R. ( 1971). “Plunging phenomenon of density currents in reservoirs.” La Houille Blanche, Paris, 1, 59–64.
41.
Sini, J. F. ( 1986). Modélisation d'écoulements turbulents libres bidimensionnels avec effets de flottabilité—cas du panache en milieu stratifié. PhD thesis, Université d'Aix-Marseille IL, Aix-Marseille, France, (in French).
42.
Smith, P. C. ( 1975). “A stream tube model for bottom boundary currents in the ocean.” Deep Sea Res., 22, 853–873.
43.
Stefan, H., and Johnson, T. (1989). “Negatively buoyant flow in diverging channel. III: Onset of underflow.”J. Hydr. Engrg., ASCE, 115, 423–436.
44.
Stefan, H. G., Johnson, T. R., Ellis, C. R., Farell, G. J., and Akiyama, J. ( 1988). “Physical limnology, laboratory studies on the initiation of density currents by inflows to lakes and reservoirs.” Verhandlungen Internationale Vereinigung für Theoritische und Angewandte Limnologie, Stuttgart, Germany, 23, 58–61.
45.
Suga, K. ( 1975). “Salt wedge intrusion with entrainment.” Proc., IAHR, International Association for Hydraulic Research, Delft, The Netherlands, 172–179.
46.
Turner, J. ( 1986). “Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows.” J. Fluid Mech., Cambridge, England, 173, 431–471.
47.
Wüest, A., Imboden, D. M., and Schurter, M. ( 1988). “Origin and size of hypolimnic mixing in Urnersee, the southern basin of Vierwaldstattersee (lake Lucerne).” Sweizeirische Zeitschrift für Hydrologie, 50(1), 40–70.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 125Issue 6June 1999
Pages: 584 - 594

History

Published online: Jun 1, 1999
Published in print: Jun 1999

Permissions

Request permissions for this article.

Authors

Affiliations

Res., Centre d'Enseignement et de Recherche pour la Gestion des REssources Naturelles et de l'Environnement, 77455 Marne la Vallée cedex 2, France.
Lect., Institut de Mécanique des Fluides de Toulouse, 31400 Toulouse, France.
Res., Centre d'Enseignement et de Recherche pour la Gestion des REssources Naturelles et de l'Environnement, 77455 Marne la Vallée cedex 2, France.
Res., Centre d'Enseignement et de Recherche pour la Gestion des REssources Naturelles et de l'Environnement, 77455 Marne la Vallée cedex 2, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share