TECHNICAL PAPERS
Mar 1, 2008

Nanomechanics Modeling and Simulation of Carbon Nanotubes

Publication: Journal of Engineering Mechanics
Volume 134, Issue 3

Abstract

Carbon nanotubes (CNTs) have been perceived as having a great potential in nanoelectronic and nanomechanical devices. Recent advances of modeling and simulation at the nanoscale have led to a better understanding of the mechanical behaviors of carbon nanotubes. The modeling efforts incorporate atomic features into the continuum or structural mechanics theories, and the numerical simulations feature quantum mechanical approach and classical molecular dynamics. Multiscale and multiphysics modeling and simulation tools have also been developed to effectively bridge the different lengths and time scales, and to link basic scientific research with engineering application. The general approaches of the theoretical and numerical nanomechanics of CNTs are briefly reviewed. This paper is not intended to be a comprehensive review, but to introduce readers (especially those with traditional civil engineering or engineering mechanics backgrounds) to the new, interdisciplinary, or emerging fields in engineering mechanics, in this case the rapidly growing frontier of nanomechanics through the example of carbon nanotubes.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The first writer acknowledges support from NSF-CMS-0407743 and NSF-CAREER-CMMI-0643726.

References

Abraham, F. F., Broughton, J. Q., Bernstein, J., and Kaxiras, E. (1998). “Spanning the length scales in dynamic simulation.” Comput. Phys., 12, 538–546.
Arroyo, M., and Belytschko, T. (2004). “Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule.” Phys. Rev. B, 69, 115415.
Arroyo, M., and Belytschko, T. (2005). “Continuum mechanics modeling and simulation of carbon nanotubes.” Mechanica, 40, 455–469.
Baughman, R. H., et al. (1999). “Carbon nanotube actuators.” Science, 284, 1340–1344.
Broughton, J. Q., Abraham, F. F., Bernstein, N., and Kaxiras, E. (1999). “Concurrent coupling of length scales: Methodology and applications.” Phys. Rev. B, 60, 2391–2403.
Buehler, M., Kong, Y., and Gao, H. (2004). “Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading.” J. Eng. Mater. Technol., 126, 245–249.
Buehler, M., Kong, Y., Gao, H., and Huang, Y. (2006). “Self-folding and unfolding of carbon nanotubes.” J. Eng. Mater. Technol., 128, 3–10.
Cao, G., and Chen, X. (2006a). “Mechanisms of nanoindentation on single-walled carbon nanotubes: The effect of nanotube length.” J. Mater. Res., 21, 1048–1070.
Cao, G., and Chen, X. (2006b). “Buckling behaviors of the single-walled carbon nanotubes and a targeted-molecular dynamics simulation.” Phys. Rev. B, 74, 165422.
Cao, G., and Chen, X. (2006c). “Buckling of single-walled carbon nanotubes under bending: Molecular dynamics and finite element simulations.” Phys. Rev. B, 73, 155435.
Cao, G., and Chen, X. (2006d). “The effect of displacement increment on the axial compressive buckling behavior of single-walled carbon nanotubes.” Nanotechnology, 17, 3844–3855.
Cao, G., and Chen, X. (2007). “The effects of chirality and boundary conditions on the mechanical properties of single-walled carbon nanotubes.” Int. J. Solids Struct., 44, 5447–5465.
Cao, G., Chen, X., and Kysar, J. W. (2005). “Strain sensing with carbon nanotubes: Numerical analysis of the vibration frequency of deformed single-walled carbon nanotubes.” Phys. Rev. B, 72, 195412.
Cao, G., Chen, X., and Kysar, J. W. (2006a). “Numerical analysis of the radial breathing mode of individual armchair and zigzag single-walled carbon nanotubes under deformation.” J. Appl. Phys., 100, 124305–124314.
Cao, G., Chen, X., and Kysar, J. W. (2006b). “Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes.” J. Mech. Phys. Solids, 54, 1206–1236.
Cao, G., Tang, Y., and Chen, X. (2006c). “Elastic properties of carbon nanotubes in radial direction.” J. Nanoeng. Nanosyst., 219, 73–88.
Chang, T., and Gao, H. (2003). “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model.” J. Mech. Phys. Solids, 51, 1059–1074.
Chen, X., and Cao, G. (2006). “A structural mechanics approach of single-walled carbon nanotubes generalized from atomistic simulation.” Nanotechnology, 17, 1004–1015.
Chen, X., and Cao, G. (2007). “Review: Atomistic studies of mechanical properties of carbon nanotubes.” J. Theor. Comput. Nanosci., 4, 823–839.
Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., and Smalley, R. E. (1996). “Nanotubes as nanoprobes in scanning probe microscopy.” Nature (London), 384, 147–150.
Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., and Heben, M. J. (1997). “Storage of hydrogen in single-walled carbon nanotubes.” Nature (London), 386, 377–379.
Dumitrica, T., Belytschko, T., and Yakobson, B. I. (2003). “Bond-breaking bifurcation states in carbon nanotube fracture.” J. Chem. Phys., 118, 9485–9488.
Fisher, F. T., Bradshaw, R. D., and Brinson, L. C. (2002). “Effects of nanotube waviness on the mechanical properties of nanoreinforced polymers.” Appl. Phys. Lett., 80, 4647–4649.
Fisher, F. T., Bradshaw, R. D., and Brinson, L. C. (2003). “Fiber waviness in nanotube-reinforced polymer composites: I. Modulus predictions using effective nanotube properties.” Compos. Sci. Technol., 63, 1689–1703.
Friedman, R. S., McAlpine, M. C., Ricketts, D. S., Ham, D., and Lieber, C. M. (2005). “High-speed integrated nanowire circuits.” Nature (London), 434, 1085.
Gao, G. H., Cagin, T., and Goddard, W. A. (1998). “Energetics, structure, mechanical, and vibrational properties of single-walled carbon nanotubes.” Nanotechnology, 9, 184–191.
Gates, T. S., Odegard, G. M., Frankland, S. J. V., and Clancy, T. C. (2005). “Computational materials: Multiscale modeling and simulation of nanostructured materials.” Compos. Sci. Technol., 65, 2416–2434.
Grujicic, M., Cao, G., Pandurangana, B., and Royb, W. N. (2005). “Finite-element analysis-based design of a fluid-flow control nanovalve.” Mater. Sci. Eng., B, 117, 53–61.
Hernandez, E., Goze, C., Bernier, P., and Rubio, A. (1998). “Elastic properties of C and BxCyNz composite nanotubes.” Phys. Rev. Lett., 80), 4502–4505.
Huang, Y., and Wang, Z. L. (2003). Mechanics of carbon nanotubes, Elsevier Science, Amsterdam, The Netherlands.
Huang, Y., Wu, J., and Hwang, K. (2006). “Thickness of graphene and single-wall carbon nanotubes.” Phys. Rev. B, 74), 245413
Hummer, G., Rasalah, J. G., and Noworyta, J. P. (2001). “Water conduction through the hydrophobic channel of a carbon nanotube.” Nature (London), 414, 188–190.
Iijima, S. (1991). “Helical microtubules of graphitic carbon.” Nature (London), 354, 56–58.
Iijima, S., Brabec, C., Maiti, A., and Bernholc, J. (1996). “Structural flexibility of carbon nanotubes.” J. Chem. Phys., 104, 2089–2092.
Jiang, H., et al. (2003). “The effect of nanotube radius on the constitutive model for carbon nanotubes.” Comput. Mater. Sci., 28, 429–442.
Jiang, H., Feng, X. Q., Huang, Y., Hwang, K. C., and Wu, P. (2004a). “Defect nucleation in carbon nanotubes under tension and torsion: Stone–Wales transformation.” Comput. Methods Appl. Mech. Eng., 193, 3419–3429.
Jiang, H., Huang, Y., and Hwang, K. C. (2005). “A finite-temperature continuum theory based on the interatomic potential.” J. Eng. Mater. Technol., 127, 408–416.
Jiang, H., Huang, Y., Zhang, P., and Hwang, K. C. (2006). Fracture nucleation in single-wall carbon nanotubes: The effect of nanotube charality, Springer, Dordrecht, The Netherlands.
Jiang, H., Liu, B., Huang, Y., and Hwang, K. C. (2004b). “Thermal expansion of single-wall carbon nanotubes.” J. Eng. Mater. Technol., 126, 265–270.
Johnson, H. T., Liu, B., and Huang, Y. (2004). “Electron transport in deformed carbon nanotubes.” J. Eng. Mater. Technol., 126, 222–229.
Kadowaki, H., and Liu, W. K. (2004). “Bridging multiscale method for localization problems.” Comput. Methods Appl. Mech. Eng., 193, 3267–3302.
Kim, P., and Lieber, C. M. (1999). “Nanotube nanotweezers.” Science, 286, 2148–2150.
Knap, J., and Ortiz, M. (2001). “An analysis of the quasicontinuum method.” J. Mech. Phys. Solids, 49, 1899–1923.
Kong, J., et al. (2000). “Nanotube molecular wires as chemical sensors.” Science, 287, 622.
Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N., and Treacy, M. M. J. (1998). “Young’s modulus of single-walled nanotubes.” Phys. Rev. Lett., 58, 14013–14019.
Kundin, K. N., Scuseria, G. E., and Yakobson, B. I. (2001). “C2F, BN, and C nanoshell elasticity from ab initio computations.” Phys. Rev. B, 64, 235406.
Lee, C. J., et al. (1999). “Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition.” Appl. Phys. Lett., 75, 1721–1723.
Leung, A. Y. T., Guo, X., He, X. Q., and Kitipornchai, S. (2005). “A continuum model for zigzag single-walled carbon nanotubes.” Appl. Phys. Lett., 86, 083110–083112.
Li, C. Y., and Chou, T. W. (2003). “A structural mechanics approach for the analysis of carbon nanotubes.” Int. J. Solids Struct., 40, 2487–2499.
Li, C. Y., and Chou, T. W. (2004). “Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach.” Mech. Mater., 36, 1047–1055.
Liew, K. M., Wong, C. H., He, X. Q., Tan, M. J., and Meguid, S. A. (2004). “Nanomechanics of single- and multiwalled carbon nanotubes.” Phys. Rev. B, 69, 115429.
Liu, B., Huang, Y., Jiang, H., Qu, S., and Hwang, K. C. (2004a). “The atomic-scale finite-element method.” Comput. Methods Appl. Mech. Eng., 193, 1849–1864.
Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.-F., and Hwang, K. C. (2005). “Atomic-scale finite-element method in multiscale computation with applications to carbon nanotubes.” Phys. Rev. B, 72, 035435.
Liu, B., Jiang, H., Huang, Y., Qu, S., Yu, M.-F., and Hwang, K. C. (2006). “Finite-element method: From discrete atoms to continuum solids.” Handbook of theoretical and computational nanotechnology, American Scientific, Stevenson Ranch, Calif.
Liu, B., Jiang, H., Johnson, H. T., and Huang, Y. (2004b). “The influence of mechanical deformation on the electrical properties of single-wall carbon nanotubes.” J. Mech. Phys. Solids, 52, 1–26.
Liu, W. K., Karpov, E. G., Zhang, S., and Park, H. S. (2004c). “An introduction to computational nanomechanics and materials.” Comput. Methods Appl. Mech. Eng., 193, 1529–1578.
Lu, J. P. (1997). “Elastic properties of carbon nanotubes and nanoropes.” Phys. Rev. Lett., 79, 1297–1300.
Mielke, S. L., et al. (2004). “The role of vacancy defects and holes in the fracture of carbon nanotubes.” Chem. Phys. Lett., 390, 413–420.
Nardelli, M., and Bernholc, J. (1999). “Mechanical deformations and coherent transport in carbon nanotubes.” Phys. Rev. B, 60, 16338–16341.
Nasdala, L., and Ernst, G. (2005). “Development of a four-node finite element for the computation of nanostructured materials.” Comput. Mater. Sci., 33, 443–458.
Odegarda, G. M., Gatesb, T. S., Nicholsonc, L. M., and Wised, K. E. (2002). “Equivalent-continuum modeling of nanostructured materials.” Compos. Sci. Technol., 62, 1869–1880.
Ozaki, T., Iwasa, Y., and Mitani, T. (2000). “Stiffness of single-walled carbon nanotubes under large strain.” Phys. Rev. Lett., 84(8), 1712–1715.
Pantano, A., Boyce, M. C., and Parks, D. M. (2003). “Nonlinear structural mechanics based modeling of carbon nanotube deformation.” Phys. Rev. Lett., 91, 145501–145504.
Pantano, A., Parks, D. M., and Boyce, M. C. (2004). “Mechanics of deformation of single- and multiwall carbon nanotubes.” J. Mech. Phys. Solids, 52, 789–821.
Park, H. S., and Liu, W. K. (2004). “An introduction and tutorial on multiple-scale analysis in solids.” Comput. Methods Appl. Mech. Eng., 193, 1733–1772.
Poncharal, P., Wang, Z. L., Ugarte, D., and de Heer, W. A. (1999). “Electrostatic deJections and electromechanical resonances of carbon nanotubes.” Science, 283, 1513–1516.
Porezag, D., Frauenheim, T., Kohler, T., Seifert, G., and Kaschner, R. (1995). “Construction of tight-binding-like potentials on the basis of density-functional theory—Application to carbon.” Phys. Rev. B, 51, 12947–12957.
Postma, H. W. C., Teepen, T., Yao, Z., Grigoni, M., and Dekker, C. (2001). “Carbon nanotube single-electron transistors at room temperature.” Science, 293, 76.
Qian, D., Wagner, G. J., Liu, W. K., Yu, M.-F., and Ruoff, R. S. (2002). “Mechanics of carbon nanotubes.” Appl. Mech. Rev., 55, 495–533.
Qiao, Y., Cao, G., and Chen, X. (2007). “Effect of gas molecules on nanofluidic behaviors.” J. Am. Chem. Soc., 129, 2355–2359.
Robertson, D. H., Brenner, D. W., and Mintmire, J. W. (1992). “Energetics of nanoscale graphitic tubules.” Phys. Rev. B, 45, 12592–12595.
Sanchez-Portal, D., Artacho, E., Solar, J. M., Rubio, A., and Ordejon, P. (1999). “Ab initio structural, elastic, and vibrational properties of carbon nanotubes.” Phys. Rev. B, 59, 12678–12688.
Shi, D. L., Feng, X. Q., Huang, Y., and Hwang, K. C. (2004a). “Critical evaluation of the stiffening effect of carbon nanotubes in composites.” Key Eng. Mater., 261, 1487–1492.
Shi, D. L., Feng, X. Q., Huang, Y., Hwang, K. C., and Gao, H. (2004b). “The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites.” J. Eng. Mater. Technol., 126, 250–257.
Shi, D. L., Feng, X. Q., Jiang, H., Huang, Y., and Hwang, K. C. (2005). “Multiscale analysis of fracture of carbon nanotubes embedded in composites.” Int. J. Fract., 134, 369–386.
Shibutani, Y., and Ogata, S. (2004). “Mechanical integrity of carbon nanotubes for bending and torsion.” Modell. Simul. Mater. Sci. Eng., 12, 599–610.
Solares, S., Blanco, M., and Goddard, W. A. (2004). “Design of a nanomechanical fluid control valve based on functionalized silicon cantilevers: Coupling molecular mechanics and classical engineering design.” Nanotechnology, 15, 1405–1415.
Song, J., et al. (2006b). “Stone–Wales transformation: Precurson of fracture in carbon nanotubes.” Int. J. Mech. Sci., 48, 1464–1470.
Song, J., Huang, Y., Jiang, H., Hwang, K. C., and Yu, M. F. (2006a). “Deformation and bifurcation analysis of boron-nitride nanotubes.” Int. J. Mech. Sci., 48, 1197–1207.
Srivastava, D., and Barnard, S. (1997). Molecular dynamics simulation of large-scale nanotubes on a shared-memory architecture, ACM, New York.
Sun, H. (1998). “COMPASS: An ab Initio force field optimized for condensed-phase applications. Overview with details on alkane and benzene compounds.” J. Phys. Chem. B, 102, 7338–7364.
Tadmor, E. B., Ortiz, M., and Phillips, R. (1996). “Quasicontinuum analysis of defects in solids.” Philos. Mag. A, 73, 1529–1541.
Tans, S. J., Verschueren, R. M., and Dekker, C. (1999). “Room-temperature transistor based on a single carbon nanotube.” Nature (London), 393, 40.
Thess, A., et al. (1996). “Crystalline ropes of metallic carbon nanotubes.” Science, 273, 483–487.
Thostenson, E. T., and Chou, T.-W. (2002). “Aligned multiwalled carbon nanotube-reinforced composites: Processing and mechanical characterization.” J. Phys. D, 35, L77–L80.
Thostenson, E. T., Ren, Z. F., and Chou, T. W. (2001). “Advances in the science and technology of carbon nanotubes and their composites: A review.” Compos. Sci. Technol., 61, 1899-1912.
Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M. (1996). “Exceptionally high Young’s modulus observed for individual carbon nanotubes.” Nature (London), 381, 678.
Wagner, G. J., and Liu, W. K. (2003). “Coupling of atomistic and continuum simulations using a bridging scale decomposition.” J. Comput. Phys., 190, 249–274.
Wang, Q. H., Yan, M., and Chang, R. P. H. (1998). “A nanotube-based field-emission flat-panel display.” Appl. Phys. Lett., 72, 2912–2914.
Wong, E. W., Sheehan, P. E., and Lieber, C. M. (1997). “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes and carbon nanotubes.” Science, 277, 1971–1973.
Yakobson, B., Brabec, C., and Bernholc, J. (1996). “Nanomechanics of carbon tubes: Instabilities beyond the linear response.” Phys. Rev. Lett., 76, 2511–2514.
Zhang, P., Huang, Y., Gao, H., and Hwang, K. C. (2002a). “Fracture nucleation in single-wall carbon nanotubes under tension: A continuum analysis incorporating interatomic potentials.” J. Appl. Mech. Rev., 69, 454–458.
Zhang, P., Huang, Y., Geubelle, P. H., and Hwang, K. C. (2002b). “On the continuum modeling of carbon nanotubes.” Acta Mech. Sin., 18, 528–536.
Zhang, P., Huang, Y., Geubelle, P. H., Klein, P. A., and Hwang, K. C. (2002c). “The elastic modulus of single-wall carbon nanotubes: A continuum analysis incorporating interatomic potentials.” Int. J. Solids Struct., 39, 3893–3906.
Zhang, P., Jiang, H., Huang, Y., Geubelle, P. H., and Hwang, K. C. (2004). “An atomistic-based continuum theory for carbon nanotubes: Analysis of fracture nucleation.” J. Mech. Phys. Solids, 52, 977–998.
Zhang, P., Lammert, P. E., and Crespi, V. H. (1998). “Plastic deformations of carbon nanotubes.” Phys. Rev. Lett., 81, 5346–5349.
Zhang, S., et al. (2005). “Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations.” Phys. Rev. B, 71, 115403.
Zhou, X., Zhou, J. J., and Ou-Yang, Z. C. (2000). “Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory.” Phys. Rev. B, 62, 13692–13696.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 134Issue 3March 2008
Pages: 211 - 216

History

Received: Jul 18, 2007
Accepted: Jul 27, 2007
Published online: Mar 1, 2008
Published in print: Mar 2008

Permissions

Request permissions for this article.

Notes

Note. Associate Editor: Ross Barry Corotis

Authors

Affiliations

Xi Chen
Associate Professor, Dept. of Civil Engineering and Engineering Mechanics, Columbia Univ., New York, NY 10027.
Yonggang Huang
Professor, Dept. of Civil/Environmental Engineering, and Dept. of Mechanical Engineering, Northwestern Univ., Evanston, IL 60208.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share