TECHNICAL PAPERS
Mar 1, 2000

Modeling of Early-Age Creep of Shotcrete. I: Model and Model Parameters

Publication: Journal of Engineering Mechanics
Volume 126, Issue 3

Abstract

In this paper, creep and viscous flow are revisited from the standpoint of constitutive modeling of thermo-chemo-mechanical couplings in early-age concrete. Within the framework of closed reactive porous media, creep is modeled by means of two mechanisms: a stress-induced water movement within the macropores and a relaxation mechanism in the micropores of cement gel, both of which lead to aging effects on creep and viscous flow of concrete. Regarding the first creep mechanism, aging results from chemomechanical couplings. Concerning the second mechanism, long-term aging is attributed to the relaxation of microprestresses in the micropores. Following the formulation of the model, it is shown how the material parameters can be identified from creep tests performed at different ages of loading. Finally, the model is applied to shotcrete, for which proper experimental data are missing.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Acker, P. (1988). “Comportement mécanique du béton: Apports de l'approche physicochimique [Mechanical behavior of concrete: a physico-chemical approach].” Tech. Res. Rep. LCPC 152, Laboratoires des Ponts et Chaussées, Paris (in French).
2.
Bažant, Z. (1979). “Thermodynamics of solidifying or melting viscoelastic material.”J. Engrg. Mech. Div., ASCE, 105(6), 933–952.
3.
Bažant, Z. ( 1995). “Creep and damage in concrete.” Materials science of concrete, J. Skalnet and S. Mindess, eds., American Ceramic Society, Westerville, Ohio, 335–389.
4.
Bažant, Z., and Baweja, S. (1996). “Short form of creep and shrinkage prediction model B3 for structures of medium sensitivity.” Mat. and Struct., (29), 587–593.
5.
Bažant, Z., Hauggard, A., Baweja, S., and Ulm, F.-J. (1997). “Microprestress solidification theory for concrete creep. I: Aging and drying effects.”J. Engrg. Mech., ASCE, 123(11), 1188–1194.
6.
Bažant, Z., and Prasannan, S. (1989a). “Solidification theory for concrete creep. I: Formulation.”J. Engrg. Mech., ASCE, 115(8), 1691–1703.
7.
Bažant, Z., and Prasannan, S. (1989b). “Solidification theory for concrete creep. II: Verification and application.”J. Engrg. Mech., ASCE, 115(8), 1704–1725.
8.
Bažant, Z., and Wittmann, F., eds. (1982). Creep and shrinkage of concrete structures. Wiley, Chichester, U.K.
9.
Brooks, J., and Neville, A. (1977). “A comparison of creep, elasticity and strength of concrete in tension and in compression.” Mag. of Concrete Res., 29(100), 131–141.
10.
Carol, I., and Bažant, Z. (1993). “Viscoelasticity with aging caused by solidification of nonaging constituent.”J. Engrg. Mech., ASCE, 119(11), 2252–2269.
11.
Coussy, O. (1995). Mechanics of porous continua. Wiley, Chichester, U.K.
12.
Domone, P. (1974). “Uniaxial tensile creep and failure of concrete.” Mag. of Concrete Res., 26(88), 144–152.
13.
Guénot, I. ( 1997). “Contribution à l'analyse physique et à la modélisation du fluage propre du béton [Contribution to physical analysis and modeling of basic creep of concrete],” PhD thesis, Laboratoire Central des Ponts et Chaussées, Paris (in French).
14.
Hellmich, C., Ulm, F.-J., and Mang, H. (1998). “Elucidation of the soil-shotcrete interaction problem governing the NATM, based on visco- and chemoplastic material laws.” Computat. Modelling of Concrete Struct., Proc., EURO-C 1998 Conf., R. de Borst, N. Bićanić, H. Mang, and G. Meschke, eds., Vol. 1, Balkema, Rotterdam, The Netherlands, 855–866.
15.
Hellmich, C., Ulm, F.-J., and Mang, H. (1999b). “Multisurface chemoplasticity. I: Material model for shotcrete.”J. Engrg. Mech., ASCE, 125(6), 692–701.
16.
Huber, H. ( 1991). “Untersuchungen zum Verformungsverhalten von jungem Spritzbeton im Tunnelbau [Investigations concerning the deformation behavior of young shotcrete in tunnelling],” Master's thesis, University of Innsbruck, Austria (in German).
17.
Jordan, I., and Illston, J. (1969). “The creep of sealed concrete under multiaxial compressive stresses.” Mag. of Concrete Res., 21(69), 195–204.
18.
Laplante, P. ( 1993). “Propriétés mécaniques des bétons durcissants: analyse comparée des bétons classiques et à très hautes performances [Mechanical properties of hardening concrete: a comparative analysis of ordinary and high performance concretes],” PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris (in French).
19.
L'Hermite, R. (1978). “Quelques compléments à l'étude expérimentale du fluage du béton en compression simple.” Annales de l'ITBTP, Paris, (179).
20.
Neville, A. (1987). Properties of concrete, 3rd Ed., Longman Scientific and Technical, Harlow, U.K.
21.
Powers, G. (1968). “The thermodynamics of volume change and creep.” Mat. and Struct., Paris, 487–507.
22.
Ruetz, W. (1966). “Das Kriechen des Zementsteins im Beton und seine Beeinflussung durch gleichzeitiges Schwinden.” Deutscher Ausschuss Stahlbeton, Berlin, Heft 183.
23.
Ulm, F.-J. ( 1998). “Couplages thermochémomécaniques dans les bétons: Un premier bilan. [Thermochemomechanical couplings in concretes: A first review of evidence].” Monograph LCPC, OA31, Laboratoire Central des Ponts et Chaussées, Paris (in French).
24.
Ulm, F.-J., and Coussy, O. (1995). “Modeling of thermochemomechanical couplings of concrete at early ages.”J. Engrg. Mech., ASCE, 121(7), 785–794.
25.
Ulm, F.-J., and Coussy, O. (1996). “Strength growth as chemo-plastic hardening in early age concrete.”J. Engrg. Mech., ASCE, 122(12), 1123–1132.
26.
Ulm, F.-J., Coussy, O., and Hellmich, C. (1998). Chemoplasticity: A review of evidence. Computat. Modelling of Concrete Struct., Proc., EURO-C 1998 Conf., R. de Borst, N. Bicanic, H. Mang, and G. Meschke, eds., Balkema, Rotterdam, The Netherlands, 421–440.
27.
Ulm, F.-J., Le Maou, F., Boulay, C. (1999). “Creep and shrinkage couplings: New review of some evidence.” Revue française de génie civil, Hermès, ed., 3(3–4), 21–37.
28.
Wittmann, F. (1974). “Bestimmung physikalischer Eigenschaften des Zementsteins.” Deutscher Ausschuss Stahlbeton, Berlin, Heft 232, 1–63.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 126Issue 3March 2000
Pages: 284 - 291

History

Received: Jul 23, 1999
Published online: Mar 1, 2000
Published in print: Mar 2000

Permissions

Request permissions for this article.

Authors

Affiliations

Res. Engr., Concrete Dept., Commissariat à l'Energie Atomique, Saclay, France; formerly, Inst. for Strength of Materials, Vienna, Austria. E-mail: [email protected]
Univ. Asst., Vienna Univ. of Technology, Inst. for Strength of Materials, Karlsplatz 13/202, 1040 Vienna, Austria. E-mail: christian. [email protected]
Assoc. Prof., Massachusetts Inst. of Technology, Dept. for Envir. and Civ. Engrg., 77 Massachusetts Ave., Cambridge, MA 02139-4307; formerly, Laboratoire Central des Ponts et Chaussées, Paris, France. E-mail: [email protected]
Prof., Vienna Univ. of Technology, Inst. for Strength of Materials, Karlsplatz 13/202, 1040 Vienna, Austria. E-mail: herbert.mang@ tuwien.ac.at

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share