TECHNICAL PAPERS
Mar 1, 1997

Phenomenological Model for Magnetorheological Dampers

Publication: Journal of Engineering Mechanics
Volume 123, Issue 3

Abstract

Semiactive control devices have received significant attention in recent years because they offer the adaptability of active control devices without requiring the associated large power sources. Magnetorheological (MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. They potentially offer highly reliable operation and can be viewed as fail-safe in that they become passive dampers should the control hardware malfunction. To develop control algorithms that take full advantage of the unique features of the MR damper, models must be developed that can adequately characterize the damper's intrinsic nonlinear behavior. Following a review of several idealized mechanical models for controllable fluid dampers, a new model is proposed that can effectively portray the behavior of a typical MR damper. Comparison with experimental results for a prototype damper indicates that the model is accurate over a wide range of operating conditions and is adequate for control design and analysis.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Akbay, Z., and Aktan, H. M.(1990). “Intelligent energy dissipation devices.”Proc., 4th U.S. Nat. Conf. on Earthquake Engrg., 3(4), 427–435.
2.
Akbay, Z., and Aktan, H. M. (1991). “Actively regulated friction slip devices.”Proc., 6th Can. Conf. on Earthquake Engrg., 367–374.
3.
Bossis, G., and Lemaire, E.(1991). “Yield stresses in magnetic suspensions.”J. Rheology, 35(7), 1345–1354.
4.
Carlson, J. D. (1994). “The promise of controllable fluids.”Proc., Actuator 94, H. Borgmann and K. Lenz, eds., AXON Technologie Consult GmbH, 266–270.
5.
Carlson, J. D., Catanzarite, D. M., and St. Clair, K. A. (1995). “Commercial magneto-rheological fluid devices.”Proc., 5th Int. Conf. on ER Fluids, MR Fluids and Associated Technol., Univ. of Sheffield, U.K.
6.
Carlson, J. D., and Weiss, K. D. (1994). “A growing attraction to magnetic fluids.”Machine Des., August, 61–64.
7.
Cherry, S. (1994). “Research on friction damping at the University of British Columbia.”Proc., Int. Workshop on Struct. Control, USC Publ. No. CE-9311, Univ. of Southern California, Los Angeles, 84–91.
8.
Constantinou, M. C., Symans, M. D., Tsopelas, P., and Taylor, D. P.(1993). “Fluid viscous dampers in application of seismic energy dissipation and seismic isolation.”Proc., ATC-17-1 Seminar of Seismic Isolation, Passive Energy Dissipation, and Active Control, 2, 581–591.
9.
Demchuk, S. A. (1993). “Heat transfer in narrow gaps filled with magnetorheological suspensions. J. Magnetism and Magnetic Mat., 122(1/3), 312.
10.
Dowdell, D. J., and Cherry, S.(1994). “Semi-active friction dampers for seismic response control of structures.”Proc., 5th U.S. Nat. Conf. on Earthquake Engrg., 1, 819–828.
11.
Dyke, S. J., Spencer Jr., B. F., Sain, M. K., and Carlson, J. D. (1996a). “A new semi-active control device for seismic response reduction.”Proc., 11th ASCE Engrg. Mech. Spec. Conf., ASCE, New York, N.Y.
12.
Dyke, S. J., Spencer Jr., B. F. Sain, M. K., and Carlson, J. D. (1996b). “Seismic response reduction using magnetorheological dampers.”Proc., IFAC World Congr., L, 145–150.
13.
Ehrgott, R. C., and Masri, S. F.(1992). “Modelling of oscillatory dynamic behavior of electrorheological materials in shear.”Smart Mat. and Struct., 4, 275–285.
14.
Ehrgott, R. C., and Masri, S. F. (1994). “Structural control applications of an electrorheological device.”Proc., Int. Workshop on Struct. Control, USC Publ. No. CE-9311, Univ. of Southern California, Los Angeles, 115–129.
15.
Fedorov, V. A.(1992). “Features of experimental research into the characteristics of magnetorheological and electrorheological shock absorbers on special test stands.”Magnetohydrodyn., 28(1), 96.
16.
Feng, Q., and Shinozuka, M. (1990). “Use of a variable damper for hybrid control of bridge response under earthquake.”Proc., U.S. Nat. Workshop on Struct. Control Res., USC Publ. No. CE-9013, Univ. of Southern California, Los Angeles, 107–112.
17.
Gamota, D. R., and Filisko, F. E.(1991). “Dynamic mechanical studies of electrorheological materials: moderate frequencies.”J. Rheology, 35, 399–425.
18.
Gavin, H. P. (1994). “Electrorheological dampers for structural vibrations suppression,” PhD dissertation, Univ. of Michigan, Dept. of Civ. and Envir. Engrg., Ann Arbor, Mich.
19.
Gavin, H. P., Hanson, R. D., and Filisko, F. E.(1996a). “Electrorheological dampers I: analysis and design.”ASME J. Appl. Mech., 63, 669–675.
20.
Gavin, H. P., Hanson, R. D., and Filisko, F. E.(1996b). “Electrorheological dampers II: testing and modeling.”ASME J. Appl. Mech., 63, 676–682.
21.
Gavin, H. P., Hose, Y. D., and Hanson, R. D. (1994a). “Design and control of electrorheological dampers.”Proc., 1st World Conf. on Struct. Control, 1, WP3-83–WP3-92.
22.
Gavin, H. P., Ortiz, D. S., and Hanson, R. D. (1994b). “Testing and modeling of a prototype ER damper for seismic structural response control.”Proc. Int. Workshop on Struct. Control, USC Publ. No. CE-9311, Univ. of Southern California, Los Angeles, 166–180.
23.
Grasselli, Y., Bossis, G., and Lemaire, E.(1993). “Field-induced structure in magnetorheological suspensions.”Progress in Colloid & Polymer Sci., 93, 175.
24.
Housner, G. W., and Masri, S. F., eds. (1990). Proc., U.S. Nat. Workshop on Struct. Control Res., USC Publ. No. M9013, Univ. of Southern California, Los Angeles.
25.
Housner, G. W., and Masri, S. F., eds. (1993). Proc., Int. Workshop on Struct. Control, USC Publ. No. CE-9311, Univ. of Southern California, Los Angeles.
26.
Housner, G. W., Masri, S. F., and Chassiakos, A. G., eds. (1994). Proc., 1st World Conf. on Struct. Control, Univ. of Southern California, Los Angeles.
27.
Inaudi, J. A., and Kelly, J. M. (1994). “Experiments on tuned mass dampers using viscoelastic, frictional and shape-memory alloy materials.”Proc., 1st World Conf. on Struct. Control, Univ. of Southern California, Los Angeles, 2, TP3-127–TP3-136.
28.
Kabakov, A. M., and Pabat, A. I.(1990). “Development and investigation of control systems of magnetorheological dampers.”Soviet Electr. Engrg., 61(4), 55.
29.
Kamath, G. M., Hurt, M. K., and Wereley, N. M.(1996). “Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers.”Smart Mat. and Struct., 5, 576–590.
30.
Kashevskii, B. E.(1990). “Relaxation of viscous stresses in magnetorheological suspensions.”Magnetohydrodyn., 26(2), 140.
31.
Kawashima, K., Unjoh, S., and Shimizu, K. (1992). “Experiments on dynamics characteristics of variable damper.”Proc., Japan Nat. Symp. on Struct. Response Control, 121.
32.
Kobori, T., Takahashi, M., Nasu, T., Niwa, N., and Ogasawara, K.(1993). “Seismic response controlled structure with active variable stiffness system.”Earthquake Engrg. and Struct. Dyn., 22, 925–941.
33.
Kordonsky, W. I.(1993a). “Elements and devices based on magnetorheological effect.”J. Intelligent Mat. Sys. and Struct., 4(1), 65.
34.
Kordonsky, W. I.(1993b). “Magnetorheological effect as a base of new devices and technologies.”J. Magnetism and Magnetic Mat., 122(1/3), 395.
35.
Kordonsky, W. I., Gorodkin, S. P., and Demchuk, S. A.(1993). “Magnetorheological control of heat transfer.”Int. J. Heat and Mass Transfer, 36(11), 2783.
36.
Kordonsky, W. I. Shulman, Z. P., Gorodkin, S. R., Demchuk, S. A., Prokhorov, I. V., Zaltsgendler, and E. A., and Khusid(1990). “Physical properties of magnetizable structure-reversible media.”J. Magnetism and Magnetic Mat., 85, 114–120.
37.
Kurata, N., Kobori, T., Takahashi, M., Niwa, N., and Kurino, H. (1994). “Shaking table experiments of active variable damping system.”Proc., 1st World Conf. on Struct. Control, Univ. of Southern California, Los Angeles, TP2-108–TP2-107.
38.
Lemaire, E., Grasselli, Y., and Bossis, G.(1994). “Field induced structure in magneto and electro-rheological fluids.”J. de Physique, 2(3), 359.
39.
Makris, N., Hill, D., Burton, S., and Jordan, M. (1995). “Electrorheological fluid dampers for seismic protection of structures.”Proc., SPIE Conf. on Smart Struct. and Mat., I. Chopra, ed., Soc. of Photo-optical Instrumentation Engrs., 184–194.
40.
Makris, N., Burton, S. A., Hill, D., and Jordan, M.(1996). “Analysis and design of ER damper for seismic protection of structures.”J. Engrg. Mech., ASCE, 122(10), 1003–1011.
41.
MATLAB. (1994). The Math Works, Inc., Natick, Mass.
42.
McClamroch, N. H., and Gavin, H. P. (1995). “Closed loop structural control using electrorheological dampers.”Proc., Am. Control Conf., 4173–4177.
43.
Minagawa, K., Watanabe, T., and Munakata, M.(1994). “A novel apparatus for rheological measurements of electro-magneto-rheological fluids.”J. Non-Newtonian Fluid Mech., 52(1), 59.
44.
Mizuno, T., Kobori, T., Hirai, J., Matsunaga, Y., and Niwa, N.(1992). “Development of adjustable hydraulic dampers for seismic response control of large structure.”ASME PVP Conf., ASME, New York, N.Y., 229, 163–170.
45.
Pabat, A. I.(1990). “Controlled magnetorheological shock absorbers.”Magnetohydrodyn., 26(2), 222.
46.
Patten, W. N., Kuo, C. C., He, Q., Liu, L., and Sack, R. L. (1994). “Suppression of vehicle-induced bridge vibration via hydraulic semiactive vibration dampers.”Proc., 1st World Conf. on Struct. Control, Univ. of Southern California, Los Angeles, FA1-30–FA1-38.
47.
Phillips, R. W. (1969). “Engineering applications of fluids with a variable yield stress,” PhD dissertation, Univ. of California, Dept. of Mech. Engrg., Berkeley, California.
48.
Rabinow, J.(1948). “The magnetic fluid clutch.”AIEE Trans., 67, 1308–1315.
49.
Sack, R. L., Kuo, C. C., Wu, H. C., Liu, L., and Patten, W. N.(1994). “Seismic motion control via semiactive hydraulic actuators.”Proc., U.S. 5th Nat. Conf. on Earthquake Engrg., 2, 311–320.
50.
Sack, R. L., and Patten, W. (1994). “Semiactive hydraulic structural control.”Proc., Int. Workshop on Struct. Control, USC Publ. No. CE-9311, Univ. of Southern California, Los Angeles, 417–431.
51.
Savost'yanov, A.(1992). “Effects of magnetomechanical relaxation in a magnetorheological suspension.”Magnetohydrodyn., 28(1), 42.
52.
Shames, I. H., and Cozzarelli, F. A. (1992). Elastic and inelastic stress analysis. Prentice-Hall, Inc., Englewood Cliffs, N.J.
53.
Shinozuka, M., Constantinou, M. C., and Ghanem, R. (1992). “Passive and active fluid dampers in structural applications.”U.S./China/Japan Workshop on Struct. Control, 507–516.
54.
Shulman, Z. P., Kordonsky, W. I., and Gorodkin, S. R.(1989). “A recuperator with a magnetorheological coolant.”J. Engrg. Phys., 56(4), 438.
55.
Shulman, Z. P., Kordonsky, W. I., and Zaitsgendler. (1986). “Structure, physical properties and dynamics of magnetorheological suspensions.”Int. J. Multiphase Flow, 12(6), 935–955. SIMULINK . (1994). The Math Works, Inc., Natick, Mass.
56.
Soong, T. T. (1990). Active structural control: theory and practice. Longman Scientific and Technical, Essex, England.
57.
Soong, T. T., and Masri, S. F. and Housner(1991). “An overview of active structural control under seismic loads.”Earthquake Spectra, 7(3), 483–505.
58.
Spencer Jr., B. F., Dyke, S. J., Sain, M. K., and Carlson, J. D. (1996a). “Idealized model of a magnetorheological damper.”Proc., 12th Conf. on Anal. and Computation, ASCE, New York, N.Y., 361–370.
59.
Spencer Jr., B. F., Dyke, S. J., Sain, M. K., and Carlson, J. D. (1996b). “Nonlinear identification of semi-active control devices.”11th ASCE Engrg. Mech. Spec. Conf., ASCE, New York, N.Y., 164–170.
60.
Stanway, R., Sproston, J. L., and Stevens, N. G. (1985). “Non-linear identification of an electrorheological vibration damper.”IFAC Identification and Sys. Parameter Estimation, 195–200.
61.
Stanway, R., Sproston, J. L., and Stevens, N. G.(1987). “Non-linear modelling of an electro-rheological vibration damper.”J. Electrostatics, 20, 167–184.
62.
Symans, M. D., Constantinou, M. C., Taylor, D. P., and Garjost, K. D. (1994). “Semi-active Fluid Viscous Dampers for Seismic Response Control.”Proc., 1st World Conf. on Struct. Control, Univ. of Southern, California, Los Angeles, FA4-3–FA4-12.
63.
Wen, Y. K.(1976). “Method of random vibration of hysteretic systems.”J. Engrg. Mech. Div., ASCE, 102(2), 249–263.
64.
Winslow, W. M.(1949). “Induced fibration of suspensions.”J. Appl. Phys., 20, 1137–1140.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 123Issue 3March 1997
Pages: 230 - 238

History

Published online: Mar 1, 1997
Published in print: Mar 1997

Permissions

Request permissions for this article.

Authors

Affiliations

B. F. Spencer Jr., Member, ASCE,
Prof., Dept. of Civ. Engrg. and Geological Sci., Univ. of Notre Dame, Notre Dame, IN 46556.
S. J. Dyke, Associate Member, ASCE,
Asst. Prof., Dept. of Civ. Engrg., Washington Univ., St. Louis, MO 63130.
M. K. Sain, Member, ASCE,
Freimann Prof., Dept. of Electr. Engrg., Univ. of Notre Dame, Notre Dame, IN.
J. D. Carlson
Engrg. Fellow, Lord Corp., Mech. Products Div., Thomas Lord Res. Ctr., 405 Gregson Dr., Cary, NC 27511-7900.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share