TECHNICAL PAPERS
Dec 1, 1996

Strength Growth as Chemo-Plastic Hardening in Early Age Concrete

Publication: Journal of Engineering Mechanics
Volume 122, Issue 12

Abstract

This paper is concerned with modeling, identification, and experimental determination of thermo-chemo-mechanical couplings in early age concrete for the prediction of deformation and cracking on account of strength growth as chemo-plastic coupling within the theory of elastoplasticity. By applying the thermodynamic framework of reactive porous media to concrete at early ages, the coupling terms result from Maxwell symmetries. They lead to account for autogeneous shrinkage; hydration heat; and strength growth due to chemo-mechanical, thermo-chemical, and chemo-plastic coupling with a minimum of material parameters of clear physical significance and accessible by standard material tests. Furthermore, the diffusion of water through the layers of hydrates already formed is considered as the dominant mechanism governing the kinetics of hydration. To integrate this micromechanism in the macroscopic modeling, the “normalized affinity” is identified as an intrinsic kinetic function that characterizes the macroscopic hydration kinetics of concretes. Finally, by way of example, a Drucker-Prager criterion with isotropic chemical hardening is worked out that takes into account the evolution of the plastic properties (crack threshold and hardening/softening properties) with the hydration advancing.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Acker, P. (1988). “Comportement méchanique du béton: apports de l'approche physico-chimique (Mechanical behavior of concrete: a physico-chemical approach).”Res. Rep. LPC, 152, Laboratoires des Ponts et Chaussées (LPC), Paris, France (in French).
2.
Baroghel-Bouny, V. (1994). “Charactérisation des pâtes de ciment et des bétons: méthodes, analyse, interprétations (Characterization of cement pastes and concretes: methods, analysis, interpretations),” PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris, France.
3.
Bažant, Z. P.(1972). “Thermodynamics of interacting continua with surface and creep analysis of concrete structures.”Nuclear Engrg. and Des., 20, 477–505.
4.
Bažant, Z. P., and Moschovidis, Z.(1973). “Surface diffusion theory for the drying creep effect in portland cement paste and concrete.”J. Am. Ceramic Soc., 56, 235–241.
5.
Bažant, Z. P.(1977). “Viscoelasticity of porous solidifying material—concrete.”J. Engrg. Mech. Div., ASCE, 103(6), 1049–1067.
6.
Bažant, Z. P., and Prasannan, S.(1989a). “Solidification theory for concrete creep. I: formulation.”J. Engrg. Mech., ASCE, 115(8), 1691–1703.
7.
Bažant, Z. P., and Prasannan, S.(1989b). “Solidification theory for concrete creep. II: verification and application.”J. Engrg. Mech., ASCE, 115(8), 1704–1725.
8.
Bažant, Z. P. (1995). “Creep and damage in concrete.”Material science of concrete IV, J. Skalney and S. Mindess, eds., Am. Ceramic Soc., Westerville, Ohio, 335–389.
9.
Bournazel, J. P. (1992). “Contribution à l'étude du caractère thermomécanique de la maturation des bétons (Analysis of the thermomechanical character of maturing concrete),” PhD thesis, Université Paris 6, Paris, France (in French).
10.
Buil, M. (1979). “Contribution à l'étude du retrait de la pâte de ciment durcissante (Analysis of shrinkage of hardening cement paste),” PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris, France (in French).
11.
Byfors, J. (1980). “Plain concrete at early ages.”Res. Rep. F3:80, Swedish Cement and Concrete Res. Inst., Stockholm, Sweden.
12.
Carol, I., and Bažant, Z. P.(1993). “Viscoelasticity with aging caused by solidification of nonaging constituent.”J. Engrg. Mech., ASCE, 119(11), 2252–2269.
13.
Coussy, O. (1995). Mechanics of porous continua . J. Wiley & Sons, Inc., Chichester, England.
14.
Coussy, O., and Ulm, F. J. (1995). “Creep and plasticity due to chemo-mechanical couplings.”Computational plasticity. fundamentals and applications, (Proc., 4th Int. Conf. Complas IV). Pineridge Press, Swansea, Wales, 925–944.
15.
de Borst, R., and van den Boogaard, A. H.(1994). “Finite-element modeling of deformation and cracking in early-age concrete.”J. Engrg. Mech., ASCE, 120(12), 2519–2534.
16.
Emborg, M. (1989). “Thermal stresses in concrete structures at early ages,” PhD thesis, Lulea University of Technology, Lulea, Sweden.
17.
Hua, C. (1992). “Analyses et modélisation du retrait d'autodessiccation de la pâte de ciment durcissante (Analysis and modeling of autodesiccation shrinkage of hardening cement paste),” PhD thesis, Ecole National des Ponts et Chaussées, Paris, France (in French).
18.
Huckfeldt, J. (1993). “Thermomechanik hydratisierenden Betons—theorie, numerik und anwendung (Thermo-mechanics of hydrating concrete—theory, numerics and application),” PhD thesis, TU Braunschweig, Braunschweig, Germany (in German).
19.
Laplante, P. (1993). “Propriétés mécaniques des bétons durcissants: analyse comparée des bétons classiques et à très hautes performances (Mechanical properties of hardening concrete: a comparative analysis of ordinary and high performance concretes),” PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris, France (in French).
20.
Laube, M. (1990). “Werkstoffmodell zur Berechnung von Temperaturspannungen in massigen Betonbauteilen im jungen alter (Constitutive model for the analysis of temperature-stresses in massive structures of concrete at early ages),” PhD thesis, TU Braunschweig, Braunschweig, Germany (in German).
21.
Lemaitre, J., and Chaboche, J. L. (1990). Mechanics of solid materials . Cambridge University Press, London, England.
22.
Mindess, S., Young, J. F., and Lawrence, F. V.(1978). “Creep and drying shrinkage of calcium silicate pastes. I: specimen preparation and mechanical properties.”Cement and Concrete Res., 8, 591–600.
23.
Parrott, L. J., Geiker, M., Gutteridge, W. A., and Killoh, D.(1990). “Monitoring portland cement hydration: comparison of methods.”Cement and Concrete Res., 20, 919–926.
24.
Powers, T. C., and Brownyard, T. L. (1948). “Studies of the physical properties of hardened Portland cement paste.”Bull. No. 22, Portland Cement Association, Skokie, Ill.
25.
Regourd, M., and Gauthier, E. (1980). “Comportement des ciments soumis au durcissement accéléré (Behavior of cement under accelerated hardening).”Annales de l'ITBTP, No. 387, Paris, France, 65–96 (in French).
26.
Reunion Internationale des Laboratoires d'Essais et de Recherches sur les Materiaux et les Constructions (RILEM). (1994). “Thermal cracking in concrete at early ages.”Proc., Int. RILEM Symposium, R. Springenschmid, ed., E & FN Spon, London, England.
27.
Roelfstra, P. E., Sadouki, H., and Wittmann, F. H. (1985). “Le béton numérique (The numerical concrete).”Mat. and Struct., Paris, France, 18(107), 327–335 (in French).
28.
Tanabe, T., and Ishikawa, Y. (1993). “Time-dependent behaviour of concrete at early ages and its modelling.”Creep and shrinkage of concrete [Proc., 5th Int. RILEM Symp. (ConCreep 5)]. Z. P. Bažant and I. Carol, eds., E & FN Spon, London, England, 435–452.
29.
Torrenti, J. M. (1992). “La résistance du béton au très juene âge (Strength of concrete at very early ages).”Bulletin de Liaison des Laboratoires des Ponts et Chaussées, Paris, France, 179, 31–41 (in French).
30.
Torrenti, J. M., Guenot, I., Laplante, P., Acker, P., and de Larrard, F. (1994). “Numerical simulation of temperatures and stresses in concrete at early ages.”Computational Modelling of Concrete Structures [Proc., Int. Conf. (EURO-C 1994)]. H. Mang, N. Bicanic, and R. de Borst, eds., Pineridge Press, Swansea, Wales, 559–568.
31.
Ulm, F.-J., and Coussy, O.(1995). “Modeling of thermochemomechanical couplings of concrete at early ages.”J. Engrg. Mech., ASCE, 121(7), 785–794.
32.
Ulm, F.-J., Elouard, A., and Rossi, P. (1995). “Modelling of early age concrete cracking due to thermo-chemo-mechanical couplings.”Fracture mechanics of concrete structures [Proc., Int. Conf. (FRAMCOS-2)], Vol. II. F. H. Wittmann, ed., Aedificatio Publisher, Freiburg, Germany, 1143–1458.
33.
Wittmann, F. H.(1976). “On the action of capillary pressure in fresh concrete.”Cement and Concrete Res., 6(1), 49–56.
34.
Wittmann, F. H. (1982). “Creep and shrinkage mechanisms.”Creep and shrinkage in concrete structures. Z. P. Bažant and F. H. Wittmann, eds., J. Wiley & Sons, Inc., New York, N.Y., 129–161.
35.
Wittmann, F. H., Roelfstra, P. E., and Sadouki, H.(1984). “Simulation and analysis of composite structures.”Mat. Sci. Engrg., 68, 239–248.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 122Issue 12December 1996
Pages: 1123 - 1132

History

Published online: Dec 1, 1996
Published in print: Dec 1996

Permissions

Request permissions for this article.

Authors

Affiliations

Franz-Josef Ulm
Res. Engr., Docteur-Ingénieur, Laboratoire Central des Ponts et Chaussées, Div. Bétons et Ciments pour Ouvrage d'Art, Section Comportement Mécanique et Modélisation, 58 Bd. Lefebvre, 75732 Paris Cedex 15, France.
Olivier Coussy
Dir. of Res., Docteur ès Sciences, Laboratoire Central des Ponts et Chaussées, Service Modélisation pour l'Ingénieur, 58 Bd. Lefebvre, 75732 Paris Cedex 15, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share