TECHNICAL PAPERS
Jul 1, 1995

Modeling of Thermochemomechanical Couplings of Concrete at Early Ages

Publication: Journal of Engineering Mechanics
Volume 121, Issue 7

Abstract

This paper explores the theory of reactive porous media in the modeling of thermochemomechanical couplings of concrete at early ages. The formulation is based upon thermodynamics of open porous media composed of a skeleton and several fluid phases saturating the porous space. It accounts explicitly for the hydration of cement by considering the thermodynamic imbalance between the chemical constitutents in the constitutive modeling at the macrolevel of material description. In particular, the diffusion of water through the layers of hydrates is considered as the dominant mechanism of the hydration with respect to the kinetics of two apparent phenomena: aging and autogeneous shrinkage—the first related to the formation of hardened cement gel, the latter induced by capillary effects related to the formation of menisci due to water consumption through hydration. The intrinsic relations concerning heat generation, aging, and autogeneous shrinkage are so derived. Furthermore, it allows to make precise the decoupling hypothesis in order to clarify the linkages between different aging models: solidification theory and maturity models. In particular, it is shown that hydration degree, autogeneous shrinkage, and maturity are equivalent state variables, provided that stress and temperature evolutions do not effect the thermodynamic imbalance of hydration.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Acker, P. (1988). “Comportement mécanique du béton: apports de l'approche physico-chimique [Mechanical behaviour of concrete: a physico-chemical approach].”Res. Rep. LPC, 152, Laboratoires des Ponts et Chaussees (LPC), Paris, France (in French).
2.
Acker, P. (1993). “Recommendation for measurement of time-dependent strains of concrete loaded in compression.”Preliminary Rep., Subcommittee 4, TC 107; Creep and Shrinkage of Concrete: 5th Int. RILEM Symp., ConCreep 5, Z. P. Bazant and I. Carol, eds., E & FN Spon, London, England, 849–858.
3.
Acker, P., Foucrier, C., and Malier, Y. (1985). “Temperature-related mechanical effects in concrete elements and optimisation of the manufacture process.”ACI Symp. on Properties of Concrete at Early Ages, Am. Concrete Inst. (ACI), Detroit, Mich., 33–47.
4.
Atkins, P. W. (1994). Physical chemistry, 5th Ed., Oxford University Press, Oxford, England.
5.
Ballardini, P., Ferrara, G., Mazza, G., Morabito, P., Pellegrini, R., and Torda, M. (1993). “Prediction of hydration in mass concrete.”Creep and Shrinkage of Concrete: 5th Int. RILEM Symp., ConCreep 5, Z. P. Bazant and I. Carol, eds., E & FN Spon, London, England, 265–276.
6.
Bazant, Z. P.(1977). “Viscoelasticity of porous solidifying material—concrete.”J. Engrg. Mech. Div., ASCE, 103(6), 1049–1067.
7.
Bazant, Z. P. (1994). “Creep and thermal effects in concrete structures: a conceptus of some new developments.”Computational Modelling of Concrete Structures; Int. Conf. EURO-C 1994, H. Mang, N. Bicanic, and R. de Borst, eds., Pineridge Press, Swansea, Wales, 461–480.
8.
Bazant, Z. P., and Prasannan, S.(1989a). “Solidification theory for concrete creep. I: Formulation.”J. Engrg. Mech., ASCE, 115(8), 1691–1703.
9.
Bazant, Z. P., and Prasannan, S.(1989b). “Solidification theory for concrete creep. II: Verification and application.”J. Engrg. Mech., ASCE, 115(8), 1704–1725.
10.
Boulay, C., and Paties, C. (1993). “Mesure des déformations du béton au jeune âge [Strain measure of concrete at early ages].”Mat. and Struct., Vol. 26, 307–311 (in French).
11.
Bournazel, J. P. (1992). “Contribution à l'étude du caractère thermomécanique de la maturation des bétons [Analysis of the thermomechanical character of maturing concrete].” PhD thesis, Université Paris 6, Paris, France (in French).
12.
Buil, M. (1979). “Contribution à l'étude du retrait de la pâte de ciment durcissante [Analysis of shrinkage of hardening cement paste],” PhD thesis, Res. Rep. LPC No. 92, Ecole Nationale des Ponts et Chaussées, Paris, France (in French).
13.
Byfors, J. (1980). “Plain concrete at early ages.”Res. Rep. F3:80, Swedish Cement and Concrete Res. Inst., Stockholm, Sweden.
14.
Carol, I., and Bazant, Z. P. (1993). “Solidification theory: a rational and effective framework for constitutive modeling of aging viscoelasticity.”Creep and Shrinkage of Concrete: 5th Int. RILEM Symp., ConCreep 5, Z. P. Bazant and I. Carol, eds., E & FN Spon, London, England, 177–188.
15.
Chui, J. J., and Dilger, W. H. (1993). “Temperature stress and cracking due to hydration heat.”Creep and Shrinkage of Concrete: 5th Int. RILEM Symp., ConCreep 5, Z. P. Bazant and I. Carol, eds., E & FN Spon, London, England, 271–276.
16.
Copeland, I. E., Kantro, D. L., and Verbeck, G. J. (1960). “Chemistry of hydration of Portland cement.”Chemistry of cement; Proc., 4th Int. Symp., Paper IV-3,
17.
Coussy, O. (1995). Mechanics of porous continua . John Wiley & Sons, Chichester, England.
18.
Emborg, M. (1989). “Thermal stresses in concrete structures at early ages.” PhD thesis, Div. of Struct. Engrg., Lulea Univ. of Technol., Lulea, Sweden, No. 73D.
19.
Emborg, M., and Bernander, S. (1984). “Temperature stresses in early age concrete due to hydration.”Nordic Concrete Res., Stockholm, Sweden, 3.
20.
Eymard, R., Acker, P., and Piau, J. M.(1991). “Ingénerie des ouvrages en béton: la prise en compte des effets thermiques et hydriques.”Annales des Ponts et Chaussées, Paris, France, 58, 24–30.
21.
Freiesleben-Hansen, P., Hansen, J. H., Kjaer, U., and Pederen, E. J. (1982). “Thermal properties of hardening cement paste.”Proc., RILEM Int. Conf. on Concrete at Early Ages, RILEM, Paris, France, 23–26.
22.
Granju, J. L., and Grandet, J. (1988). “Characterization of the hydration state of Portland cement pastes.”Cement and Concrete Res., Vol. 18, 886–894.
23.
Harada, S., Suzuki, Y., and Maekawa, K. (1990). “Coupling analysis of cement heat generation and diffusion for massive concrete.”Computer Aided Analysis and Des. of Concrete Struct.: 2nd Int. Conf. SCI-C 1990, N. Bicanic and H. Mang, eds., Pineridge Press, Swansea, Wales, 785–796.
24.
Hua, C. (1992). “Analyses et modélisation du retrait d'autodessiccation de la pâte de ciment durcissante [Analysis and modelling of autogeneous shrinkage of hardening cement paste.” PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris, France (in French).
25.
Huckfeldt, J. (1993). “Thermomechanik hydratisierenden Betons—Theorie, Numerik und Anwendung [Thermo-mechanics of hydrating concrete—Theory, numerics and application].” PhD thesis, TU Braunschweig, Res. Rep. No. 93-77, Institut für Statik der TU Braunschweig, Braunschweig, Germany (in German).
26.
Jennings, H. M., and Xi, Y. (1993). “Microstructurally based mechanisms for modeling shrinkage of cement paste at multiple levels.”Creep and Shrinkage of Concrete: 5th Int. RILEM Symp., ConCreep 5, Z. P. Bazant and I. Carol, E & FN Spon, London, England, 85–102.
27.
Laplante, P. (1993). “Propriétés mécaniques des bétons durcissants: analyse comparée des bétons classiques et à très hautes performances [Mechanical properties of hardening concrete: a comparative analysis of classical and high strength concretes].” PhD thesis, Res. Rep. LPC, OA13, Ecole Nationale des Ponts et Chaussées, Paris, France (in French).
28.
Lassabatère, T. (1993). “Thermomechanics of unsaturated porous media: a micro-macro approach.”First forum of young European Researchers: Conf., Univ. of Liège, Liège, Belgium, 97–101.
29.
Lassabatère, T., and Coussy, O. (1993). “Retrait de dessiccation et fluage induit dans les milieux poreux [Drying shrinkage and induced creep in porous media].”11ème Congrès Français de Mécanique Volume 3 [ 11th French Conf. on Mech., Acte de Colloque, Lille-Villeneuve d'Acq., France, 273–276 (in French).
30.
Laube, M. (1990). “Werkstoffmodell zur Berechnung von Temperaturspannungen in massigen Betonbauteilen im jungen Alter [Constitutive model for the analysis of temperature-stresses in massive structures of concrete at early ages],” PhD thesis, Institut für Baustoffe, Massivbau und Brandschutz der TU Braunschweig, Braunschweig, Germany (in German).
31.
Le Chatelier, H. (1900). “Sur les changements de volume qui accompagnent le durcissement des ciments [On the volume changes which accompany the hardening of cements].”Bull. de la Société pour l'Encouragement de l'Industrie Nationale, Paris, France, 5ème série, Vol. 5, 54–57 (in French).
32.
Macmillan, M. (1982). “Traitement thermique des bétons [Thermal treatment of concrete].”Le béton hydraulique, J. Baron and R. Sauterey, eds., Presses de l'Ecole Nationale des Ponts et Chaussées, Paris, France, 261–269 (in French).
33.
Mandel, J. (1966). Cours de mécanique des milieux continus [ Continuum mechanics ]. Gauthier Villars, Paris, France (in French).
34.
Mandel, J. (1974). Introduction à la mécanique des milieux déformables [ Introduction to the mechanics of deformable solids ]. Editions Scientifiques de Pologne, Warsaw, Poland (in French).
35.
Mazars, J., and Bournazel, J. P. (1993). “Global modelling for creep, shrinkage and damage processes of maturing concrete.”Creep and Shrinkage of Concrete: 5th Int. RILEM Symp., ConCreep 5, Z. P. Bazant and I. Carol, eds., E & FN Spon, London, England, 369–380.
36.
Neville, A. M. (1981). Properties of concrete, 3rd Ed., Pitman, Publishing, Ltd., London, England.
37.
Powers, T. C., and Brownyard, T. L. (1948). “Studies of the physical properties of hardened Portland cement paste.”Bull. No. 22, Portland Cement Assoc., Skokie, Ill.
38.
Regourd, M. (1982). “L'hydration du ciment Portland [Hydration of Portland cement. Le béton hydraulique, J. Baron and R. Sauterey, eds., Presses de l'Ecole Nationale des Ponts et Chaussées, Paris, 194–221 (in French).
39.
Regourd, M., and Gauthier, E.(1980). “Comportement des ciments soumis au durcissement accéléré [Behaviour of cement under accelerated hardening].”Annales de l'ITBTP, Paris, France, 387, 65–96.
40.
Singh, M. (1985). “State-of-the-art finite element computer programs for thermal analysis of mass concrete structures.”Civ. Engrg. for Practising and Des. Engrs., Vol. 4, 129–136.
41.
Springenschmid, R., and Breitenbücher, R. (1986). “Are low heat cements the most favourable cements for the prevention of cracks due to heat of hydration.”Betonwerk Festigkeit Technik, Heft 11, Germany.
42.
Springenschmid, R. (1994). “Thermal cracking in concrete at early ages.”Proc., Int. RILEM Symp., 25, E & FN Spon, London, England.
43.
Tanabe, T., and Ishikawa, Y. (1993). “Time-dependent behaviour of concrete at early ages and its modelling.”Creep and Shrinkage of Concrete: 5th Int. RILEM Symp., ConCreep 5, Z. P. Bazant and I. Carol, eds., E & FN Spon, London, England, 435–452.
44.
Torrenti, J. M. (1992). “La résistance du béton au très jeune âge [Strength of concrete at early ages].”Bull. liaison Labo. P. et Ch., No. 179, 31–41 (in French).
45.
Torrenti, J. M., Paties, C., Piau, J. M., Acker, P., and de Larrard, F. (1992). “La simulation numérique des effets de l'hydratation du béton [Numerical simulation of hydration effects of concrete].”Colloque StruCoMe, Paris, France (in French).
46.
Torrenti, J. M., Guenot, I., Laplante, P., Acker, P., and de Larrard, F. (1994). “Numerical simulation of temperatures and stresses in concrete at early ages.”Computational Modelling of Concrete Struct., Int. Conf. EURO-C 1994, H. Mang, N. Bicanic, and R. de Borst, eds., Pineridge Press, Swansea, Wales, 559–568.
47.
van Breugel, K. (1991). “Simulation of hydration and formation of structure in hardening cement-based materials,” PhD thesis, Delft Univ. of Technol., Delft, The Netherlands.
48.
van den Bogert, P. A. J., de Borst, R., and Nauta, P. (1987). “Simulation of the mechanical behaviour of young concrete.”Computational Mech. of Concrete Struct.—Adv. and Applications; IABSE Colloquium, Int. Assoc. for Bridge and Struct. Engrg. (IABSE), Lisbon, Portugal, 339–347.
49.
Wittmann, F. H. (1976). “On the action of capillary pressure in fresh concrete.”Cement and Concrete Res., Vol. 6, 49–56.
50.
Wittmann, F. H. (1982). “Creep and shrinkage mechanisms.”Creep and Shrinkage in Concrete Structures, Z. P. Bazant and F. H. Wittmann, eds., John Wiley & Sons, New York, N.Y., 129–161.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 121Issue 7July 1995
Pages: 785 - 794

History

Published online: Jul 1, 1995
Published in print: Jul 1995

Permissions

Request permissions for this article.

Authors

Affiliations

Franz-Josef Ulm
Res. Engr., Docteur-Ingénieur, Laboratoire Central des Ponts et Chaussées, Divisions Bétons et Ciments pour Ouvrage d'Art, Section Comportement mécanique et modélisation, 58 Bd. Lefebvre, 75732 Paris Cedex 15, France.
Olivier Coussy
Res. Team Mgr., Docteur ès Sciences, Sr. Lect., Ecole polytechnique, Laboratoire Central des Ponts et Chaussées, Service Modélisation pour l'Ingénieur, 58 Bd. Lefebvre, 75732 Paris Cedex 15, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share