TECHNICAL PAPERS
May 1, 2000

Molecular Mechanism of Granulation. I: H+ Translocation-Dehydration Theory

Publication: Journal of Environmental Engineering
Volume 126, Issue 5

Abstract

A new theory for the molecular mechanism of sludge granulation, namely proton translocation-dehydration theory, was proposed in this study. Based on the consideration of biological activity of the bacterial cells, the bacterial surface dehydration caused by proton translocating activity was suggested to initiate the sludge granulation. The overall granulation process in this new theory included four stages: dehydration of bacterial surfaces, embryonic granule formation, granule maturation, and postmaturation. Some phenomena involved in practical sludge granulation were adequately explained by this new theory.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Ahring, B. K., Schmidt, J. E., Winther-Nielsen, M., Macario, A. J. L., and de Macario, E. C. (1993). “Effect of medium composition and sludge removal on the production, composition, and architecture of thermophilic (55°C) acetate-utilizing granules from an upflow anaerobic sludge blanket reactor.” Appl. Envir. Microbiology, 59(8), 2538–2545.
2.
Berkowitz, M. L., and Raghavan, K. ( 1994). “Interaction forces between membrane surfaces—role of electrostatic concepts.” Biomembrane electrochemistry, M. Blank and I. Vodyanoy, eds., American Chemical Society, Washington, D.C., 3–25.
3.
Birge, E. A. (1992). Modern microbiology: principles and applications. Wm. C. Brown Publishers, Dubuque, Iowa.
4.
Booth, I. R., and Mitchell, W. J. ( 1987). “Sugar transport and metabolism in the clostridia.” Sugar transport and metabolism in gram-positive bacteria, J. Reizer and A. Peterkofsky, eds., Ellis Horwood, Chichester, U.K., 165–185.
5.
Calleja, G. B. (1984). Microbial aggregation. CRC Press, Boca Raton, Fla.
6.
Cammarota, M. C., and Sant'Anna, G. L., Jr. (1998). “Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation.” Biotechnol. Letters, 20(1), 1–4.
7.
Costerton, J. W., Irvin, R. T., and Cheng, K. J. (1981). “The bacterial glycocalyx in nature and disease.” Annu. Review of Microbiology, 35, 299–324.
8.
Daffonchio, D., Thaveesri, J., and Verstraete, W. (1995). “Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors.” Appl. and Envir. Microbiology, 61(10), 3676–3680.
9.
Darnell, J., Lodish, H., and Baltimore, D. (1986). Molecular cell biology. Scientific American Books, New York.
10.
Deamer, D. W., and Akeson, M. ( 1994). “Role of water in proton conductance across model and biological membranes.” Biomembrane electrochemistry, M. Blank and I. Vodyanoy, eds., American Chemical Society, Washington, D.C., 3–25.
11.
de Beer, D., O'Flaherty, V., Thaveesri, J., Lens, P., and Verstraete, W. (1996). “Distribution of extracellular polysaccharides and flotation of anaerobic sludge.” Appl. Microbiology and Biotechnol., 46, 197–201.
12.
Dolfing, J., Griffioen, A., van Neerven, A. R. W., and Zevenhuizen, L. P. T. M. (1985). “Chemical and bacteriological composition of granular methanogenic sludge.” Can. J. Microbiology, 31, 744–750.
13.
Dubourguier, H. C., Archer, D. B., Albagnac, G., and Prensier, G. ( 1988). “Structure and metabolism of methanogenic microbial conglomerates.” Anaerobic digestion, E. R. Hall and P. N. Hobson, eds., Pergamon Press, Oxford, U.K., 13–23.
14.
Fang, H. H. P., Chui, H. K., and Li, Y. Y. (1995). “Effect of degradation kinetics on the microstructure of anaerobic biogranules.” Water Sci. and Technol., 32(8), 165–172.
15.
Fletcher, M., and Loeb, G. I. (1979). “Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces.” Appl. Envir. Microbiology, 37(1), 67–72.
16.
Fukuzaki, S., Nishio, N., Sakurai, H., and Nagai, S. (1991). “Characteristics of methanogenic granules grown on propionate in an upflow anaerobic sludge blanket (UASB) reactor.” J. Fermentation and Bioengrg., 71(1), 50–57.
17.
Ghangrekar, M. M., Asolekar, S. R., Ranganathan, K. R., and Joshi, S. G. (1996). “Experience with UASB reactor start-up under different operating conditions.” Water Sci. and Technol., 34(5–6), 421–428.
18.
Grootaerd, H., Liessens, B., and Verstraete, W. (1997). “Effects of directly soluble and fibrous rapidly acidifying chemical oxygen demand and reactor liquid surface tension on granulation and sludge-bed stability in upflow anaerobic sludge-blanket reactors.” Appl. Microbiology and Biotechnol., 48(3), 304–310.
19.
Grotenhuis, J. T. C., et al. (1991a). “Bacteriological composition and structure of granular sludge adapted to different substrates.” Appl. Envir. Microbiology, 57(7), 1942–1949.
20.
Grotenhuis, J. T. C., Kissel, J. C., Plugge, C. M., Stams, A. J. M., and Zehnder, A. J. B. (1991b). “Role of substrate concentration in particle size distribution of methanogenic granular sludge in UASB reactors.” Water Res., 25(1), 21–27.
21.
Grotenhuis, J. T. C., Plugge, C. M., Stams, A. J. M., and Zehnder, A. J. B. (1992). “Hydrophobicities and electrophoretic mobilities of anaerobic bacterial isolates from methanogenic granular sludge.” Appl. Envir. Microbiology, 58, 1054–1056.
22.
Grotenhuis, J. T. C., van Lier, J. B., Plugge, C. M., Stams, A. J. M., and Zehnder, A. J. B. (1991c). “Effect of ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid (EGTA) on stability and activity of methanogenic granular sludge.” Appl. Microbiology and Biotechnol., 36, 109–114.
23.
Guiot, S. R., Gorur, S. S., and Kennedy, K. J. ( 1988). “Nutritional and environmental factors contributing to microbial aggregation during upflow anaerobic sludge bed-filter (UBF) reactor start-up.” Anaerobic digestion, E. R. Hall and P. N. Hobson, eds., Pergamon Press, Oxford, U.K., 47–53.
24.
Heritage, J., Evans, E. G. V., and Killington, R. A. (1996). Introductory microbiology. Cambridge University Press, Cambridge, U.K.
25.
Hirsch, R. ( 1984). “Microcolony formation and consortia.” Microbial adhesion and aggregation, K. C. Marshall, ed., Springer-Verlag, Berlin, 373–393.
26.
Hoekstra, D., and Wilschut, J. ( 1989). “Membrane fusion of artificial and biological membrane: role of local membrane dehydration.” Water transport in biological membranes. I: From model membrane to isolated cells, G. Benga, ed., CRC Press, Boca Raton, Fla., 143–176.
27.
Hong, K., Meers, P. R., Duzgunes, N., and Papahadjopoulos, D. ( 1991). “Fusion of liposomes induced and modulated by proteins and polypeptides.” Membrane fusion, J. Wilschut and D. Hoekstra, eds., Marcel Dekker, New York, 195–208.
28.
Hulshoff Pol, L. W., de Zeeuw, W. J., Velzeboer, C. T. M., and Lettinga, G. (1983). “Granulation in UASB-reactors.” Water Sci. and Technol., 8/9, 291–304.
29.
Hynes, R. O. (1995). Cell adhesion and human disease, J. Marsh and J. A. Goode, eds., Wiley, Chichester, U.K.
30.
Israelachvili, J., and Pashley, R. M. ( 1982). “Double-layer, van der Waals and hydration forces between surfaces in electrolyte solutions.” Biophysics of water, F. Franks, ed., Wiley, Chichester, U.K., 183–194.
31.
Jia, X. S., Furumai, H., and Fang, H. H. P. (1996). “Extracellular polymers of hydrogen-utilizing methanogenic and sulfate-reducing sludges.” Water Res., 30(6), 1439–1444.
32.
Lettinga, G., van Velsen, A. F. M., Hobma, S. W., de Zeeuw, W., and Klapwijk, A. (1980). “Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment especially for anaerobic treatment.” Biotechnol. and Bioengrg., 22, 699–734.
33.
Liu, S. S. ( 1989). “A new function of proton pumps in membrane fusion.” Current biochemical research in China, C. L. Zhou, eds., Academia Press, New York, 161–171.
34.
MacLeod, F. A., Guiot, S. R., and Costerton, J. W. (1990). “Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor.” Appl. Envir. Microbiology, 56, 1598–1607.
35.
Mahoney, E. M., Varangu, L. K., Cairns, W. L., Kosaric, N., and Murray, R. G. E. (1987). “The effect of calcium on microbial aggregation during UASB start-up.” Water Sci. and Technol., 19(1–2), 249–260.
36.
Marshall, K. C. (1984). Microbial adhesion and aggregation. Springer-Verlag, Berlin.
37.
Mitchell, P. (1961). “Coupling of phosphorylation to electron and hydrogen transfer.” Nature, 191, 144–148.
38.
Morgan, J. W., Evison, L. M., and Forster, C. F. (1991). “Upflow sludge blanket reactors: the effect of bio-supplements on performance and granulation.” J. Chemical Technol. and Biotechnol., 52, 243–255.
39.
Morgan, J. W., and Forster, C. F. (1992). “A comparative study of the sonication of anaerobic and activated sludges.” J. Chemical Technol. and Biotechnol., 55, 53–58.
40.
O'Flaherty, V., Lens, P. N. L., de Beer, D., and Colleran, E. (1997). “Effect of feed composition and upflow velocity on aggregate characteristics in anaerobic upflow reactors.” Appl. Microbiology and Biotechnol., 47, 102–107.
41.
Palns, S. S., Loewenthal, R. E., Dold, P. L., and Marais, G. R. (1987). “Hypothesis for pelletisation in the upflow anaerobic sludge bed reactor.” Water SA, 13, 69–80.
42.
Papahadjopoulos, D., Nir, S., and Duzgunes, N. (1990). “Molecular mechanisms of calcium-induced membrane fusion.” J. Bioenergetics and Biomembrane, 22, 157–175.
43.
Parsegian, V. A., and Rand, R. P. ( 1991). “Forces governing lipid interaction and rearrangement.” Membrane fusion, J. Wilschut and D. Hockstra, eds., Marcel Dekker, New York, 65–85.
44.
Priest, F. G. ( 1992). “Synthesis and secretion of extracellular enzymes in bacteria.” Microbial degradation of natural products, G. Winkelmann, ed., VCH, Weinheim, Germany, 1–26.
45.
Ross, W. R. (1984). “The phenomenon of sludge pelletization in the anaerobic treatment of a maize processing waste.” Water SA, 10, 197–204.
46.
Rutter, P. R., et al. ( 1984). “Mechanisms of adhesion.” Microbial adhesion and aggregation, K. C. Marshall, ed., Springer-Verlag, Berlin, 5–19.
47.
Sam-Soon, P. A. L. N. S., Looewenthal, R. E., Dold, P. L., and Marais, G. V. R. ( 1988). “Pelletization in upflow anaerobic sludge bed reactors.” Anaerobic digestion, E. R. Hall and P. N. Hobson, eds., Pergamon Press, Oxford, U.K., 55–60.
48.
Sanchez, J. M., Arijo, S., Munoz, M. A., Morinigo, M. A., and Borrrego, J. J. (1994). “Microbial colonization of different support materials used to enhance the methanogenic process.” Appl. Microbiology and Biotechnol., 41, 480–486.
49.
Schink, B., and Thauer, R. K. ( 1988). “Energetics of syntrophic methane formation and the influence of aggregation.” Granular anaerobic sludge—Microbiology and technology, G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, and, L. W. Hulshoff Pol, eds., Wageningen, The Netherlands, 5–17.
50.
Schmidt, J. E., and Ahring, B. K. (1993). “Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors.” Enzyme and Microbiological Technol., 15(4), 304–310.
51.
Schmidt, J. E., and Ahring, B. K. (1994). “Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors.” Appl. Microbiology and Biotechnol., 42, 457–462.
52.
Schmidt, J. E., and Ahring, B. K. (1996). “Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors.” Biotechnol. and Bioengrg., 49(3), 229–246.
53.
Shen, C. F., Kosaric, N., and Blaszczyk, R. (1993). “The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (EPS).” Water Res., 27(1), 25–33.
54.
Singer, S. J., and Nicolson, G. L. (1972). “The fluid mosaic model of the structure of cell membranes.” Sci., 175, 720–731.
55.
Smith, C. A., and Wood, E. J. (1991). Molecular and cell biochemistry: biological molecules. Chapman & Hall, London.
56.
Speece, R. E. (1996). Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, Tenn.
57.
Sutherland, I. W. ( 1972). “Bacterial exopolysaccharides.” Advances in microbial physiology, A. Rose and D. W. Tempest, eds., Vol. 8. Academic Press, London, 143–213.
58.
Tay, J. H., Show, K. Y., and Jeyaseelan, S. (1996). “Effects of media characteristics on performance of upflow anaerobic packed-bed reactors.”J. Envir. Engrg., ASCE, 122(6), 469–476.
59.
Thaveesri, J., Daffonchio, D., Liessens, B., Vandemeren, P., and Verstraete, W. (1995a). “Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics.” Appl. Envir. Microbiology, 61(10), 3681–3686.
60.
Thaveesri, J., Liessens, B., and Verstraete, W. (1995b). “Granular sludge growth under different reactor liquid surface tensions in lab-scale upflow anaerobic sludge blanket reactors treating wastewater from sugar-beet processing.” Appl. Microbiology and Biotechnol., 43, 1122–1127.
61.
Thiele, J. H., Wu, W., Jain, M. K., and Zeikus, J. G. (1990). “Ecoengineering high rate anaerobic digestion systems: analysis of improved syntrophic biomethanation catalysts.” Biotechnol. and Bioengrg., 35, 990–999.
62.
Thiele, J. H., and Zeikus, J. G. (1988). “Control of interspecies electron flow during anaerobic digestion: the role of formate versus hydrogen transfer during syntrophic methanogenesis in flocs.” Appl. Envir. Microbiology, 54(1), 20–29.
63.
Uemura, S., and Harada, H. (1993). “Microbial characteristics of methanogenic sludge consortia developed in thermophilic UASB reactors.” Appl. Microbiology and Biotechnol., 39, 654–660.
64.
Vanderhaegen, B., et al. (1992). “Acidogenesis in relation to in-reactor granule yield.” Water Sci. and Technol., 25(7), 21–30.
65.
van Lier, J. B., Sanz Martin, J. L., and Lettinga, G. (1995). “Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge.” Water Res., 30, 199–207.
66.
van Loosdrecht, M. C. M., and Zehnder, A. J. B. (1990). “Energetics of bacterial adhesion.” Experientia, 46, 817–822.
67.
van Loosdrecht, M. C. M., Lyklema, J., Norde, W., Schraa, G., and Zehnder, A. J. B. (1987). “The role of bacterial cell wall hydrophobicity in adhesion.” Appl. and Envir. Microbiology, 53(8), 1893–1897.
68.
Veiga, M. C., Mahendra, K. J., Wu, W. M., Hollingsworth, R. I., and Zeikus, J. G. (1997). “Composition and role of extracellular polymers in methanogenic granules.” Appl. Envir. Microbiology, 63(2), 403–407.
69.
Verrier, D., Mortier, B., Dubourguier, H. C., and Albagnac, G. ( 1988). “Adhesion of anaerobic bacteria to inert supports and development of methanogenic biofilms.” Anaerobic digestion, E. R. Hall and P. N. Hobson, eds., Pergamon Press, Oxford, U.K., 61–69.
70.
Verwey, E. J., and Overbeek, J. T. G. (1948). Theory of the stability of lyophobic Colloids. Elsevier, Amsterdam.
71.
Wiegant, W. M. ( 1988). “The `Spaghetti theory' on anaerobic granular sludge fermentation, or the inevitability of granulation.” Granular anaerobic sludge—microbiology and technology, G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, and L. W. Hulshoff Pol, eds., Wageningen, The Netherlands, 146–152.
72.
Wilschut, J. ( 1991). “Membrane fusion in lipid vesicle systems: an overview.” Membrane fusion, J. Wilschut and D. Hoekstra, eds., Marcel Dekker, New York, 89–126.
73.
Wilschut, J., and Hoekstra, D. (1984). “Membrane fusion: from liposome to biological membrane.” Trend in Biochemical Sci., 9, 479–483.
74.
Wirtz, R. A., and Dague, R. R. (1996). “Enhancement of granulation and start-up in the anaerobic sequencing batch reactor.” Water Envir. Res., 68(5), 883–892.
75.
Wrangstadh, M., Conway, P. L., and Kjelleberg, S. (1986). “The production of an extracellular polysaccaride during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion.” Archives of Microbiology, 145, 220–227.
76.
Wu, W. M., Jain, M. K., and Zeikus, J. G. (1996). “Formation of fatty acid-degrading, anaerobic granules by defined species.” Appl. Envir. Microbiology, 62(6), 2037–2044.
77.
Xu, H. L. ( 1993). “Molecular mechanism of membrane fusion,” MS thesis, The Chinese Academy of Sciences, Beijing, China.
78.
Xu, H. L. ( 1999). “Molecular mechanism of sludge granulation,” MS thesis, Nanyang Technological University, Singapore.
79.
Yoda, M., Kitagawa, M., and Miyaji, Y. (1989). “Granular sludge formation in the anaerobic expanded micro-carrier process.” Water Sci. and Technol., 21(4–5), 109–120.
80.
Young, J. C., and Dahab, M. F. (1983). “Effect of media design on the performance of fixed-bed anaerobic reactors.” Water Sci. and Technol., 15(8/9), 369–383.
81.
Zeikus, J. G. (1980). “Chemical and fuel production by anaerobic bacteria.” Annu. Review of Microbiology, 34, 423–464.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 126Issue 5May 2000
Pages: 403 - 410

History

Received: Nov 25, 1998
Published online: May 1, 2000
Published in print: May 2000

Permissions

Request permissions for this article.

Authors

Affiliations

Prof. and Head, Div. of Envir. and Water Resour. Engrg., School of Civ. and Struct. Engrg., Nanyang Technol. Univ., Nanyang Ave., Singapore 639798.
Res. Fellow, Div. of Envir. and Water Resour. Engrg., School of Civ. and Struct. Engrg., Nanyang Technol. Univ., Nanyang Ave., Singapore 639798.
Assoc. Prof., Div. of Chem., School of Sci., Nat. Inst. of Educ., Nanyang Technol. Univ., 469 Bukit Timah Rd., Singapore 259756.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share