Technical Papers
May 10, 2024

Examination of Temporal Variation in the Physiological Parameters of Olive Trees in Various Deficit Irrigation Strategies

Publication: Journal of Irrigation and Drainage Engineering
Volume 150, Issue 4

Abstract

Sensitive irrigation programming requires both a good knowledge of plant physiology regarding water use and the monitoring of the effect of water stress on plant physiology. In this study, the effect of different irrigation strategies on full-grown olive trees of the Memecik variety irrigated by the drip irrigation method was investigated over three crop seasons (2012–2013, 2013–2014, and 2014–2015), and the possibility of using these strategies in forming an irrigation program was examined. The experiment consisted of five irrigation treatments with three replications in a random block design. One significant finding after the three years of observation in the study was that it was possible to determine in a simple and sensitive way the temporal responses of olive trees under conditions of water stress with predawn plant water potential, stomatal conductance, and plant water stress index but not chlorophyll content (SPAD value). Statistically significant differences were found between the treatments in the measurements made. Taking into account the three-year averages of treatment values for water applications, acceptable threshold values for predawn plant water potential, stomatal conductance, and plant water stress index are 1.64  MPa, 330  mmolm2s1, and 0.37, respectively. It is easy to put these measurements into practice, and doing so will enable very significant water savings in Mediterranean climate conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This study was supported by the Turkish Scientific and Technological Research Council (TUBİTAK) (Grant No. 112O317). The authors would like to thank TUBİTAK for its financial support of the research project.

References

Agam, N., Y. Cohen, J. A. J. Berni, V. Alchanatis, D. Kool, A. Dag, U. Yermiyahu, and A. Ben-Gal. 2013. “An insight to the performance of crop water stress index for olive trees.” Agric. Water Manage. 118 (Feb): 79–86. https://doi.org/10.1016/j.agwat.2012.12.004.
Ahmed, C. B., B. B. Rouina, and M. Boukhris. 2007. “Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia.” Sci. Hortic. 113 (3): 267–277. https://doi.org/10.1016/j.scienta.2007.03.020.
Ahumada-Orellana, L., S. Ortega-Farías, C. Poblete-Echeverría, and P. S. Searles. 2019. “Estimation of stomatal conductance and stem water potential threshold values for water stress in olive trees (cv. Arbequina).” Irrig. Sci. 37 (4): 461–467. https://doi.org/10.1007/s00271-019-00623-9.
Akkuzu, E., Ü. Kaya, G. Çamoğlu, G. Mengü, and Ş. ve Aşık. 2013. “Determination of crop water stress index and irrigation timing on olive trees using a handheld infrared thermometer.” J. Irrig. Drain. Eng. 139 (9): 728–737. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000623.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration—Guidelines for computing crop water requirements. Rome: Food and Agriculture Organization.
Andrews, P. K., D. J. Chalmers, and M. Moremong. 1992. “Canopy-air temperature differences and soil-water as predictors of water stress of apple-trees grown in a humid, temperate climate.” J. Am. Soc. Hortic. Sci. 117 (3): 453–458. https://doi.org/10.21273/JASHS.117.3.453.
Aref, I., H. El Atta, M. El Obeid, A. Ahmed, P. Khan, and M. Iqbal. 2013. “Effect of water stress on relative water and chlorophyll contents of Juniperus procera Hochst. ex Endlicher in Saudi Arabia.” Life Sci. J. 10 (4): 681–685.
Aşık, S., Ü. Kaya, G. Çamoglu, E. Akkuzu, H. Olmez, and M. Avci. 2014. “Effect of different irrigation levels on the yield and traits of Memecik olive trees (Olea europaea L.) in the Aegean coastal region of Turkey.” J. Irrig. Drain. Eng. 140 (8): 04014025. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000741.
Aşık, Ş., Ü. Kaya, G. Çamoğlu, O. Köseoğlu, H. Ölmez, E. Akkuzu, M. Şahin, F. Özgür Güngör, M. Avcı, and C. Nergiz. 2011. Zeytin yetiştiriciliğinde farkli sulama programlarinin zeytin verimi, sofralik zeytin ve zeytinyaği kalitesi üzerine etkisi. [In Turkish with English Abstract.]. Ankara, Türkiye: TÜBİTAK.
Beede, R. H., and D. A. Goldhamer. 2005. “Olive irrigation management.” In Vol. 3353 of Olive production manual, edited by G. S. Sibbett and L. Ferguson, 2nd ed., 61–69. Davis, CA: Univ. of California—Agriculture and Natural Resources.
Ben-Gal, A., U. Yermiyahu, I. Zipori, E. Presnov, N. Agam, A. Dag, Z. Kerem, L. Basheer, and E. Hanoch. 2011. “Determining irrigation levels for a modern Israeli olive orchard: Towards maximum yields of high quality oil.” Acta Hortic. 888 (888): 47–52. https://doi.org/10.17660/ActaHortic.2011.888.4.
Boussadia, O., F. Ben Mariem, B. Mechri, W. Boussetta, M. Braham, and S. Ben El Hadj. 2008. “Response to drought of two olive tree cultivars (cv Koroneki and Meski).” Sci. Hortic. 116 (4): 388–393. https://doi.org/10.1016/j.scienta.2008.02.016.
Çakır, T. 2015. “Farklı kısıtlı sulama koşullarındaki zeytin ağaçlarında (cv memecik) bitki su potansiyeli ve stoma iletkenliğinin zamansal değişiminin belirlenmesi.” [In Turkish with English Abstract.] M.Sc. thesis, Faculty of Agriculture, Dept. of Agricultural Structures and Irrigation, Ege Univ.
Carr, M. K. V. 2013. “The water relations and irrigation requirements of olive (Olea europaea L.): A review.” Exp. Agric. 49 (4): 597–639. https://doi.org/10.1017/S0014479713000276.
De Swaef, T., et al. 2022. “On the pivotal role of water potential to model plant physiological processes.” In Silico Plants 4 (1): diab038. https://doi.org/10.1093/insilicoplants/diab038.
Dichio, B., C. Xiloyannis, G. Celano, and K. Angelopoulos. 1994. “Response of olive trees subjected to various levels of water stress.” Acta Hortic. 356 (356): 211–214. https://doi.org/10.17660/ActaHortic.1994.356.45.
Erdem, T., H. Orta, Y. Erdem, and H. Okursoy. 2005. “Crop water stress index for potato under furrow and drip irrigation systems.” Potato Res. 48 (1–2): 49–58. https://doi.org/10.1007/BF02733681.
Fernández, J. E. 2014. “Understanding olive adaptation to abiotic stresses as a tool to increase crop performance.” Environ. Exp. Bot. 103 (Jun): 158–179. https://doi.org/10.1016/j.envexpbot.2013.12.003.
Fernández, J. E., and F. Moreno. 1999. “Water use by the olive tree.” In Water use in crop production, edited by M. B. Kirkham, 101–162. Philadelphia: Haworth Press.
Fernández, J. E., A. Perez-Martin, J. M. Torres-Ruiz, M. V. Cuevas, C. M. Rodriguez-Dominguez, S. Elsayed-Farag, A. Morales-Sillero, J. M. García, V. Hernandez-Santana, and A. Diaz-Espejo. 2013. “A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density.” Plant Soil 372 (1–2): 279–295. https://doi.org/10.1007/s11104-013-1704-2.
Gardner, B. R., D. C. Nielsen, and C. C. Shock. 1992. “Infrared thermometry and the crop water stress index. I. History, theory, and baselines.” J. Prod. Agric. 5 (4): 462–466. https://doi.org/10.2134/jpa1992.0462.
Gardner, B. R., and C. C. Shock. 1989. “Interpreting the crop water stress index.” In Proc., 1989 Int. Winter Meeting. St. Joseph, MI: American Society of Agricultural Engineers.
Garrot, D. J., M. W. Kilby, D. D. Fangmeier, S. H. Husman, and A. E. Ralowicz. 1993. “Production, growth, and nut quality in pecans under water stress based on the crop water stress index.” J. Am. Soc. Hortic. Sci. 118 (6): 694–698. https://doi.org/10.21273/JASHS.118.6.694.
Gençoğlan, C., and A. Yazar. 1999. “The effects of deficit irrigations on corn yield and water use efficiency.” Turk. J. Agric. For. 23 (Sep): 233–242.
Giorio, P., G. Sorrentino, and R. d’Andria. 1999. “Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit.” Environ. Exp. Bot. 42 (2): 95–104. https://doi.org/10.1016/S0098-8472(99)00023-4.
Glenn, D. M., J. W. Worthıngton, W. V. Welker, and M. J. Me Farland. 1989. “Estimation of peach tree water use using infrared thermometry.” J. Am. Soc. Hortic. Sci. 114 (5): 737–741. https://doi.org/10.21273/JASHS.114.5.737.
Goldhamer, D. A., and R. H. Beede. 2005. “Effects of water stress on olive tree performance.” In Vol. 3353 of Olive production manual. 2nd ed., edited by G. S. Sibbett and L. Ferguson, 71–74. Berkeley, CA: Univ. of California.
Goldhamer, D. A., J. Dunai, and L. Ferguson. 1994. “Irrigation requirements of olive trees and responses to sustained deficit irrigation.” Acta Hortic. 356 (356): 172–175. https://doi.org/10.17660/ActaHortic.1994.356.36.
Gómez-del-Campo, M. 2013. “Summer deficit-irrigation strategies in a hedgerow olive orchard cv. ‘Arbequina’: Effect on fruit characteristics and yield.” Irrig. Sci. 31 (3): 259–269. https://doi.org/10.1007/s00271-011-0299-8.
Gonçalves, A., et al. 2020. “Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies.” J. Sci. Food Agric. 100 (2): 682–694. https://doi.org/10.1002/jsfa.10064.
Goode, J. E. 1967. “The measurement of sap tension in the petioles of apple, raspberry and black currant leaves.” J. Hortic. Sci. 43 (Jan): 231–233. https://doi.org/10.1080/00221589.1968.11514249.
Grattan, S. R., M. J. Berenguer, J. H. Connell, V. S. Polito, and P. M. Vossen. 2006. “Olive oil production as influenced by different quantities of applied water.” Agric. Water Manage. 85 (1–2): 133–140. https://doi.org/10.1016/j.agwat.2006.04.001.
Hidalgo, J., V. Vega, J. C. Hidalgo, M. Pastor, F. Orgaz, and E. Fereres. 2011. “Responses to different irrigation strategies of a traditional and an intensive olive orchard cultivar ‘Picual’ in Andalusia, Spain.” Acta Hortic. 888 (Apr): 53–62. https://doi.org/10.17660/ActaHortic.2011.888.5.
Idso, S. B., R. D. Jackson, P. J. Pınter, and J. L. Hatfıeld. 1981. “Normalizing the stress-degree-day parameter for environmental variability.” Agric. Meteorol. 24 (Jan): 45–55. https://doi.org/10.1016/0002-1571(81)90032-7.
Irmak, S., D. Z. Haman, and R. Bastug. 2000. “Determination of crop water stress index for irrigation timing and yield estimation of corn.” Agron. J. 92 (6): 1221–1227. https://doi.org/10.2134/agronj2000.9261221x.
Jackson, R. D., W. P. Kustas, and B. J. Choudhury. 1988. “A re-examination of the crop water stress index.” Irrig. Sci. 9 (4): 309–317. https://doi.org/10.1007/BF00296705.
Jangpromma, N., P. Songsri, S. Thammasirirak, and P. Jaisil. 2010. “Rapid assessment of chlorophyll content in sugarcane using a SPAD chlorophyll meter across different water stress conditions.” Asian J. Plant Sci. 9 (6): 368–374. https://doi.org/10.3923/ajps.2010.368.374.
Kaya, Ü., F. Öztürk Güngör, G. Çamoğlu, E. Akkuzu, Ş. Aşık, and O. Köseoğlu. 2017. “Effect of deficit irrigation regimes on yield and fruit quality of olive trees (cv. Memecik) on the Aegean coast of Türkiye.” Irrig. Drain. 66 (5): 820–827. https://doi.org/10.1002/ird.2156.
Khalil, H. A., and D. O. El-Ansary. 2020. “Morphological, physiological and anatomical responses of two olive cultivars to deficit irrigation and mycorrhizal inoculation.” Eur. J. Hortic. Sci. 85 (1): 51–62. https://doi.org/10.17660/eJHS.2020/85.1.6.
Kumar, N., V. Shankar, R. Rustum, and A. J. Adeloye. 2021. “Evaluating the performance of self organizing maps to estimate well-watered canopy temperature for calculating crop water stress index in Indian Mustard (Brassica juncea).” ASCE J. Irrig. Drain. Eng. 147 (2): 04020040. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001526.
Lavee, S. 2011. “The revolutionary impact of introducing irrigation-intensification to the olive oil industry.” Acta Hortic. 888 (888): 21–30. https://doi.org/10.17660/ActaHortic.2011.888.1.
Mailer, R., and J. Ayton. 2011. “Effect of irrigation and water stress on olive oil quality and yield based on a four-year study.” Acta Hortic. 888 (Apr): 63–72 https://doi.org/10.17660/ActaHortic.2011.888.6.
Massai, R., D. Remorini, and F. Casula. 2000. “Leaf temperature measured on peach trees growing in different climatic and soil water conditions.” Acta Hortic. 537: 399–406. https://doi.org/10.17660/ActaHortic.2000.537.47.
MGM (Meteoroloji Genel Müdürlüğü). 2014. Meteorological observation records of Güzelyalı meteorology station. Izmir, Turkey: MGM.
Möller, M., V. Alchanatis, Y. Cohen, M. Meron, J. Tsipris, A. Naor, V. Ostrovsky, M. Sprintsin, and S. Cohen. 2007. “Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.” J. Exp. Bot. 58 (4): 827–838.
Moriana, A., F. Orgaz, M. Pastor, and E. Fereres. 2003. “Yield responses of a mature olive orchard to water deficits.” J. Am. Soc. Hortic. Sci. 128 (3): 425–431. https://doi.org/10.21273/JASHS.128.3.0425.
Moriana, A., F. J. Villalobos, and E. Fereres. 2002. “Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits.” Plant Cell Environ. 25 (3): 395–404. https://doi.org/10.1046/j.0016-8025.2001.00822.x.
Osroosh, Y., R. T. Peters, and C. S. Campbell. 2016. “Daylight crop water stress index for continuous monitoring of water status in apple trees.” Irrig. Sci. 34 (3): 209–219. https://doi.org/10.1007/s00271-016-0499-3.
Padilla-Díaz, C. M., C. M. Rodriguez-Dominguez, V. Hernandez-Santana, A. Perez-Martin, and J. E. Fernández. 2016. “Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements.” Agric. Water Manage. 164 (Jan): 28–37. https://doi.org/10.1016/j.agwat.2015.08.002.
Pierantozzi, P., M. Torres, S. Lavee, and D. Maestri. 2014. “Vegetative and reproductive responses, oil yield and composition from olive trees (Olea europaea L.) under contrasting water availability during the dry winter-spring period in central Argentina.” Ann. Appl. Biol. 164 (1): 116–127. https://doi.org/10.1111/aab.12086.
Pierantozzi, P., M. Torres, M. Tivani, C. Contreras, L. Gentili, C. Parera, and D. Maestri. 2020. “Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters.” Agric. Water Manage. 238 (Aug): 106212. https://doi.org/10.1016/j.agwat.2020.106212.
Pouyafard, N. 2013. “Kıyı Ege koşullarında yetiştirilen Ayvalık zeytin fidanlarında su stresine bağlı bazı fizyolojik ve morfolojik değişimlerin belirlenmesi.” [In Turkish with English Abstract.] M.Sc. thesis, Faculty of Agriculture, Dept. of Agricultural Structures and Irrigation, Ege Univ.
Proietti, P., L. Nasini, and L. Ilarioni. 2012. “Photosynthetic behavior of Spanish Arbequina and Italian Maurino olive (Olea europaea L.) cultivars under super–intensive grove conditions.” Photosynthetica 50 (2): 239–246. https://doi.org/10.1007/s11099-012-0025-7.
Puangbut, D., S. Jogloy, and N. Vorasoot. 2017. “Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions.” Agric. Water Manage. 188 (Jul): 29–35. https://doi.org/10.1016/j.agwat.2017.04.001.
Rhizopoulou, S., M. S. Meletiou-Christou, and S. Diamantoglou. 1991. “Water relations for sun and shade leaves of four Mediterranean evergreen sclerophylls.” J. Exp. Bot. 42 (5): 627–635. https://doi.org/10.1093/jxb/42.5.627.
Sadras, V. O., A. Montoro, M. A. Moran, and P. J. Aphalo. 2012. “Elevated temperature altered the reaction norms of stomatal conductance in field-grown grapevine.” Agric. For. Meteorol. 165 (Nov): 35–42. https://doi.org/10.1016/j.agrformet.2012.06.005.
Scholander, P. F., H. T. Hammel, E. D. Bradstreet, and E. A. Hemmingsen. 1965. “Sap pressure in vascular plants.” Science 148 (3668): 339–346. https://doi.org/10.1126/science.148.3668.339.
Sevim, D., O. Köseoğlu, F. Öztürk Güngör, Ü. Kaya, P. Kadiroğlu, G. Pamuk Mengü, and E. Akkuzu. 2019. “Determination of deficit irrigation treatments on olive fruit quality and olive oil (Memecik cv.) chemical composition and antioxidant properties.” La Riv. Ital. Delle Sostanze Grasse 96 (2): 1–16.
Tatar, Ö., H. Brück, and F. Asch. 2022. “Atmospheric and soil water deficit induced changes in chemical and hydraulic signals in wheat (Triticum aestivum L.).” J. Agron. Crop Sci. 209 (2): 242–250. https://doi.org/10.1111/jac.12620.
Testi, L., D. A. Goldhamer, F. Iniesta, and M. Salinas. 2008. “Crop water stress index is a sensitive water stress indicator in pistachio trees.” Irrig. Sci. 26 (Jul): 395–405. https://doi.org/10.1007/s00271-008-0104-5.
Ünlü, M., et al. 2014. “Irrigation scheduling of grapefruit trees in a Mediterranean environment throughout evaluation of plant water status and evapotranspiration.” Turk. J. Agric. For. 38 (6): 908–915. https://doi.org/10.3906/tar-1403-58.
Wang, D., and J. Gartung. 2010. “Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation.” Agric. Water Manage. 97 (11): 1787–1794. https://doi.org/10.1016/j.agwat.2010.06.014.
Xiloyannis, C., B. Dichio, V. Nuzzo, and G. Celano. 1999. “Defense strategies of olive against water stress.” Acta Hort. 474 (474): 423–426. https://doi.org/10.17660/ActaHortic.1999.474.86.
Yazar, A. 2009. Sulama ve drenaj ders notları. [In Turkish.] Adana, Turkey: Ziraat Fakültesi, Tarımsal Yapılar ve Sulama Bölümü, Çukurova Üniversitesi.
Yooyongwech, S., T. Samphumphuang, R. Tisarum, C. Theerawitaya, and S. Cha-um. 2016. “Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustment via soluble sugar and free proline.” Sci. Hortic. 198 (Jan): 107–117. https://doi.org/10.1016/j.scienta.2015.11.002.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 150Issue 4August 2024

History

Received: Jan 4, 2023
Accepted: Dec 28, 2023
Published online: May 10, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 10, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Gülay Pamuk Mengü, Ph.D. [email protected]
Associate Professor, Faculty of Agriculture, Dept. of Agricultural Structures and Irrigation, Ege Univ., İzmir 35100, Turkey. Email: [email protected]
Faculty of Agriculture, Dept. of Agricultural Structures and Irrigation, Ege Univ., İzmir 35100, Turkey. ORCID: https://orcid.org/0000-0002-8719-3276. Email: [email protected]
Ünal Kaya, Ph.D. [email protected]
Researcher, Dept. of Cultivation Techniques, Bornova Olive Research Institute, University Street, Bornova, İzmir 35100, Turkey. Email: [email protected]
Professor, Faculty of Agriculture, Dept. of Agricultural Structures and Irrigation, Ege Univ., İzmir 35100, Turkey (corresponding author). ORCID: https://orcid.org/0000-0002-9069-2922. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share