Technical Papers
May 17, 2024

Hybridization in FRP Composites for Construction: State-of-the-Art Review and Trends

Publication: Journal of Composites for Construction
Volume 28, Issue 4

Abstract

Hybrid fiber-reinforced polymer (FRP) composites, combining different types of fibers within a polymeric matrix, have piqued the research community’s interest due to their enhanced mechanical properties and functional performance. These materials offer optimized fiber usage, tailored failure responses, and potential for pseudoductile behavior. Furthermore, hybridization avoids catastrophic tensile failure despite the composites being composed entirely of brittle materials. Empirical evidence from previous research conducted on hybrid FRP composites for civil engineering applications suggests their potential as a promising asset to the field. This review paper collates extensive research and development work on hybrid FRP composites for civil engineering applications, providing a comprehensive summary since their inception. It covers areas including the development of reinforcing bars for reinforced concrete (RC) structures, externally bonded strengthening systems for RC structures, pultruded profiles for novel structures, and cables for long-span bridges. The paper begins with a concise overview of the influential developments that paved the way for hybrid FRP composites, followed by an in-depth discussion of their utilization in the construction sector. The paper concludes by extrapolating the potential future trajectory of hybrid FRP composites, providing insights into their future outlook.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and/or codes generated or used during this study are available from the corresponding author upon request, namely, Table 3 and Fig. 10.

Acknowledgments

This work was carried out in the scope of the project DURABLE-FRP (PTDC/ECI-EGC/4609/2020, doi.org/10.54499/PTDC/ECI-EGC/4609/2020) funded by national funds financed by the European Fund of the Regional Development (FEDER) through the Operational Program for Competitiveness and Internationalization (POCI) and the Lisbon Regional Operational Program and was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04625/2020 (doi:10.54499/PTDC/ECI-EGC/4609/2020), and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/0112/2020.

Notation

The following symbols are used in this paper:
EH
elastic modulus of the HE material;
GIIC
Mode II interlaminar fracture toughness of the interface between LE layers and HE layers;
Kt
stress concentration factor in the high-strain material;
mH
Weibull strength distribution modulus of the HE fibers;
SH
reference strength of the HE material;
SL
reference strength of the LE material;
tH
half thickness of the HE material;
V
volume of the specimen;
VH
volume of the high-elongation material;
VL
volume of the low-elongation material;
VM
volume of the matrix;
α
modulus ratios of the LE to HE material;
β
thickness ratios of the LE to HE material;
ΔεL
absolute variation between the strain of LS material at failure in hybrid and nonhybrid composites;
ɛ@H-PS
strain in the composite at the postsaturation phase when the high-strain material fails;
ɛH
failure strain of the HE material;
εL
failure strain of the LE material;
σ@del
stress at which delamination starts;
σ@HF
stress at which the HE material fails; and
σ@LF
stress at which the first crack in the LE material occurs.

References

ACI. 2017. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. 440.2R-17. Farmington Hills, MI: American Concrete Institute.
Ali, M. S., M. S. Mirza, and L. Lessard. 2017. “Durability assessment of hybrid FRP composite shell and its application to prestressed concrete girders.” Constr. Build. Mater. 150: 114–122. https://doi.org/10.1016/j.conbuildmat.2017.05.214.
Alkbir, M. F. M., S. M. Sapuan, A. A. Nuraini, and M. R. Ishak. 2016. “Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review.” Compos. Struct. 148: 59–73. https://doi.org/10.1016/j.compstruct.2016.01.098
ASCE. 2010. Pre-standard for load and resistance factor design (LRFD) of pultruded fiber reinforced polymer (FRP) structures. Reston, VA: ASCE.
Attari, N., S. Amziane, and M. Chemrouk. 2010. “Efficiency of beam–column joint strengthened by FRP laminates.” Adv. Compos. Mater 19: 171–183. https://doi.org/10.1163/092430409X12605406698192.
Attari, N., S. Amziane, and M. Chemrouk. 2012. “Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets.” Constr. Build. Mater. 37: 746–757. https://doi.org/10.1016/j.conbuildmat.2012.07.052.
Aveston, J., and J. M. Sillwood. 1976. “Synergistic fibre strengthening in hybrid composites.” J. Mater. Sci. 11: 1877–1883. https://doi.org/10.1007/BF00708266.
Bakis, C. E., A. Nanni, J. A. Terosky, and S. W. Koehler. 2001. “Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete applications.” Compos. Sci. Technol. 61: 815–823. https://doi.org/10.1016/S0266-3538(00)00184-6.
Bank, L. 2006. Composites for construction—Structural design with FRP materials. Chichester, UK: Wiley.
Barjasteh, E., and S. R. Nutt. 2012. “Moisture absorption of unidirectional hybrid composites.” Composites, Part A 43 (1): 158–164. https://doi.org/10.1016/j.compositesa.2011.10.003.
Behnam, B., and C. Eamon. 2013. “Resistance factors for ductile FRP reinforced concrete flexural members.” J. Compos. Constr. 17 (4): 566–573. https://doi.org/10.1061/(asce)cc.1943-5614.0000363
Belarbi, A., S. E. Watkins, K. Chandrashekhara, J. Corra, and B. Konz. 2001. “Smart fiber-reinforced polymer rods featuring improved ductility and health monitoring capabilities.” Smart Mater. Struct. 10: 427–431. https://doi.org/10.1088/0964-1726/10/3/301
Bouchelaghem, H., A. Bezazi, and F. Scarpa. 2011. “Compressive behaviour of concrete cylindrical FRP-confined columns subjected to a new sequential loading technique.” Composites, Part B 42 (7): 1987–1993. https://doi.org/10.1016/j.compositesb.2011.05.045.
Bullegas, G., S. T. Pinho, and S. Pimenta. 2016. “Engineering the translaminar fracture behaviour of thin-ply composites.” Compos. Sci. Technol. 131: 110–122. https://doi.org/10.1016/j.compscitech.2016.06.002
Bunsell, A., L. Gorbatikh, H. Morton, S. Pimenta, I. Sinclair, M. Spearing, Y. Swolfs, and A. Thionnet. 2018. “Benchmarking of strength models for unidirectional composites under longitudinal tension.” Composites, Part A 111: 138–150. https://doi.org/10.1016/j.compositesa.2018.03.016.
Charles, R. J. 1958. “Static fatigue of glass. I.” J. Appl. Phys. 29 (11): 1549–1553. https://doi.org/10.1063/1.1722991.
Chen, B. Y., T. E. Tay, S. T. Pinho, and V. B. C. Tan. 2017. “Modelling delamination migration in angle-ply laminates.” Compos. Sci. Technol. 142: 145–155. https://doi.org/10.1016/j.compscitech.2017.02.010
Chin, J. W., K. Aouadi, M. R. Haight, W. L. Hughes, and T. Nguyen. 2001. “Effects of water, salt solution and simulated concrete pore solution on the properties of composite matrix resins used in civil engineering applications.” Polymer Compos. 22 (2): 282–297. https://doi.org/10.1002/pc.10538
Choi, D., H.-S. Kil, and S. Lee. 2019. “Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies.” Carbon 142: 610–649. https://doi.org/10.1016/j.carbon.2018.10.028.
CNR. 2013. Guide for the design and construction of externally bonded FRP systems for strengthening existing structures. CNR-DT200. Rome, Italy: Advisory Committee on Technical Recommendations for Construction, National Research Council.
Cruz, R., L. Correia, A. Dushimimana, S. Cabral-Fonseca, and J. Sena-Cruz. 2021. “Durability of epoxy adhesives and carbon fibrereinforced polymer laminates used in strengthening systems: Accelerated ageing versus natural ageing.” Materials 14 (6): 1533. https://doi.org/10.3390/ma14061533
Cui, Y.-H., and J. Tao. 2009. “A new type of ductile composite reinforcing bar with high tensile elastic modulus for use in reinforced concrete structures.” Can. J. Civ. Eng. 36: 672–675. https://doi.org/10.1139/L09-012.
Czél, G., M. Jalalvand, and M. R. Wisnom. 2016. “Design and characterisation of advanced pseudo-ductile unidirectional thin-ply carbon/epoxy-glass/epoxy hybrid composites.” Compos. Struct. 143: 362–370. https://doi.org/10.1016/j.compstruct.2016.02.010
Czél, G., and M. R. Wisnom. 2013. “Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg.” Compos.: Part A: Appl. Sci. Manuf. 52: 23–30. https://doi.org/10.1016/j.compositesa.2013.04.006
Czél, G., T. Rev, M. Jalalvand, M. Fotouhi, M. L. Longana, O. J. Nixon-Pearson, and M. R. Wisnom. 2018. “Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid composites.” Composites, Part A 104: 151–164. https://doi.org/10.1016/j.compositesa.2017.10.028.
Dai, G., and L. Mishnaevsky. 2014. “Fatigue of hybrid glass/carbon composites: 3D computational studies.” Compos. Sci. Technol. 94: 71–79. https://doi.org/10.1016/j.compscitech.2014.01.014.
De Luca, A., F. Nardone, F. Matta, A. Nanni, G. P. Lignola, and A. Prota. 2011. “Structural evaluation of full-scale FRP-confined reinforced concrete columns.” J. Compos. Constr. 15: 112–123. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000152.
Deng, Z.-c., and J.-l. Qu. 2015. “The experimental studies on behavior of ultrahigh-performance concrete confined by hybrid fiber-reinforced polymer tubes.” Adv. Mater. Sci. Eng. 2015 (1): 1–18.
DNV. 2013. Composite components - offshore standard. DNV-OS-C501. London, UK: DNV.
Ely, T., and M. Kumosa. 2000. “The stress corrosion experiments on an E-glass/epoxy unidirectional composite.” J. Compos. Mater. 34 (10): 841–878. https://doi.org/10.1106/8q0x-dc7w-hy1p-9hrd
Etman, E. E.-S. 2011. “Innovative hybrid reinforcement for flexural members.” J. Compos. Constr. 15 (1): 2–8. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000145.
Fernando, G., R. F. Dickson, T. Adam, H. Reiter, and B. Harris. 1988. “Fatigue behaviour of hybrid composites - Part 1 Carbon/Kevlar hybrids.” J. Mater. Sci. 23 (10): 3732–3743. https://doi.org/10.1007/bf00540521
Ferrante, L., J. Tirillò, F. Sarasini, F. Touchard, R. Ecault, M. A. Vidal Urriza, et al. 2015. “Behaviour of woven hybrid basalt-carbon/epoxy composites subjected to laser shock wave testing: Preliminary results.” Compos. Part B: Eng. 78: 162–173. https://doi.org/10.1016/j.compositesb.2015.03.084
Fotouhi, M., M. Jalalvand, and M. R. Wisnom. 2017. “High performance quasi-isotropic thin-ply carbon/glass hybrid composites with pseudo-ductile behaviour in all fibre orientations.” Compos. Sci. Technol. 152: 101–110. https://doi.org/10.1016/j.compscitech.2017.08.024.
Fotouhi, M., M. Jalalvand, and M. R. Wisnom. 2018. “Notch insensitive orientation-dispersed pseudo-ductile thin-ply carbon/glass hybrid laminates.” Composites, Part A 110: 29–44. https://doi.org/10.1016/j.compositesa.2018.04.012.
Fu, H., B. Liao, F.-j. Qi, B.-c. Sun, A.-p. Liu, and D.-l. Ren. 2008. “The application of PEEK in stainless steel fiber and carbon fiber reinforced composites.” Composites, Part B 39 (4): 585–591. https://doi.org/10.1016/j.compositesb.2007.09.003.
Grace, N. F., G. Abdel-Sayed, and W. F. Ragheb. 2002. “Strengthening of concrete beams using innovative ductile fiber-reinforced polymer fabric.” ACI Struct. J. 99 (5): 672–700.
Grace, N. F., W. F. Ragheb, and G. Abdel-Sayed. 2004. “Development and application of innovative triaxially braided ductile FRP fabric for strengthening concrete beams.” Compos. Struct. 64: 521–530. https://doi.org/10.1016/j.compstruct.2003.09.051.
Guerrero, J. M., Mayugo, J. A., Costa, J., and Turon, A. 2018. “A 3D Progressive Failure Model for predicting pseudo-ductility in hybrid unidirectional composite materials under fibre tensile loading.” Compos. Part A: Appl. Sci. Manuf. 107: 579–591. https://doi.org/10.1016/j.compositesa.2018.02.005
Hai, N. D., H. Mutsuyoshi, S. Asamoto, and T. Matsui. 2010. “Structural behavior of hybrid FRP composite I-beam.” Constr. Build. Mater. 24 (6): 956–969. https://doi.org/10.1016/j.conbuildmat.2009.11.022.
Hancox, N. L., and H. Wells 1979. “Aluminum/carbon fiber hybrid composites.” Polymer Eng. Sci. 19 (13): 917–922. https://doi.org/10.1002/pen.760191307
Harel, H., J. Aronhime, K. Schulte, K. Friedrich, and G. Marom. 1990. “Rate-dependent fatigue of aramid-fibre/carbon-fibre hybrids.” J. Mater. Sci. 25 (2): 1313–1377. https://doi.org/10.1007/bf00585442
Harlow, B.G. 1983. “Statistical properties of hybrid composites. I. Recursion analysis.” Proc. R Soc. Lond. A 389: 67–100. https://doi.org/10.1098/rspa.1983.0096
Harris, H. G., W. Somboonsong, and F. K. Ko. 1998. “New ductile hybrid FRP reinforcing bar for concrete structures.” J. Compos. Constr. 2: 28–37. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(28).
Hawileh, R. A., A. Abu-Obeidah, J. A. Abdalla, and A. Al-Tamimi. 2015. “Temperature effect on the mechanical properties of carbon, glass and carbon–glass FRP laminates.” Constr. Build. Mater. 75: 342–348. https://doi.org/10.1016/j.conbuildmat.2014.11.020.
Hawileh, R. A., H. A. Rasheed, J. A. Abdalla, and A. K. Al-Tamimi. 2014. “Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems.” Mater. Des. 53: 972–982. https://doi.org/10.1016/j.matdes.2013.07.087.
Hawileh, R. A., J. A. Abdalla, S. S. Hasan, M. B. Ziyada, and A. Abu-Obeidah. 2016. “Models for predicting elastic modulus and tensile strength of carbon, basalt and hybrid carbon–basalt FRP laminates at elevated temperatures.” Constr. Build. Mater. 114: 364–373. https://doi.org/10.1016/j.conbuildmat.2016.03.175.
Hayashi, I., K. L. Asanuma, K. Niwa, M. Fukano, and N. Maruyama. 1991. “Mechanism of Damage propagation in CFRP/AFRP hybrid laminates under fatigue Flexural loading.” JSME Int. J. Ser. 1, Solid Mech. Strength Mater. 34 (2): 240–248. https://doi.org/10.1299/jsmea1988.34.2_240
Hayashi, T. 1972. “On the improvement of mechanical properties of composites by hybrid composition.” In Proc., 8th Int. Reinforced Plastics Conf., 149–152. Bristol, UK: IOP Publications.
Hinton, P. R., I. McMurray, and C. Brownlow. 2014. SPSS explained. Hove, East Sussex, UK: Routledge.
Hofer Jr., K. E., M. Stander, and L. C. Bennett. 1978. “Degradation and enhancement of the fatigue behavior of glass/graphite/epoxy hybrid composites after accelerated aging.” Poly. Eng. Sci. 18 (2): 120–127. https://doi.org/10.1002/pen.760180210
Hofer, K., L. Bennett, and M. Stander. 1977. “Effects of moisture and fatigue on the residual mechanical properties of S-glass/graphite/epoxy hybrid composites.” Fatigue Filamentary Compos. Mater.: ASTM Int. STP27973S: 103–122. https://doi.org/10.1520/stp27973s
Hollaway, L. C. 2001. Advanced polymer composites and polymers in the civil infrastructure. Oxford, UK: Elsevier.
Hollaway, L. C. 2010. “A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties.” Constr. Build. Mater. 24 (12): 2419–2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062.
Hosny, A., H. Shaheen, A. Abdelrahman, and T. Elafandy. 2006. “Performance of reinforced concrete beams strengthened by hybrid FRP laminates.” Cem. Concr. Compos. 28: 906–913. https://doi.org/10.1016/j.cemconcomp.2006.07.016
Hu, B., Y. Li, Y.-T. Jiang, and H.-Z. Tang. 2020. “Bond behavior of hybrid FRP-to-steel joints.” Compos. Struct. 237: 111936. https://doi.org/10.1016/j.compstruct.2020.111936.
Huang, S., L. Yan, B. Kasal, and Y. Wei. 2023. “Moisture diffusion and tensile properties of epoxy-based and polyurethane-based flax-glass hybrid FRP under hygrothermal and weathering environments.” Compos. Part B: Eng. 267: 111049. https://doi.org/10.1016/j.compositesb.2023.111049
IBM-Corp. 2022. IBM SPSS, statistics for windows, version 29. Armonk, NY: BM Corp.
Ibrahim, M., T. Wakjira, and U. Ebead. 2020. “Shear strengthening of reinforced concrete deep beams using near-surface mounted hybrid carbon/glass fibre reinforced polymer strips.” Eng. Struct. 210: 110412. https://doi.org/10.1016/j.engstruct.2020.110412.
Ispir, M., K. D. Dalgic, and A. Ilki. 2018. “Hybrid confinement of concrete through use of low and high rupture strain FRP.” Composites, Part B 153: 243–255. https://doi.org/10.1016/j.compositesb.2018.07.026.
Ivey, M., C. Ayranci, and J. P. Carey. 2017. “14—Braidtrusion.” In Handbook of advances in braided composite materials, edited by J. P. Carey, 433–450. Cambridge, UK: Woodhead.
Jalalvand, M., G. Czél, and M. R. Wisnom. 2014. “Numerical modelling of the damage modes in UD thin carbon/glass hybrid laminates.” Compos. Sci. Technol. 94: 39–47. https://doi.org/10.1016/j.compscitech.2014.01.013.
Jalalvand, M., G. Czél, and M. R. Wisnom. 2015a. “Damage analysis of pseudo-ductile thin-ply UD hybrid composites—A new analytical method.” Composites, Part A 69: 83–93. https://doi.org/10.1016/j.compositesa.2014.11.006.
Jalalvand, M., G. Czél, and M. R. Wisnom. 2015b. “Parametric study of failure mechanisms and optimal configurations of pseudo-ductile thin-ply UD hybrid composites.” Composites, Part A 74: 123–131. https://doi.org/10.1016/j.compositesa.2015.04.001.
Jalalvand, M., M. Fotouhi, and M. R. Wisnom. 2017. “Orientation-dispersed pseudo-ductile hybrid composite laminates—A new lay-up concept to avoid free-edge delamination.” Compos. Sci. Technol. 153: 232–240. https://doi.org/10.1016/j.compscitech.2017.10.011.
Janwaen, W., J. A. O. Barros, and I. G. Costa. 2020. “New hybrid FRP strengthening technique for rectangular RC columns subjected to eccentric compressive loading.” J. Compos. Constr. 24 (5): 04020043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001052.
Ju, M., G. Park, S. Lee, and C. Park. 2017. “Bond performance of GFRP and deformed steel hybrid bar with sand coating to concrete.” J. Reinf. Plast. Compos. 36 (6): 464–475. https://doi.org/10.1177/0731684416684209.
Kang, T. H.-K., W. Kim, S.-S. Ha, and D.-U. Choi. 2014. “Hybrid effects of carbon-glass FRP sheets in combination with or without concrete beams.” Int. J. Concr. Struct. Mater. 8 (1): 27–41. https://doi.org/10.1007/s40069-013-0061-0.
Karbhari, V.M. editor. 2007. Durability of composites for civil structural applications. Cambridge, UK: Woodhead Publishing.
Kretsis, G. 1987. “A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics.” Composites 18 (1): 13–23. https://doi.org/10.1016/0010-4361(87)90003-6.
Li, C., G. Xian, and H. Li. 2019a. “Combined effects of temperature, hydraulic pressure and salty concentration on the water uptake and mechanical properties of a carbon/glass fibers hybrid rod in salty solutions.” Polym. Test. 76: 19–32. https://doi.org/10.1016/j.polymertesting.2019.02.034.
Li, C., G. Xian, and H. Li. 2019b. “Tension–tension fatigue performance of a large-diameter pultruded carbon/glass hybrid rod.” Int. J. Fatigue 120: 141–149. https://doi.org/10.1016/j.ijfatigue.2018.11.007.
Li, J., B. Samali, L. Ye, and S. Bakoss. 2002. “Behaviour of concrete beam-column connections reinforced with hybrid FRP sheet.” Compos. Struct. 57: 357–365. https://doi.org/10.1016/s0263-8223(02)00102-2
Li, J., S. L. Bakoss, B. Samali, and L. Ye. 1999. “Reinforcement of concrete beam–column connections with hybrid FRP sheet.” Compos. Struct. 47: 805–812. https://doi.org/10.1016/S0263-8223(00)00057-X.
Li, Y.-F., S. Badjie, W. W. Chen, and Y.-T. Chiu. 2014. “Case study of first all-GFRP pedestrian bridge in Taiwan.” Case Stud. Constr. Mater. 1: 83–95. https://doi.org/10.1016/j.cscm.2014.05.001.
Liang, R., and G. Hota. 2013. “16—Fiber-reinforced polymer (FRP) composites in environmental engineering applications.” In Developments in fiber-reinforced polymer (FRP) composites for civil engineering, edited by N. Uddin, 410–468. Cambridge, UK: Woodhead.
Liang, Y., C. Sun, and F. Ansari. 2004. “Acoustic emission characterization of damage in hybrid fiber-reinforced polymer rods.” J. Compos. Constr. 8 (1): 70–78. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:1(70).
Liao, K., C. R. Schultheisz, and D. L. Hunston, 1999. “Effects of environmental aging on the properties of pultruded GFRP.” Compos. Part B: Eng. 30 (5): 485–493. https://doi.org/10.1016/s1359-8368(99)00013-x
Long, Y. L., and J. Zhu. 2013. “Experimental study on concrete columns with various sizes confined by BFRP and hybrid FRP under axial compression.” Adv. Mater. Res. 838–841: 407–411. https://doi.org/10.4028/www.scientific.net/AMR.838-841.407.
Longana, M. L., H. Yu, M. Jalavand, M. R. Wisnom, and K. D. Potter. 2017. “Aligned discontinuous intermingled reclaimed/virgin carbon fibre composites for high performance and pseudo-ductile behaviour in interlaminated carbon–glass hybrids.” Compos. Sci. Technol. 143: 13–21. https://doi.org/10.1016/j.compscitech.2017.02.028.
Manders, P. W., and M. G. Bader. 1981. “The strength of hybrid glass/carbon fibre composites—Part 1.” J. Mater. Sci. 16: 2233–2245. https://doi.org/10.1007/BF00542386.
Manikandan, P., and G. B. Chai. 2014. “A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load.” Compos. Struct. 117: 17–31. https://doi.org/10.1016/j.compstruct.2014.06.010.
Marron, G., S. Fisher, F. R. Tuler, and H. D. Wagner. 1978. “Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour.” J. Mater. Sci. 13 (7): 1419–1426. https://doi.org/10.1007/bf00553194
Meier, U. 2012. “Carbon fiber reinforced polymer cables: Why? Why not? What if?” Arabian J. Sci. Eng. 37 (2): 399–411. https://doi.org/10.1007/s13369-012-0185-6.
Motram, T., and J. Henderson. 2018. Fibre-reinforced polymer bridges - guidance for designers. London, UK: CIRIA.
Najafi, M., S. Mohammad, R. Khalili, and R. Eslami-Farsani. 2014. “Hybridization effect of basalt and carbon fibers on impact and flexural properties of phenolic composites.” Iran. Poly. J. 23: 767–773. https://doi.org/10.1007/s13726-014-0272-5
Nanni, A., M. J. Henneke, and T. Okamoto. 1993. “Behaviour of concrete beams with hybrid reinforcement.” Const. Build. Mater. 8 (2): 89–95. https://doi.org/10.1016/s0950-0618(09)90017-4
Nikopour, H., and M. Nehdi. 2011. “Shear repair of RC beams using epoxy injection and hybrid external FRP.” Mater. Struct. 44: 1865–1877. https://doi.org/10.1617/s11527-011-9743-8.
Nunes, F., J. R. Correia, and N. Silvestre. 2016. “Structural behaviour of hybrid FRP pultruded columns. Part 1: Experimental study.” Compos. Struct. 139: 291–303. https://doi.org/10.1016/j.compstruct.2015.12.058
Oehlers, D., R. Seracino, and S. Smith. 2008. Design handbook for RC structures retrofitted with FRP and metal plates: Beams and slabs. Sydney, Australia: Standards Australia.
Ouarhim, W., H. Essabir, M.-O. Bensalah, N. Zari, R. Bouhfid, and A. Qaiss. 2018. “Structural laminated hybrid composites based on raffia and glass fibers: Effect of alkali treatment, mechanical and thermal properties.” Composites, Part B 154: 128–137. https://doi.org/10.1016/j.compositesb.2018.08.004.
Padanattil, A., J. Karingamanna, and K. M. Mini. 2017. “Novel hybrid composites based on glass and sisal fiber for retrofitting of reinforced concrete structures.” Constr. Build. Mater. 133: 146–153. https://doi.org/10.1016/j.conbuildmat.2016.12.045.
Pan, Y., and D. Yan. 2021. “Study on the durability of GFRP bars and carbon/glass hybrid fiber reinforced polymer (HFRP) bars aged in alkaline solution.” Compos. Struct. 261: 113285. https://doi.org/10.1016/j.compstruct.2020.113285
Park, S.-J. 2015. Carbon fibers. Dordrecht, Netherlands: Springer.
Phillips, L. N. 1969. “Improving racing-car bodies.” Composites 1: 50–1.
Phillips, M. G. 1981. “Composition parameters for hybrid composite materials.” Composites 12 (2): 113–116. https://doi.org/10.1016/0010-4361(81)90417-1
Phoenix, S. L., and I. J. Beyerlein. 2000. “1.19—Statistical strength theory for fibrous composite materials. Comprehensive composite materials.” edited by A. Kelly and C. Zweben, 559–639. Oxford, UK: Pergamon.
Quagliato, L., C. Jang, and N. Kim. 2019. “Manufacturing process and mechanical properties characterization for steel skin—Carbon fiber reinforced polymer core laminate structures.” Compos. Struct. 209: 1–12. https://doi.org/10.1016/j.compstruct.2018.10.078.
Ragheb, W. F. 2010. “Hybridization effectiveness in improving local buckling capacity of pultruded I-beams.” Mech. Adv. Mater. Struct. 17: 448–457. https://doi.org/10.1080/15376494.2010.483328.
Rana, S., E. Zdraveva, C. Pereira, R. Fangueiro, and A. G. Correia. 2014. “Development of hybrid braided composite rods for reinforcement and health monitoring of structures.” Sci. World J. 2014: 9.
Ranganathan, S., and P. R. Mantena. 2003. “Axial loading and buckling response characteristics of pultruded hybrid glass-graphite/epoxy composite beams.” J. Reinf. Plast. Compos. 22 (7): 671–679. https://doi.org/10.1177/073168403024566.
Ribeiro, F., J. Sena-Cruz, F. G. Branco, and E. Júlio. 2018. “Hybrid FRP jacketing for enhanced confinement of circular concrete columns in compression.” Constr. Build. Mater. 184: 681–704. https://doi.org/10.1016/j.conbuildmat.2018.06.229.
Ridzuan, M. J. M., M. S. Abdul Majid, M. Afendi, K. Azduwin, N. A. M. Amin, J. M. Zahri, and A. G. Gibson. 2016. “Moisture absorption and mechanical degradation of hybrid Pennisetum purpureum/glass–epoxy composites.” Compos. Struct. 141: 110–116. https://doi.org/10.1016/j.compstruct.2016.01.030.
Rood, G. 2020. “A short history of: CARBON FIBRE.” Engineering Designer. Accessed April 24, 2024. https://www.thefreelibrary.com.
Rubino, F., A. Nisticò, F. Tucci, and P. Carlone. 2020. “Marine application of fiber reinforced composites: A review.” J. Mar. Sci. Eng. 8 (1): 26. https://doi.org/10.3390/jmse8010026.
Sarasini, F., and V. Fiore. 2018. “A systematic literature review on less common natural fibres and their biocomposites.” J. Clean. Prod. 195: 240–267. https://doi.org/10.1016/j.jclepro.2018.05.197.
Schutte, C. L. 1994. “Environmental durability of glass-fiber composites.” Mater. Sci. Eng.: R: Rep. 13 (7): 265–323.
Selezneva, M., Y. Swolfs, A. Katalagarianakis, T. Ichikawa, N. Hirano, I. Taketa, T. Karaki, I. Verpoest, and L. Gorbatikh. 2018. “The brittle-to-ductile transition in tensile and impact behavior of hybrid carbon fibre/self-reinforced polypropylene composites.” Compos. Part A: Appl. Sci. Manuf. 109: 20–30. https://doi.org/10.1016/j.compositesa.2018.02.034
Senthilkumar, K., N. Saba, N. Rajini, M. Chandrasekar, M. Jawaid, S. Siengchin, et al. 2018. “Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review.” Const. Build. Mater. 174: 713–729. https://doi.org/10.1016/j.conbuildmat.2018.04.143
Seo, D.-W., K.-T. Park, Y.-J. You, and S.-Y. Lee. 2016. “Experimental investigation for tensile performance of GFRP-steel hybridized rebar.” Adv. Mater. Sci. Eng. 2016: 12.
Shenghu, C., W. U. Zhis, and W. Xin. 2009. “Tensile properties of CFRP and hybrid FRP composites at elevated temperatures.” J. Compos. Mater. 43 (4): 315–330. https://doi.org/10.1177/0021998308099224.
Shi, J.-W., H. Zhu, G. Wu, and Z.-S. Wu. 2014. “Tensile behavior of FRP and hybrid FRP sheets in freeze–thaw cycling environments.” Composites, Part B 60: 239–247. https://doi.org/10.1016/j.compositesb.2013.11.026.
Shi, J. W., H. Zhu, Z. S. Wu, and G. Wu. 2011. “Durability of BFRP and hybrid FRP sheets under freeze–thaw cycling.” Adv. Mater. Res. 163–167: 3297–3300.
Shin, D.-H., and H.-J. Kim. 2020. “Cyclic response of rectangular RC columns retrofitted by hybrid FRP sheets.” Structures 28: 697–712. https://doi.org/10.1016/j.istruc.2020.09.016.
Somboonsong, W., F. K. Ko, and H. G. Harris. 1998. “Ductile hybrid fiber reinforced plastic reinforcing bar for concrete structures: Design methodology.” Mater. J. 95 (6): 655–666.
Summerscales, J., and D. Short. 1978. “Carbon fibre and glass fibre hybrid reinforced plastics.” Composites 9 (3): 157–166. https://doi.org/10.1016/0010-4361(78)90341-5.
Swolfs, Y., I. Verpoest, and L. Gorbatikh. 2016. “Maximising the hybrid effect in unidirectional hybrid composites.” Mater. Des. 93: 39–45. https://doi.org/10.1016/j.matdes.2015.12.137.
Swolfs, Y., I. Verpoest, and L. Gorbatikh. 2019. “Recent advances in fibre-hybrid composites: Materials selection, opportunities and applications.” Int. Mater. Rev. 64: 181–215. https://doi.org/10.1080/09506608.2018.1467365.
Swolfs, Y., L. Gorbatikh, and I. Verpoest. 2014. “Fibre hybridisation in polymer composites: A review.” Composites, Part A 67: 181–200. https://doi.org/10.1016/j.compositesa.2014.08.027.
Swolfs, Y., P. De Cuyper, M. G. Callens, I. Verpoest, and L. Gorbatikh. 2017a. “Hybridisation of two ductile materials–Steel fibre and self-reinforced polypropylene composites.” Composites, Part A 100: 48–54. https://doi.org/10.1016/j.compositesa.2017.05.001.
Swolfs, Y., R. M. McMeeking, I. Verpoest, and L. Gorbatikh. 2015b. “The effect of fibre dispersion on initial failure strain and cluster development in unidirectional carbon/glass hybrid composites.” Composites, Part A 69: 279–287. https://doi.org/10.1016/j.compositesa.2014.12.001.
Swolfs, Y., R. M. McMeeking, V. P. Rajan, F. W. Zok, I. Verpoest, and L. Gorbatikh. 2015a. “Global load-sharing model for unidirectional hybrid fibre-reinforced composites.” J. Mech. Phys. Solids 84: 380–394. https://doi.org/10.1016/j.jmps.2015.08.009.
Swolfs, Y., Y. Geboes, L. Gorbatikh, and S. T. Pinho. 2017b. “The importance of translaminar fracture toughness for the penetration impact behaviour of woven carbon/glass hybrid composites.” Composites, Part A 103: 1–8. https://doi.org/10.1016/j.compositesa.2017.09.009.
Tavares, R. P., A. R. Melro, M. A. Bessa, A. Turon, W. K. Liu, and P. P. Camanho. 2016. “Mechanics of hybrid polymer composites: Analytical and computational study.” Comput. Mech. 57: 405–421. https://doi.org/10.1007/s00466-015-1252-0.
Tavares, R. P., F. Otero, A. Turon, and P. P. Camanho. 2017. “Effective simulation of the mechanics of longitudinal tensile failure of unidirectional polymer composites.” Int. J. Fract. 208 (1–2): 269–285. https://doi.org/10.1007/s10704-017-0252-9.
Tri-Dung, N. 2020. Composite and nanocomposite materials - from knowledge to industrial applications. London, UK: IntechOpen.
Turon, A., J. Costa, P. Maimí, D. Trias, and J. A. Mayugo. 2005. “A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation. Part I: Formulation.” Compos. Sci. Technol. 65: 2039–2048. https://doi.org/10.1016/j.compscitech.2005.04.012
Velmurugan, R., and V. Manikandan. 2007. “Mechanical properties of palmyra/glass fiber hybrid composites.” Composites, Part A 38 (10): 2216–2226. https://doi.org/10.1016/j.compositesa.2007.06.006.
Verpoest, I. 2020. 50 years from nowComposites: Past, present & future. Paris: JEC Group.
Wang, X., Z. Wu, G. Wu, H. Zhu, and F. Zen. 2013. “Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge.” Composites, Part B 44 (1): 184–192. https://doi.org/10.1016/j.compositesb.2012.06.001.
Wang, X., and Z. Wu. 2010. “Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges.” Compos. Struct. 92 (10): 2582–2590. https://doi.org/10.1016/j.compstruct.2010.01.023.
Wang, X., and Z. Wu. 2011. “Modal damping evaluation of hybrid FRP cable with smart dampers for long-span cable-stayed bridges.” Compos. Struct. 93 (4): 1231–1238. https://doi.org/10.1016/j.compstruct.2010.10.018.
Wehrkamp-Richter, T., N. V. De Carvalho, and S. T. Pinho. 2018. “Predicting the non-linear mechanical response of triaxial braided composites.” Compos. Part A: Appl. Sci. Manuf. 114: 117–135. https://doi.org/10.1016/j.compositesa.2018.08.011
Wisnom, M. R., G. Czél, Y. Swolfs, M. Jalalvand, L. Gorbatikh, and I. Verpoest. 2016. “Hybrid effects in thin ply carbon/glass unidirectional laminates: Accurate experimental determination and prediction.” Composites, Part A 88: 131–139. https://doi.org/10.1016/j.compositesa.2016.04.014.
Won, J.-P., C.-G. Park, and C.-I. Jang. 2006. “Tensile fracture and bond properties of ductile hybrid FRP reinforcing bars.” Polym. Polym. Compos. 15 (1): 9–16. https://doi.org/10.1177/096739110701500102.
Won, J. P., C. G. Park, S. J. Lee, and B. T. Hong. 2013. “Durability of hybrid FRP reinforcing bars in concrete structures exposed to marine environments.” Int. J. Struct. Eng. 4 (1–2): 63–74. https://doi.org/10.1504/IJSTRUCTE.2013.050764.
Wu, G., J.-W. Shi, W.-J. Jing, and Z.-S. Wu. 2014. “Flexural behavior of concrete beams strengthened with new prestressed carbon–basalt hybrid fiber sheets.” J. Compos. Constr. 18: 04013053. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000452.
Wu, G., Z. S. Wu, Z. T. Lu, and Y. B. Ando. 2008. “Structural performance of concrete confined with hybrid FRP composites.” J. Reinf. Plast. Compos. 27 (12): 1323–1348. https://doi.org/10.1177/0731684407084989.
Wu, Z., X. Wang, K. Iwashita, T. Sasaki, and Y. Hamaguchi. 2010. “Tensile fatigue behaviour of FRP and hybrid FRP sheets.” Composites, Part B 41 (5): 396–402. https://doi.org/10.1016/j.compositesb.2010.02.001.
Wu, Z., Y. Shao, K. Iwashita, and K. Sakamoto. 2007. “Strengthening of preloaded RC beams using hybrid carbon sheets.” J. Compos. Constr. 11: 299–307. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:3(299).
Xiong, G. J., J. Z. Yang, and Z. B. Ji. 2004. “Behavior of reinforced concrete beams strengthened with externally bonded hybrid carbon fiber–glass fiber sheets.” J. Compos. Constr. 8 (3): 275–278. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(275).
Xu, S. D., L. Li, and Y. C. Guo. 2012. “Study on experimental behavior of concrete circular column confined by HFRP under axial compression.” Adv. Mater. Res. 450–451: 491–494. https://doi.org/10.4028/www.scientific.net/AMR.450-451.491.
Xu, X., M. R. Wisnom, X. Sun, T. Rev, and S. R. Hallett. 2018. “Experimental determination of Through-Thickness Compression (TTC) enhancement factor for Mode II fracture energy.” Comp. Sci. Technol. 165: 66–73. https://doi.org/10.1016/j.compscitech.2018.06.012
Yang, B., Z. Wang, L. Zhou, J. Zhang, and W. Liang. 2015. “Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact.” Compos. Struct. 132: 464–476. https://doi.org/10.1016/j.compstruct.2015.05.069.
Yang, Y., X. Wang, and Z. Wu. 2017. “Damping behavior of hybrid fiber-reinforced polymer cable with self-damping for long-span bridges.” J. Bridge Eng. 22 (7): 05017005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001058.
Yi, X.-S., S. Du, and L. Zhang. 2018. Composite materials engineering, volume 1—Fundamentals of composite materials. Singapore: Springer.
You, Y.-J., Y.-H. Park, H.-Y. Kim, and J.-S. Park. 2007. “Hybrid effect on tensile properties of FRP rods with various material compositions.” Compos. Struct. 80 (1): 117–122. https://doi.org/10.1016/j.compstruct.2006.04.065.
Yu, H., M. L. Longana, M. Jalalvand, M. R. Wisnom, and K. D. Potter. 2015. “Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibres.” Composites, Part A 73: 35–44. https://doi.org/10.1016/j.compositesa.2015.02.014.
Yu, Y., Y. Pan, R. Zhou, and X. Miao. 2021. “Effects of Water and Alkaline Solution on Durability of Carbon-Glass Hybrid Fiber Reinforced Polymer Bars.” Polymers 13 (21): 3844. https://doi.org/10.3390/polym13213844
Yuan, C., W. Chen, T. M. Pham, and H. Hao. 2019. “Bond behaviour between hybrid fiber reinforced polymer sheets and concrete.” Constr. Build. Mater. 210: 93–110. https://doi.org/10.1016/j.conbuildmat.2019.03.082.
Zhang, P., H. Zhu, G. Wu, S. Meng, and Z. Wu. 2016. “Flexural performance of HFRP-RC composite T-beams with different interfaces.” J. Compos. Constr. 21: 04016101. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000757.
Zilch, K., R. Niedermeier, and W. Finckh. 2014. DAfStb guideline: Strengthening of concrete structures with adhesively bonded reinforcement. Berlin, Germany: Wilhelm Ernst & Sohn.
Zweben, C. 1977. “Tensile strength of hybrid composites.” J. Mater. Sci. 12: 1325–1337.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 28Issue 4August 2024

History

Received: Aug 2, 2023
Accepted: Feb 8, 2024
Published online: May 17, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 17, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Filipe Ribeiro [email protected]
Instituto de Soldadura e Qualidade (ISQ), 4415-491 Grijó, Portugal. Email: [email protected]
Luís Correia [email protected]
ISISE, ARISE, Univ. of Minho, 4800-058 Guimarães, Portugal. Email: [email protected]
ISISE, ARISE, Univ. of Minho, 4800-058 Guimarães, Portugal (corresponding author). ORCID: https://orcid.org/0000-0003-3048-1290. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share