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Appendix S1. FDB Model: Mass Balance, Risks of Failure, and Performance Objectives 1 

 2 

 The FDB model design is based upon WaterPaths framework, initially applied to the Sedento 3 

Valley illustrative case (Trindade et al. 2020), and adapted for the FDB context by Giacomazzo (2020). 4 

Thus, the FDB model explicitly applies DU Pathways framework, incorporating rule systems that respond 5 

to observed system states. This is provided through a mass-balance model, solved for all water sources in 6 

each service area (summarized in Table S1) and mathematically represented by Eq. (S1): 7 

 8 

xs
w+1 = xs

w + NIw + SEw + UROw - ERw ∙ ARሺxs
wሻ - EOw- Sw - RDw (S1)  

 9 

where xs
w+1 is the volume of water stored in the reservoir at the week after the current week w, NI is the 10 

natural inflow into the reservoir from all its tributaries, SE is a treated sewage effluent discharge directly 11 

or indirectly in the reservoir, URO is the upstream reservoir total outflow, ER is a non-dimensional 12 

evaporation rate, RA is the reservoir area as a function of stored volume, EO is the environmental 13 

outflow, RD is the total municipal demand drawn from that reservoir to the modelled service area, and S 14 

is the reservoir spillage, which is set to zero unless the reservoir is completely full. Eq. (S1) is solved on a 15 

weekly basis during all simulation time horizon (40 years).  16 

Table S1 also summarizes the main features of the two services areas, Descoberto and Santa 17 

Maria, a division proposed by this work based upon FDB water supply infrastructure system. It is 18 

comprised of five main water production subsystems, divided according to water sources location and 19 

associated infrastructures (catchments, treatment plants and water networks). Descoberto and Santa Maria 20 

are the main subsystems, and together they provide water for over 80% of FDB population. As 21 

demonstrated in Fig. 1 of the main text, these two subsystems present wide socioeconomic disparities 22 

between the population they attend, leading to the definition of two service areas of study that spatially 23 

correspond to the water producing subsystems of Descoberto and Santa Maria.   24 

 25 



 26 

Table S1. Main water sources’ features in the Federal District supply system 27 

aData from ADASA (2018). 28 
bData from CODEPLAN (2018). 29 

 30 

Another core component of the FDB WaterPaths model is the decision making through state-aware, risk 31 

monitoring metrics known as risk of failures (ROF). ROFs express the system’s (or service area) ability to 32 

meet required water demand in each time basis. The FDB model presents two ROFs: first, the estimated 33 

probability that the service area total storage falls below a critical level in the next Trof weeks, if 34 

hydrological conditions from the last 50 years occurs. Second, the estimated probability that service area 35 

demand exceeds 90% of its total treatment capacity. Short term ROFs are calculated with Trof equals to 52 36 

weeks, and triggers educational campaigns, rationing/contingency tariffs or water transfers if 𝜃௚௥, 𝜃௱௚௥ or 37 𝜃௚௧ thresholds are crossed, respectively. Long term ROFs are calculated when Trof corresponds to 78 38 

weeks, and trigger infrastructure construction in case 𝜃௖௜ threshold is crossed. ROFs mathematical 39 

computation is based upon the work of Trindade et al. (2020), and expressed in Eqs. (S2)–(S4): 40 

𝑥௥௢௙,௝௪ =  1𝑁௥௢௙  ෍ 𝑓௬ᇲ,௝௪ (𝑁𝐼௬ᇲ ,𝐸௬ᇲ)ேೝ೚೑
௬ᇲୀ଴  (S2) 

 where, 41 

Service 
area 

Water Supply 
Infrastructure 

Storage 
Capacitya 

(hm³) 

% Storage 
allocated in 
water urban 

supplya 

Water 
Treatment 

Plant (WTP)a 

Water 
Production 
Capacitya 

(L/s) 

Population 
servedb 
(inhab) 

Descoberto Descoberto 
Resevoir 72,3 100 Descoberto 

Stream WTP 5,791.8 1,678,243 

Santa 
Maria 

Paranoa Lake 460,5 8 Lago Norte 
WTP 

3,011.1 703,095 Santa Maria 
Resevoir 61,3 100 

Brasília WTP Bananal Stream - - 
Torto Stream - - 



𝑓௬ᇱ,௝௪ =  ൞0 ⩝ 𝑤ᇱ𝜖 ൛(𝑦ᇱ,𝑤), … , ൫𝑦ᇱ,𝑤 + 𝑇௥௢௙൯ൟ : 𝑥௦ᇲ,௝௬,௪ᇲ𝐶௝  ≥  𝑠௖1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                     (S3) 

 and, 42 𝑥௦ᇲ,௝௬,௪ᇲ =  𝑓 ቀ𝐶௝ ,𝑈𝐷௝௪ ,𝑁𝐼௝௬ᇲ,௪ᇱ,𝐸௝௬ᇲ,௪ᇱ,𝑊௝௬ᇲ,௪ᇱ| 𝛹௦ ቁ (S4) 

 In Eqs. (S2)–(S4), 𝑤’ and 𝑦’ denote a week and a year simulated with historical data, 𝑥௥௢௙,௝௪  43 

represents ROF for service area 𝑗 (Descoberto or Santa Maria) in current week 𝑤, 𝑓௬ᇱ,௝௪  is a binary variable 44 

that indicates failure or success during the simulation with data from past year 𝑦’. A failure is identified 45 

when the total water stored in realization 𝑦’, 𝑥௦ᇲ,௝௬,௪ᇲ
, divided by storage capacity 𝐶௝, drops below a critical 46 

level. Variable 𝑥௦ᇲ,௝௬,௪ᇲ
is the vector of storage states determined in one year-long ROF simulations, using 47 

recorded hydrologic data from past year 𝑦’, defined considering storage capacity, 𝐶௝, unrestricted demand, 48 

𝑈𝐷௝௪, recorded natural inflows, evaporation rates and reservoir spillage, 𝑁𝐼௝௬ᇲ,௪ᇱ, 𝐸௝௬ᇲ,௪ᇱand 𝑊௝௬ᇲ,௪ᇱ, 49 

respectively, calculated in year 𝑦’ prior to current week 𝑤 used in one of the 𝑁௥௢௙ simulations. Variable 50 Ψௌ the the vector of DU factors. Fig. S1 presents a schematic view of the ROF calculation and mass 51 

balance loop in WaterPaths.  52 

  53 



 54 

 55 
Fig. S1. WaterPaths ROF calculation, mass balance loop, and its relationship with decision-making associated with 56 
short- and long-term management actions. (Reprinted from Environmental Modelling & Software, Vol. 132, B. C. 57 
Trindade, D. F. Gold, P. M. Reed, H. B. Zeff, and G. W. Characklis, “Water pathways: An open source stochastic 58 
simulation system for integrated water supply portfolio management and infrastructure investment planning,” 59 
104772, (c) 2020, with permission from Elsevier.) 60 

  61 

As stated in Eq. (3) in the main text, a policy is defined as a set of risk tolerance limits for ROFs 62 

that, if crossed, trigger associated management measures. While short-term ROF thresholds are related to 63 

drought mitigation instruments (educational campaigns, rationing and contingency tariffs), long term 64 

ROF limits can trigger infrastructure construction, whose options for each service area are presented in 65 

Table S2. The ranges in which the decision variables that compose a candidate policy can vary are 66 

presented in Tables S3 and S4.  67 

 68 

  69 



Table S2. Candidate supply infrastructure or supply expansion in Federal District water system 70 
Service 
area  

Water supply 
infrastructure Description Cost 

(106 R$) 
Water 

Supply(L/s) 

Descoberto 

Corumba System - 1st phase New Water Production System 276.50 1,400 

Corumba System - 2nd phase Water Treatment Expansion 222.10 1,400 

Corumba System - 3rd phase Water Treatment 
expansion/new pipelines 251.40 1,200 

Descoberto Resevoir 
Expansion  1.5 meter spillway level raise  7.50 400 

Santa 
Maria 

Paranoa System - 1st phase New Water Treatment Plant in 
Paranoá Lake 60.30 700 

Paranoa System - 2nd phase Water Treatment Expansion 60.30 700 

Paranoa System - 3rd phase Water Treatment Expansion 60.30 700 
 Sources: Data from GDF (2017); CAESB (2019). 71 
 72 
 73 
 74 
 75 
Table S3. Lower and upper thresholds for long- and short-term decision variables of the candidate policies 76 

Decision variables Lower 
bound 

Upper 
bound 

Water consumption restriction trigger for Descoberto - 𝜃௚௥ 0.1% 100% 

Water consumption restriction trigger for Santa Maria - 𝜃௚௥ 0.1% 100% 
Second stage water consumption restriction trigger for 
Descoberto - 𝜃୼୥୰ 0.1% 100% 

Second stage water consumption restriction trigger for Santa 
Maria - 𝜃୼௚௥ 0.1% 100% 

Water transfer trigger for Descoberto - 𝜃௚௧ 0.1% 100% 

Water transfer trigger for Santa Maria - 𝜃௚௧ 0.1% 100% 
Annual reserve fund contribution for Descoberto as percentage of 
annual revenue - 𝜃௔௖௖௙ 0% 10% 

Annual reserve fund contribution for Santa Maria as percentage 
of annual revenue - 𝜃௔௖௖௙ 0% 10% 

Infrastructure construction long-term ROF trigger for Descoberto 
- 𝜃௖௜  0.1% 100% 

Infrastructure construction long-term ROF trigger for Santa Maria 
- 𝜃௖௜  0.1% 100% 

 77 

 78 
 79 
  80 



Table S4. Construction order ranges for each infrastructure option 81 

Service area Decision variables (ICO) Lower 
bound 

Upper 
bound 

Descoberto 

Corumba System - 1st phase 1st 4th 
Corumba System - 2nd phase 1st 4th 
Corumba System - 3rd phase 1st 4th 

Descoberto Resevoir Expansion 1st 4th 

Santa Maria 
Paranoa System - 1st phase 1st 3rd 
Paranoa System - 2nd phase 1st 3rd 
Paranoa System - 3rd phase 1st 3rd 

  82 

 83 

DU many-objective optimization searches for best performing policies that minimizes function F 84 

[Eq. (1)], and thus maximizes water supply reliability (𝑓ோா௅), minimizes water-use restriction frequency 85 

(𝑓ோி), minimizes infrastructure net present value (𝑓ூே௉௏), minimizes the peak financial cost of drought 86 

mitigation and debt payments (𝑓ி஼), and minimizes the worst-case cost of drought mitigation actions 87 

(𝑓ௐ஼஼). Each objective’s formulation is presented as follows.  88 

 Reliability (REL) represents the fraction of states of the world in which reservoir levels drop 89 

below 20% of its maximum capacity in any given week (failure condition):  90 

max 𝑓ோா௅ =  𝑚𝑖𝑛௝ ቎𝑚𝑖𝑛௬ ቌ 1𝑁௥  ෍𝑔௜,௝௬ேೝ
௜ୀଵ ቍ቏  (S5) 

 where, 91 

 𝑔௜,௝௬ =  ቐ0     ∀ 𝑤: 𝑥௦,௜,௝௬,௪𝐶௝  ≥  𝑠௖ 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 (S6) 

where 𝑁௥ is the number of realizations for one function evaluation and 𝑔௜,௝௬  is a binary function that 92 

assumes zero value if, in a given year of a specific realization, there was a week when reservoir storage 93 

fell below 𝑠௖ capacity, and 1 otherwise.  94 



 Restriction frequency (RF) is the fraction of years over the planning horizon (40 years for the 95 

FDB model) in which at least one week presents use of water restrictions: 96 

min 𝑓ோி =   𝑚𝑎𝑥௝ ቎ 1𝑁௬௦ ∙  𝑁௥  ෍෍ℎ௜,௝௬ே೤ೞ
௬ୀଵ

ேೝ
௜ୀଵ ቏ (S7) 

 where  97 

ℎ௜,௝௬ =  ൜0     ∀ 𝑤: 𝑥௦,௜,௝௬,௪  ≤   𝜃௥௧,௝  1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 (S8) 

where ℎ௜,௝௬  represents the adoption of water use restrictions in a week of a given year of a particular 98 

realization, and 1 otherwise.  99 

 Infrastructure net present value (INPV) represents the average net present cost of all 100 

infrastructures built across all realizations:  101 

min 𝑓ூே௉௏ =   1𝑁௥  ෍෍ 𝑃𝑀𝑇(1 + 𝑑)௬஻ெ
௬ୀଵ

ேೝ
௜ୀଵ  (S9) 

where BM is the bond term, d is the discount rate (4%), y is the year of the debt service payment (PMT) 102 

since the bond was issued, with PMT being calculated by: 103 

𝑃𝑀𝑇 =  𝑃[𝐵𝑅(1 + 𝐵𝑅)஻ெ[(1 + 𝐵𝑅)஻ெ − 1] (S10) 

where P is the principal, BR is the interest rate and BT is the bond term. 104 

 The fourth objective, Peak Financial Cost (CF), represents the expected yearly cost of the 105 

portfolio applied to manage risks over the planning horizon, including revenue losses from restrictions, 106 

transfer costs, contingency funds contributions and debt repayment: 107 

 min 𝑓஼ி =   𝑚𝑎𝑥௝ ൤ ଵே೤ೞ∙ ேೝ ∑ ∑ 𝑆𝑌𝐶௜,௝௬ே೤ೞ௬ୀଵேೝ௜ୀଵ ൨ (S11) 

Next,  108 



𝑆𝑌𝐶௜,௝௬
=  ∑ 𝑃𝑀𝑇 ௜,௝,௖ + 𝐼𝑃௜,௝௬ +  𝜃௔௖௙௖,௝ ∙  𝐴𝑇𝑅௜,௝௬ + (𝑅𝐿௜,௝௬஼∈஼ೕ + 𝑇𝐶௜,௝௬ − 𝐼𝐶௜,௝௬ − 𝐶𝐹௜,௝௬ , 0)𝐴𝑇𝑅௜,௝௬   (S12) 

where 𝑆𝑌𝐶௜,௝௬  correspond to yearly costs for service area j, 𝑃𝑀𝑇 ௜,௝,௖ is the debt payment for infrastructure 109 

option c, 𝐴𝑇𝑅௜,௝௬  is the total annual volumetric revenue, 𝐼𝑃௜,௝௬  is the insurance contract cost in year y, 𝑅𝐿௜,௝௬  110 

is revenue losses due to water restriction, 𝑇𝐶௜,௝௬  is the yearly water transfer costs, 𝐼𝐶௜,௝௬  represents insurance 111 

coverage value, and 𝐶𝐹௜,௝௬  is the value available in contingency fund. 112 

 The last objective, Worst First Percentile Cost (WCC) represents the 1% highest year drought 113 

management costs across the planning horizon of all SWOs: 114 min 𝑓ௐ஼஼ =   𝑚𝑎𝑥௝൛𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒௜∈ேೝ(𝑆𝑌𝐶௜,௝ , 0.99)ൟ (S13) 

 where 115 

𝑆𝑌𝐶௜,௝௬ =  𝑚𝑎𝑥  𝑅𝐿௜,௝௬ + 𝑇𝐶௜,௝௬ −  𝜃௔௖௙௖,௝ ∙  𝐴𝑇𝑅௜,௝௬ −  𝑌𝐼𝑃𝑂௜,௝௬ , 0𝐴𝑇𝑅௜,௝௬   (S14) 

where IP is the insurance contract cost in year y, YIPO is the total insurance payout over year y. 116 

 As already described in Many-Objective Optimization Section, the DU Optimization was 117 

executed using Borg MOEA (Hadka and Reed 2013), a multi-objective evolutionary algorithm that 118 

applies epsilon (𝜖)-dominance archiving (Laumanns et al. 2002), stagnation detection, and randomized 119 

restarts to avoid local optima and overcome dominance resistance (Hadka and Reed 2013; Hanne 2001). 120 

The significance for 𝜖-dominance for each objective evaluation is presented in Table S5.  121 

 122 

Table S5. The ε-dominance for objectives’ evaluation 123 
Objective ε-dominance 
Reliability 0.001 

Restriction Frequency 0.005 

Infrastructure Net Present Cost 10.000.000 

Peak Financial Cost 0.002 
Worst First Percentile Cost 0.005 



Appendix S2. Building DU SOW Components 124 

 125 

 As already described in Methods Section, DU Optimization and Re-evaluation involves simulating 126 

each candidate policy over a large ensemble of DU SOWs, comprised of one vector of DU factors and one 127 

hydroclimatic realization (Natural Inflow, Natural Evaporation and Water Demand synthetic series). The 128 

DU vector is arranged as a row of the Ψ௦ matrix, and presents one value for each DU of the FDB context. 129 

Each DU element is sampled using Latin Hypercube Sampling (LHS; McKay et al. 1979) within the ranges 130 

presented in Table S6. The boundaries in which DUs can vary were defined based upon technical meetings 131 

with the management and regulation agencies of the FDB water supply system, CAESB and ADASA, 132 

respectively.  133 

 The hydroclimatic realizations consist of a combination of 1,000 40-year long synthetic 134 

timeseries of natural inflows, natural evaporation, and water demands for each service areas. The inflows 135 

and evaporation timeseries were built using the Modified Gaussian Fraction Noise (mFGN) method 136 

(Kirsch et al. 2013), which bootstraps data from the historical record by accounting for temporal and 137 

spatial correlations to generate timeseries that represent realistic possible future alternatives. It’s 138 

important to point out that the lack of large hydrologic historical data is a common obstacle in many 139 

Brazilian studies, and was overcome with the use of data filling and extension methodology presented in 140 

Souza (2022).  141 

 Fig. S2 shows the flow duration curves of historic and synthetic data for the water sources of the 142 

two service areas (Descoberto and Corumba reservoirs for Descoberto service area, Paranoa and Santa 143 

Maria reservoirs and Bananal/Torto streams for Santa Maria service area). The figures present the 144 

probability of exceedance based upon yearly data of the synthetic and historic flows. Since it has more 145 

extreme low and high values, the synthetic series appear to expand upon historic observations, without a 146 

bias and following the same hydrologic within-year behavior. 147 

  148 



Table S6. Deep uncertainties and respective boundaries defined in a collaborative process with management and 149 
regulation agencies of the FDB water supply system 150 

Deep uncertainties  
Reference 

Value 

Lower 
Bound Upper Bound 

MFa AVb MF AV 

Financial Indexes 
Bond interest rate (% py) 12.00 0.84 10.08 1.16 13.92 
Bond term (years) 15.00 0.90 13.50 1.30 19.50 
Discount rate (%) 4.00 0.80 3.20 1.80 7.20 

Water and 
Sanitation Tariffs 
(R$/m³) 

Residential 4.43 

1.02 

4.52 

1.16 

5.14 
Commercial 13.08 13.34 15.17 
Industry 12.02 12.26 13.94 
Public services 13.08 13.34 15.17 
Sewage 4.80 4.89 5.57 

Drought mitigation 
instruments 
effectiveness of 
water consumption 
restriction (%) 

1st stage 2.00 

0.80 

1.60 

1.20 

2.40 

2nd stage 4.00 3.20 4.80 

3rd stage 10.00 8.00 12.00 

Time to get 
Permitting (years) 

Corumba - 1st stage 0.00 - - - - 
Corumba - 2nd stage 0.00 - - - - 
Corumba - 3rd stage 5.00 0.60 3.00 1.40 7.00 
Descoberto resevoir 
expansion 0.00 - - - - 

Paranoa - 1st stage 0.00 - - - - 
Paranoa - 2nd stage 0.00 - - - - 
Paranoa - 3rd stage 0.00 - - - - 

Construction costs 
(in millions of R$) 

Corumba - 1st stage 276.50 

1.00 

276.50 

1.30 

359.45 
Corumba - 2nd stage 222.10 222.10 288.73 
Corumba - 3rd stage 251.40 251.40 326.82 
Descoberto resevoir 
expansion 7.50 7.50 9.75 

Paranoa - 1st stage 60.30 60.30 78.39 
Paranoa - 2nd stage 60.30 60.30 78.39 
Paranoa - 3rd stage 60.30 60.30 78.39 

Note: aMF: Multiplicative Factor - the value effectively applied as boundaries for sampling DU values used in WaterPaths.  151 
bAV: Absolute Value – value obtained when MF multiplies the Reference Value, and represents the actual value of a DU factor 152 
or boundary. 153 
 154 

  It’s important to emphasize that the aspect of evaporation curves is due to the lack of available 155 

daily records in the reservoirs’ region. Thus, given that the FDB has only two well defined seasons – one 156 

rainy, hot summer and one dry, cold winter (CODEPLAN 2020) – the assumption of equal daily 157 

evaporation rates across the months is reasonable for the purposes of this work. 158 



 159 
Fig. S2. Flow duration curves for natural inflow and natural evaporation synthetic series. 160 

 161 

 Figs. S3–S11 present statistic comparisons of observed and synthetic data, generated from one-162 

hundred ensemble of synthetic series with 100-years length, and a bootstrapped historical data with the 163 

same size and length. We can denote that, for all water sources, streamflow and evaporation synthetic 164 

series present reasonably close behavior if compared to historical data.  165 

 Given the non-parametric nature of the method applied for synthetic series generation, Wilcoxon 166 

rank-sum test and Levene’s test were used to test if synthetic monthly medians and variances were 167 

statistically different from observations. The associated p-values indicate that none of the synthetic 168 

momentum differ from the historical at significance level of 0.05. 169 



 170 
Fig. S3. Statistical evaluation for the Corumba synthetic streamflow timeseries. 171 
 172 

 173 
Fig. S4. Statistical evaluation for the Descoberto synthetic streamflow timeseries. 174 



 175 
Fig. S5. Statistical evaluation for the Paranoa synthetic streamflow timeseries. 176 

 177 
Fig. S6. Statistical evaluation for the Santa Maria synthetic streamflow timeseries. 178 



 179 
Fig. S7. Statistical evaluation for the Bananal-Torto the synthetic streamflow timeseries. 180 

 181 
Fig. S8. Statistical evaluation for the Corumba synthetic evaporation timeseries. 182 



 183 
Fig. S9. Statistical evaluation for the Descoberto synthetic evaporation timeseries. 184 

 185 
Fig. S10. Statistical evaluation for the Paranoa synthetic evaporation timeseries. 186 

 187 



 188 
Fig. S11. Statistical evaluation for the Santa Maria synthetic evaporation timeseries. 189 

 190 

 The 1,000 demand time series were built applying different multiplicative factors to a reference 191 

demand projection. This reference series, in turn, was obtained by taking the Federal District population 192 

projection for the next 40 years in IBGE, and associating it with demand estimatives extracted from Federal 193 

District Sanitation Plan of 2017 (GDF 2017). Figures S12 and S13 show the highest and lowest demand 194 

synthetic series for Descoberto and Santa Maria service area, suggesting reasonable variability given 195 

population projections for each set of the FDB Administrative Regions.  196 



 197 
Fig. S12. Upper- and lower-bounds of the demand projections for the Descoberto service area. 198 
 199 
 200 
 201 
 202 

 203 
Fig. S13. Upper- and lower-bounds of the demand projections overview for the Santa Maria service area. 204 

 205 

 206 

Appendix S3. MOEA Runtime Diagnostics 207 

 208 

 We run multiple instances of the Borg MOEA to ensure the algorithm has overcome any biases 209 

generated by the random sampling of the initial population (Salazar et al. 2017). In this experiment, we 210 

ran 5 random seeds using the Master-Worker configuration of the Borg MOEA. The true Pareto set for 211 

this problem is not known, so we used the relative hypervolume metric to assess the convergence of each 212 

seed (Zitzler et al. 2003). The relative hypervolume compares the performance of the Pareto sets 213 

discovered at set checkpoints within each seed to the final “reference set”, which contains non-dominated 214 



solutions across all seeds. We conclude that the algorithm has converged to a satisfactory approximation 215 

of the true Pareto set when the hypervolume of each reference set plateaus. Runtime diagnostics for all 216 

seeds are shown in Fig. S14. There was some variance across seeds, but the hypervolume of each 217 

optimization run plateaued after approximately 10,000 function evaluations.  218 

 219 

 220 
Fig. S14. Runtime diagnostics for optimization. 221 
 222 
 223 
 224 

Appendix S4. Gradient Boosted Trees Feature Importance 225 

 226 

We measure feature importance by evaluating how each DU factor reduces leaf impurity during 227 

Gradient Boosted Trees classification. Leaf impurity provides a measure of how “mixed” a leaf of a 228 

classification tree is. A leaf containing all scenarios with the same classification will have a leaf impurity 229 

of 0, and leaf impurity will increase with the increasing faction of scenarios classified differently. We 230 

calculate the percentage of the total decrease in leaf impurity across all trees due to splits from each DU 231 

factor in the performance of a policy to calculate feature importance. Feature importance for the High 232 

infrastructure and Moderate infrastructure policies are shown in Table S7.  233 

  234 
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Table S7. Feature importance ranking for the High infrastructure and Moderate Infrastructure compromises 235 

Factor 
Feature importance 

for High Infrastructure 
compromise 

Feature importance 
for Moderate Infrastructure 

compromise 
Demand Growth 0.432 0.527 
Permitting Time 0.001 0.000 
Construction Time 0.002 0.000 
Bond Term 0.002 0.002 
Bond Interest Rate 0.001 0.002 
Discount Factor 0.001 0.002 
Restriction Effectiveness 0.561 0.467 

 236 
 237 

 238 

Appendix S5. Scenario Discovery for Santa Maria 239 

 240 

The compromise policies perform extremely well for Santa Maria across all SOWs. Santa Maria does not 241 

fail the robustness criteria (90% reliability, 20% restriction frequency) under any sampled SOW. An factor 242 

map showing Santa Maria’s performance for the moderate infrastructure compromise is shown in Fig. S15.  243 

 244 

 245 

Fig. S15. Factor map for Santa Maria. Each point represents a sampled SOW, with white points representing 246 

SOWs where the policy meets performance criteria, and red points representing SOWs where the policy 247 

fails to meet performance criteria. The policy meets performance criteria under all sampled SOWs. 248 
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