SUPPLEMENTAL MATERIALS

ASCE Journal of Water Resources Planning and Management

Small-Scale Irrigation: Improving Food Security under Changing Climate and Water Resource Conditions in Ethiopia

Ying Zhang, Sriram Sankaranarayanan, Wanshu Nie, Ben Zaitchik, and Sauleh Siddiqui

DOI: 10.1061/JWRMD5.WRENG-6190

© ASCE 2024

www.ascelibrary.org

Crop model with groundwater module

Fig. S1. Simplified illustration of the crop model with groundwater module.

Spatial Food Market Model

Each role maximizes profit/utility

Total Demand = Total Supply

Fig. S2. Simplified illustration of the spatial food market model.

We calibrate the runoff coefficient γ to estimate *Rl*, and then partition *Rl* into the surface runoff *Rs* and groundwater recharge *Rg*. The calibration of γ is performed for each grid (i.e., each soil column) at daily basis given the simulation outputs from the Noah Multi-Parameterization Land Surface Model (Noah-MP LSM, version 3.6; Niu et al. 2011) within the framework of NASA's Land Information System (LIS; Kumar et al. 2006). The calibrated values of γ (average over all daily values in a grid) range from 0 to 10 with standard deviation ranging from 0 to 5 (Fig. S3).

Fig. S3. Calibrated values of the runoff coefficient γ (left) and its standard deviation (right).

The partition of Rl into Rs and Rg is performed such that the resultant Rg converge with the calculated value of deep percolation (DP) in each grid. DP is calculated based on effective precipitation, soil water content, and crop evapotranspiration (Doorenbos et al. 1980; Allen et al. 1998).

The gridded yield factors for each crop estimated in the crop model are first aggregated to the level of adaptation zones, which is then taken as inputs to the spatial food market model DECO2. DECO2 then decides the area allocated to grow each crop in each adaptation zone. The resultant area allocation is used to calculate the groundwater storage change, considering irrigation, if any. The detailed coupling steps are described below [Eqs. (S1)–(S4) and Fig. S4].

$$\Delta S_{c,i} = S_{c,i} - S_0 \tag{S1}$$

where S_0 is the initial groundwater storage, which is assumed to be 5000mm. $S_{c,i}$ is the resultant groundwater storage at grid *i* as if crop *c* is grown at this grid, considering irrigation if any. Hence, $\Delta S_{c,i}$ is the corresponding groundwater change in the grid. This groundwater change is then multiplied by the ratio of the area allocated to the corresponding crop (an output from DECO2) over the total area of the

adaptation zone that the grid belongs to. This calculation provides an estimate of the actual groundwater change resulting from the portion of the area allocated to grow that crop:

$$\Delta S_{c,i\in z}^{Real} = \Delta S_{c,i\in z} \times \frac{A_{c,z}}{Atot_z}$$
(S2)

where $Atot_z$ is the total area of adaptation zone z. $A_{c,z}$ is the area allocated to grow crop c in adaptation zone z.

$$\Delta S_{c,z}^{Real} = \sum_{i \in z} \Delta S_{c,i}^{Real}$$
(S3)

The gridded 'real' groundwater storage change is then aggregated to the level of adaptation zones. The effects on zonal groundwater storage change are also aggregated over all the modeled crops to obtain the overall groundwater change at each adaptation zone:

$$\Delta S_z^{Real} = \sum_c \Delta S_{c,z}^{Real} \tag{S4}$$

Fig. S4. Coupling of the crop model and DECO2 (the spatial food market model). $YF_{c,z}$ is yield factor for crop *c* at adaptation zone *z*. $S_{c,i}$ is the resultant groundwater storage at grid *i* as if crop *c* is grown at this grid, considering irrigation if any. $A_{c,z}$ is allocated area to grow crop *c* at adaptation zone *z*. ΔS_z^{Real} is the actual groundwater change considering the allocated crop patterns in adaptation zone *z*. The asteroid indicates that the variable would be updated when the coupled model runs under the irrigation scenario versus the baseline.

Symbol	Explanation	Symbol type
у	Year	Set
S	Season	Set
Z	Adaptation zone	Set
n	Market	Set
С	Сгор	Set
ξ	Animal produce – beef and milk	Set
f	Food (i.e., Crops and animal produce together)	Set
r	Roads (Connecting two markets s_r and d_r – the source and	Set
	destination)	
R_{in}^n, R_{out}^n	Set of roads coming into and going out of a market location n	Set
dfy	Discount factor for year y	Parameter
Ψ_{zn}	Fraction of adaptation zone z that is in the Thiessen polygon	Parameter
	corresponding to market <i>n</i>	
$Q_{znfsy}^{F \to D}$	Quantity of food f sold by producer in z to a distributor in	Primal Variable
	market n in the season s of year y	
$\pi_{nfsy}^{D \to F}$	Price for food f paid by a distributor to any producer in market	Dual Variable
	n in the season s of year y	
A _{zcsy}	Area allotted for crop c by the crop producer in z in the season	Primal Variable
	s of year y	
Q^F_{zfsy}	Quantity of food f produced in adaptation zone z in the season	Primal Variable
	s of year y	

Table S1. Summary table of model parameters and variables

C^F_{zcsy}	Cost of raising unit area of crop c for the crop producer in z in	Parameter
	the season <i>s</i> of year <i>y</i>	
C_{zsy}^{chg}	Penalty for change in cropping patterns between adjacent years	Parameter
Y _{zcsy}	Yield of crop c in adaptation zone z in the season s of year y	Parameter
Q_{zsy}^{C}	Number of cattle reared in adaptation zone z in the season s of	Primal Variable
	year y	
Q_{zsy}^{sl}	Number of cattle slaughtered in the adaptation zone z in the	Primal Variable
	season <i>s</i> of year <i>y</i>	
$Q_{zsy}^{C,\xi}$	Quantity of animal product ξ produced in the adaptation zone z	Primal Variable
	in the season s of year y	
$Q_{znsy}^{C \to D,\xi}$	Quantity of animal product ξ sold by the livestock producer in	Primal Variable
	z to the distributor in market n in the season s of year y	
$\pi_{nsy}^{D \to C,\xi}$	Price for animal product ξ paid by the distributor in market n to	Dual Variable
	any livestock producer in the season s of year y	
C ^C _{zsy}	Cost of rearing cattle in the adaptation zone z in the season s of	Parameter
	year y	
Y_{zsy}^{ξ}	Yield of animal product ξ in the adaptation zone z in the season	Parameter
	s of year y	
k	Proportion of cattle that should be slaughtered before they die	Parameter
r _{birth} , r _{death}	Birth and death rate of cattle	Parameter
$Q_{zsy}^{C,Herd}$	Minimum heard size to be maintained	Parameter
$Q_{nfsy}^{D_b}$	Quantity of food f brought by distributor in market n in season	Primal Variable
	s of year y	

$Q_{nfsy}^{D_s}$	Quantity of food f sold by distributor in market n in season s	Primal Variable
	of year y	
Q ^D _{rfsy}	Quantity of food f transported by distributor through road r in	Primal Variable
	season <i>s</i> of year <i>y</i>	
C_{rfsy}^{D}	Cost of transporting food f through road r in season s of year y	Parameter
Q_{rsy}^D	Maximum Quantity of food that can be transported through	Parameter
	road r in season s of year y	
$\pi_{nfsy}^{W \to D}$	Price for food item f paid by a store to a distributor in market n	Dual Variable
	in the season <i>s</i> of year <i>y</i>	
$\pi^{U \to W}_{nfsy}$	Price for food item f paid by a consumer to a store in market n	Dual Variable
	in the season <i>s</i> of year <i>y</i>	
$Q_{nfsy}^{W_b}$	Quantity of food f brought by the store in market n in season s	Primal Variable
	of year y	
$Q_{nfsy}^{W_s}$	Quantity of food f sold by the store in market n in season s of	Primal Variable
	year y	
Q_{nfsy}^W	Quantity of food f stored by the store in n in season s of year y	Primal Variable
C_{nfsy}^W	Cost of storing food f at n in season s of year y	Parameter
Q_{nfsy}^W	Maximum Quantity of food f that can be stored at n in season	Parameter
	s of year y	
a _{zfsy}	Intercept of the demand curve for food f for consumers in	Parameter
	adaptation zone z during season s of year y	
b _{zfsy}	Slope of the demand curve for food f for consumers in	Parameter
	adaptation zone z during season s of year y	

Q_{zfsy}^U	Quantity of food f consumed in adaptation zone z during	Primal variable
	season <i>s</i> of year <i>y</i>	
$Q_{znfsy}^{W \to U}$	Quantity of food f bought by consumers in adaptation zone z	Primal variable
	from the market n during season s of year y	
Q_{zfsy}^U	Consumption limit for food f in adaptation zone z during	Parameter
	season s of year y (to model export)	

Source: Reprinted from Sankaranarayanan et al. (2020), under Creative Commons-BY-4.0 license (https://creativecommons.org/licenses/by/4.0/).

Mathematical Formulations of DECO2

1. Crop producer

$$\sum_{c,s,y} df_y \left(\sum_n Q_{zncsy}^{F \to D} \pi_{ncsy}^{D \to F} - C_{zcsy}^F A_{zcsy} \right) - \sum_{c,s,y,n} \left(\frac{1}{2} C_{zsy}^{chg} \left(A_{zcsy} - A_{zcs(y-1)} \right)^2 \right)$$

subject to

$$\begin{array}{rcl} Q_{zncsy}^{F \to D}, A_{zcsy}, Q_{zcsy}^{F} & \geq & 0 \\ & & & \\ \Sigma_{c} A_{zcsy} & = & A_{zs}^{Total} & (\delta_{zsy}^{1}) \end{array}$$

$$Q_{zcsy}^F = Y_{zcsy}A_{zcsy} \qquad (\delta_{zcsy}^2)$$

$$Q_{zncsy}^{F \to D} = \Psi_{zn} Q_{zcsy}^{F} \qquad (\delta_{zncsy}^{18})$$

The KKT conditions corresponding to this optimization problem are as follows.

$$\begin{split} \delta_{zcsy}^{2} - \sum_{n} \Psi_{zn} \delta_{zncsy}^{18} &\geq 0 \\ \left(Q_{zcsy}^{F}\right) \\ \delta_{zsy}^{1} + df_{y} \left(C_{zcsy}^{F} + C_{zsy}^{chg} A_{zcsy} + C_{zs(y+1)}^{chg} A_{zcsy}\right) \\ - df_{y} \left(C_{zsy}^{chg} A_{zcs(y-1)} + C_{zs(y+1)}^{chg} A_{zcs(y+1)}\right) - &\geq 0 \\ \delta_{zcsy}^{2} Y_{zcsy} \\ \delta_{zncsy}^{18} - df_{y} \pi_{ncsy}^{D \to F} &\geq 0 \\ \left(\delta_{zcsy}^{2}\right) \\ \end{split}$$

2. Livestock producer

$$\sum_{s,y} df_y \left(\sum_{n,\xi} Q_{znsy}^{C \to D,\xi} \pi_{nsy}^{D \to C,\xi} - C_{zsy}^C Q_{zsy}^C \right)$$

subject to

$$Q_{zsy}^{sl}, Q_{zsy}^{C}, Q_{zsy}^{C,\xi} \ge 0$$

$$Q_{zsy}^{C} = (1 + r_{birth} - r_{death})Q_{zs(y-1)}^{C} - Q_{zs(y-1)}^{sl} \qquad (\pi_{zsy}^{C})$$

$$Q_{zsy}^{sl} \geq k Q_{zsy}^{c} \tag{\delta_{zsy}^9}$$

$$Q_{zsy}^{C} \ge Q_{zsy}^{C,Herd}$$
 (δ_{zsy}^{10})

$$Q_{zsy}^{C,milk} = Y_{zsy}^{milk} Q_{zsy}^{C} \qquad (\delta_{z(milk)sy}^2)$$

$$Q_{zsy}^{C,beef} = Y_{zsy}^{beef} Q_{zsy}^{sl} \qquad (\delta_{z(beef)sy}^2)$$

$$Q_{znsy}^{C \to D,\xi} = \Psi_{zn} Q_{zsy}^{C,\xi} \qquad (\delta_{zn\xi sy}^{18})$$

The KKT conditions corresponding to this optimization problem are as follows.

$$df_{y}C_{zsy}^{c} - \delta_{z(milk)sy}^{2}Y_{zsy}^{(milk)} - \delta_{zsy}^{4} + kd_{zsy}^{9} - d_{zsy}^{10} - (1 + r_{birth} - r_{death})\pi_{zsy}^{c} \ge 0 \qquad (Q_{zsy}^{c})$$

$$\delta_{z\xi sy}^2 - df_y \Psi_{zn} \delta_{zn\xi sy}^{18} \ge 0 \qquad (Q_{zsy}^{c,\xi})$$

$$\delta_{zsy}^4 - \delta_{zsy}^9 - \delta_{z(beef)sy}^2 Y_{zsy}^{beef} + \pi_{zs(y+1)}^c \ge 0 \qquad (Q_{zsy}^{sl})$$

$$\delta_{zn\xi sy}^{18} - df_y \pi_{nsy}^{D \to C,\xi} \ge 0 \qquad (Q_{znsy}^{C \to D,\xi})$$

3. Distributor

$$\sum_{f,s,y} df_y \left\{ \sum_n \left(Q_{nfsy}^{D_s} \pi_{nfsy}^{W \to D} - Q_{nfsy}^{D_b} \pi_{nfsy}^{D \to F} \right) - \sum_r C_{rfsy}^D Q_{rfsy}^D \right\}$$

subject to

$$Q_{nfsy}^{D_b}, Q_{nfsy}^{D_s}, Q_{rfsy}^{D} \ge 0$$

$$\sum_{r \in R_{in}^n} Q_{rfsy}^{D} + Q_{nfsy}^{D_b} = \sum_{r \in R_{out}^n} Q_{rfsy}^{D} + Q_{nfsy}^{D_s} \qquad (\delta_{nfsy}^6)$$

$$\sum_{f} Q_{rfsy}^{D} \le \underline{Q}_{rsy}^{D} \qquad (\delta_{rsy}^{16})$$

The KKT conditions corresponding to this optimization problem are as follows.

$$df_{y}\pi_{nfsy}^{D\to F} - \delta_{nfsy}^{6} \geq 0 \qquad \left(Q_{nfsy}^{D_{b}}\right)$$

$$\delta_{rsy}^{16} + df_y C_{rfsy}^D + \delta_{s_r fsy}^6 - \delta_{d_r fsy}^6 \ge 0 \qquad (Q_{rfsy}^D)$$
$$\delta_{znfsy}^6 - df_y \pi_{nfsy}^{W \to D} \ge 0 \qquad (Q_{nfsy}^D)$$

4. Storage manager (or stores)

$$\sum_{y,h,n,f} df_y \left(\pi_{nfsy}^{U \to W} Q_{nfsy}^{W_s} - \pi_{nfsy}^{W \to D} Q_{nfsy}^{W_b} - C_{nfsy}^W Q_{nfsy}^W \right)$$

subject to

$$\begin{aligned} Q_{nfsy}^{W_b} Q_{nfsy}^{W_s} Q_{nfsy}^{W} &\geq 0 \\ Q_{nf(sy-1)}^W + Q_{nfsy}^{D_b} &= Q_{nfsy}^W + Q_{nfsy}^{D_s} \\ Q_{nfsy}^W &\leq \underline{Q}_{nfsy}^W \end{aligned} \tag{δ_{nfsy}^{11}}$$

The KKT conditions corresponding to this optimization problem are as follows.

$$df_{y}\pi_{nfsy}^{U \to W} - \delta_{nfsy}^{11} \geq 0 \qquad \qquad \left(Q_{nfsy}^{W_{b}}\right)$$

$$C_{nfsy}^{W} + \delta_{nfsy}^{8} + \delta_{nfsy}^{11} - \delta_{nf(sy+1)}^{11} \ge 0 \qquad (Q_{rfsy}^{D})$$

$$\delta_{znfsy}^{11} - df_y \pi_{nfsy}^{U \to W} \ge 0 \qquad (Q_{nfsy}^{W_s})$$

Here sy - 1 is the previous season (which could be in the previous year) and sy + 1 is the next season (which could be in the next year).

5. Consumer

$$\sum_{f,s,y} df_y \left(a_{zfsy} Q_{zfsy}^U - \frac{1}{2} b_{zfsy} Q_{zfsy}^U^2 - \sum_n \pi_{nfsy}^{U \to W} Q_{znfsy}^{W \to U} \right)$$

subject to

$$Q_{zfsy}^{U}, Q_{znfsy}^{W \to U} \ge 0$$

$$\sum_{n} Q_{znfsy}^{W \to U} = Q_{zfsy}^{U} \qquad (\delta_{zfsy}^{19})$$

$$Q_{znfsy}^{W \to U} \geq \Psi_{zn} Q_{zfsy}^{U} \qquad \left(\delta_{znfsy}^{17}\right)$$

$$Q_{zfsy}^{U} \leq \frac{Q_{zfsy}^{U}}{\left(\delta_{zfsy}^{20}\right)}$$

The KKT conditions corresponding to this optimization problem are as follows.

$$df_{y}(b_{zfsy}Q_{zfsy}^{U} - a_{zfsy}) + \delta_{zfsy}^{18} + \delta_{zfsy}^{20} + \sum_{n} \Psi_{zn}\delta_{znfsy}^{17} \geq 0 \qquad (Q_{znfsy}^{W \to U})$$

$$df_y \pi_{nfsy}^{U \to W} - \delta_{zfsy}^{19} - \delta_{znfsy}^{17} \ge 0 \qquad (Q_{zfsy}^U)$$

6. Market clearing

$$\sum_{z} Q_{znfsy}^{F \to D} = Q_{nfsy}^{D_b} (\pi_{nfsy}^{D \to F})$$

$$Q_{nfsy}^{D_s} = Q_{nfsy}^{W_b} (\pi_{nfsy}^{W \to D})$$

$$Q_{nfsy}^{D_s} = Q_{nfsy}^{W_b} (\pi_{nfsy}^{W \to D})$$
$$Q_{nfsy}^{W_s} = \sum_z Q_{znfsy}^{W \to U} (\pi_{nfsy}^{U \to W})$$

References

- ALLEN, R. G., PEREIRA, L. S., RAES, D. & SMITH, M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. *Fao, Rome,* 300, D05109.
- DOORENBOS, J., KASSAM, A. H., BENTVELSEN, C. & UITTENBOGAARD, G. 1980. Yield Response to Water11This paper is a summary of: Doorenbos, J., A. H. Kassam, C. Bentvelsen, V. Branscheid, M. Smith, J. Plusje, G. Uittenbogaard and H. van der Wal; Yield response to water, FAO Irrigation and Drainage Paper, (In press). *In:* JOHL, S. S. (ed.) *Irrigation and Agricultural Development.* Pergamon.
- KUMAR, S. V., PETERS-LIDARD, C. D., TIAN, Y., HOUSER, P. R., GEIGER, J., OLDEN, S., LIGHTY, L., EASTMAN, J. L., DOTY, B., DIRMEYER, P., ADAMS, J., MITCHELL, K., WOOD, E. F. & SHEFFIELD, J. 2006. Land information system: An interoperable framework for high resolution land surface modeling. *Environmental Modelling & Software*, 21, 1402-1415.
- NIU, G.-Y., YANG, Z.-L., MITCHELL, K. E., CHEN, F., EK, M. B., BARLAGE, M., KUMAR, A., MANNING, K., NIYOGI, D., ROSERO, E., TEWARI, M. & XIA, Y. 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. *Journal of Geophysical Research: Atmospheres*, 116.
- SANKARANARAYANAN, S., ZHANG, Y., CARNEY, J., NIGUSSIE, Y., ESAYAS, B., SIMANE, B., ZAITCHIK, B. & SIDDIQUI, S. 2020. What Are the Domestic and Regional Impacts From Ethiopia's Policy on the Export Ban of Teff? *Frontiers in Sustainable Food Systems*, 4.