SUPPLEMENTAL MATERIALS

ASCE Journal of Sustainable Water in the Built Environment

Relationship between Groundwater Nitrate Concentration and Density of Onsite Wastewater Treatment Systems: Role of Soil Parent Material and Impact on Pollution Risk

Matthew J. Dowling, Jose A. Amador, Seaver Anderson, Stefan Bengtson, Kristen Hemphill, and George W. Loomis

DOI: 10.1061/JSWBAY.SWENG-547

© ASCE 2024

www.ascelibrary.org

 Table S1. Soil series corresponding to till and glacial fluvial parent material

Soil parent material	Soil series	Symbol	C Horizon Ksat (µm/s) ^a	Drainage class ^a
Till	Canton-Urban land complex	СВ	42-141	Well drained
	Canton and Charlton very stony fine sandy loams 3 – 8% slopes	ChB	42-141	Well drained
	Canton and Charlton very stony fine sandy loams 8 -15% slopes	ChC	4.0-141	Well drained
	Gloucester-Hinckley very stony sandy loams, rolling	GhC	42-703	Excessively drained
	Gloucester-Hinckley very stony sandy loams, hilly	GhD	42-703	Excessively drained
	Ridgebury, Whitman, and Leicester extremely stony fine sandy loams	Rf	0.01-141	Poorly to V. poorly drained
	Bridgehampton- Charlton complex, very stony, $0-8\%$ slopes	BnB	4.0-42	Well to Mod. well drained
	Wapping very stony silt loam, $0-8\%$ slopes	WcB	14-141	Mod. well drained
Glacial fluvial	Enfield silt loam, 0 – 3% slopes (EfA)	EfA	42-703	Well drained
	Freetown mucky peat, $0-2\%$ slopes	FeA	Mod. high- high	Very poorly drained
	Hinckley-Enfield complex, rolling	HnC	42-703	Excessively drained
	Hooksan sand 3 – 8% slopes	HsB	Very high	Very poorly drained
	Matunuck mucky peat	Mk	14-705	Very poorly drained

Merrimac sandy loam 3 – 8% slopes	MmB	42-703	Somewhat excessively drained
Merrimac sandy loam $0-3\%$ slopes	MmA	42-703	Somewhat excessively drained
Merrimac- Urban land complex	MU	42-703	Somewhat excessively drained
Scarboro mucky sandy loam	Sb	42-703	Very poorly drained
Sudbury sandy loam	Ss	42-703	Moderately well drained
Swansea, mucky peat $0 - 2\%$ slopes	SwA	Mod. high- high	Very poorly drained
Tisbury silt loam	Tb	42-703	Moderately well drained
Udorthents - Urban land complex	UD	Not applicable	Not applicable

Source: Data from Soil Survey Staff (2023).

^a Saturated hydraulic conductivity (Ksat) values and drainage class from Soil Survey of Rhode Island (1981).

Reference

Soil Survey Staff. 2023. Soil Survey Staff, Natural Resources Conservation Service, UnitedStates Department of Agriculture. Web Soil Survey. Available online at: http://websoilsurvey.sc.egov.usda.gov/. Accessed July 25, 2023.