SUPPLEMENTAL MATERIALS

ASCE Journal of Environmental Engineering

Development and Laboratory Scalability of Ultraviolet-Activated Silica-Based Granular Media as an Engineered System for the Degradation of Per- and Polyfluoroalkyl Substances in Concentrated Liquid Waste

Hannah McIntyre, Vidit Minda, Elisabeth Hawley, Rula Deeb, and Megan Hart

DOI: 10.1061/JOEEDU.EEENG-7228

© ASCE 2023

www.ascelibrary.org

Section S1. Reagent Grade Solutions and Standards

Silica-based granular media was synthesized with tetraethyl orthosilicate (CAS: 78-10-4, Thermo Fisher Scientific), silicic acid (CAS: 1343-98-2, Sigma Aldrich), sodium hydroxide (CAS: 1310-73-2, Sigma Aldrich), and either titanium (IV) oxide, Aeroxide ® P25, ACROS Organics (CAS: 13463-67-7, Thermo Fisher Scientific) or Bismuth (III) oxide (CAS: 1304-76-3, Thermo Fisher Scientific). The bismuth trioxide variation utilized nitric acid (CAS: 7697-37-2, Thermo Fisher Scientific). Perfluorooctanesulfonic acid - 1H, 1H, 2H, 2H (CAS: 27619-97-2, Synquest Laboratories), perfluorooctanesulfonic acid (CAS: 6164-3-08, Synquest Laboratories), perfluorohexanesulfonic acid (CAS: 3871-99-6, Sigma Aldrich), perfluorobutanesulfonic acid (CAS: 375-73-5), perfluorononanoic acid (CAS: 375-95-1, Alfa Aesar), perfluorooctanoic acid (CAS: 335-67-1, Sigma Aldrich), perfluoroheptanoic acid (CAS: 375-85-9, Thermo Fisher Scientific), perfluorohexanoic acid (CAS: 307-24-4, Thermo Fisher Scientific), perfluoropentanoic acid (CAS: 2706-90-3, Thermo Fisher Scientific), and perfluorobutanoic acid (CAS: 375-22-4, Sigma Aldrich) were purchased for PFAS spiked deionized water solutions. Sodium hydroxide (CAS: 1310-73-2, Sigma Aldrich) and sulfuric acid (CAS: 7664-93-9, Thermo Fisher Scientific) were purchased for experimental amendments. Technical grade methanol (CAS: 67-56-1, Thermo Fisher Scientific) was purchased for reactor cleaning and rinsing, along with deionized water.

Dionex AS23 eluent concentrate and Dionex combined seven anion standard II were purchased from Thermo Fisher Scientific for ion chromatography. LC/MS grade water (Cat no: W6-1, Thermo Fisher Scientific), ACS grade methanol (Cat no: A412-1, Thermo Fisher Scientific), LC/MS grade acetonitrile (Cat no: LC015-1, Honeywell), LC/MS grade ammonium acetate (CAS: 631-61-8, Sigma Aldrich) and LC/MS grade acetic acid (CAS: 64-19-7, Sigma Aldrich) were purchased for LC-MS sample preparation and analysis. Wellington standards MPAC MXA and MPFAC-24ES were purchased for internal standards. Wellington PFAC30PAR was purchased for the calibration mix.

Table S1. PFAS Mix Analytes

PFAS	Concentration
Analyte	(mg/L)
PFOS	4.53
PFNA	5.73
6:2 FTS	1.27
PFOA	4.27
PFHxS	4.87
PFHpA	5.07
PFHxA	9.33
PFPeA	8.67
PFBA	5.2
Total	48.93

Section S2 Reactor Configurations

Table S2. UV Lamp Parameters

Lamp	Radiation Flux Irradiance at 254 nm		Radiation Flux at	
Wattage	at 254 nm (W)	$(\mu W/cm^2)$	185 nm (W)	
21	7.2	72	-	
48	12	120	2.4	
57	13	130	-	
85	23	230	6	

Equation 1. Residence Time

• Residence Time = $\frac{Total Treatment Time}{(Total Volume/_Reactor Volume)}$

Figure S1. Photographs of various column reactor configurations used for scalability assessment including the flow-through reactor, mini-column reactor, recirculation reactor, and modified recirculation reactor.

Section S3. LC-MS Analysis

Table S3. Gradient

Time	Concentration of	Concentration of
(minutes)	Channel A (%)	Channel B (%)
0	95	5
5	95	5
6.5	75	25
19	20	80
19.5	5	95
20.5	5	95
21	95	5
25	95	5

LC System	Shimadzu Nexera XR (40-Series) UHPLC System			
	System Controller	SCL-40		
	Degassing Unit	DGU-405		
	Pump LC-40DX3			
	Autosampler SIL-40CX3			
	Column Oven	CTO-40C		
Autosampler Temperature	4 °C			
Column Oven Temperature	40 °C			
MS Instrument	Shimadzu 9030 Q-TOF			
m/z Range	40-1000			
Acquisition Time	25 minutes			
Event Time	0.5 second			
Threshold	Low			
Interface Voltage	-5.00 kV			
Corona Needle Voltage	-4.50 kV			
Ionization Interface	Dual Ion Source (DUIS)			
Nebulizing Gas Flow	2 L/minute			
Heating Gas Flow	10 L/minute			
Interface Temperature	175 °C			
Drying Gas Flow	10 L/minute			
Desolvation Line Temperature	250 °C			
Heat Block Temperature	400 °C			

 Table S4. LC-MS Parameters

 Table S5. Method Limit of Detection

Analyte	MDL (ng/L)
PFBA	950
PFPenA	400
PFHexA	400
PFHepA	400
PFOA	400
PFNA	400
PFBS	250
PFHexS	250
PFOS	250
6:2 FTS	100

*Please note this is the limit of the detection for the method and column used and not what the instrument is capable of.

Section S4. Ion Chromatography Analysis

The Dionex ion chromatography system (ICS-90) was coupled with an automated sampler (AS40). ICS-90 system contained a 4× 250-mm AS23 analytical standard bore column (part #064149), an AG23 guard

standard column (064147), coupled with an AMMS 300 chemically driven suppressor (064558), and a D5 stabilizer conductivity cell. A 50 μ L injection loop was used as a standard for all samples and standards. Chromeleon 6.80 was the software used for analysis.

Section S5. Additional Data

Batch Reactor

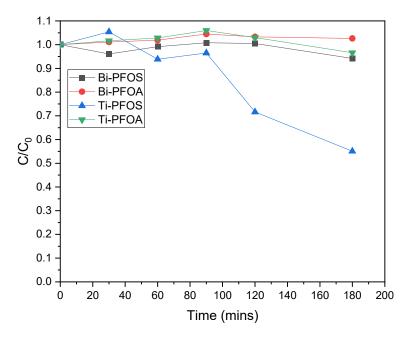


Figure S2. Ti-SGM and Bi-SGM batch reactors, No UV (adsorption control), no amendment

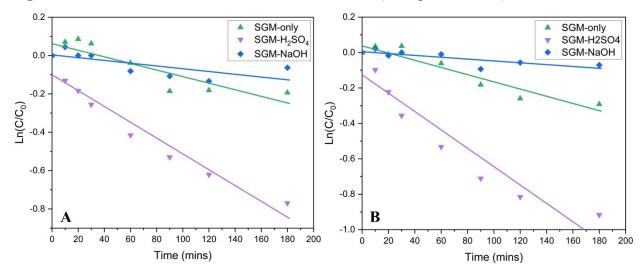


Figure S3. Degradation kinetics of UV/SGM batch reactors under various pH conditions

Treatment	$\ln(C/C_0) = kt + b$	R ²	k (min ⁻¹)
Ti-SGM-Only	$\ln(C/C_0) = -0.002t + 0.062$	0.77	-0.002
Bi-SGM-Only	$\ln(C/C_0) = -0.002t + 0.038$	0.91	-0.002
Ti-SGM-H ₂ SO ₄	$\ln(C/C_0) = -0.004t - 0.10$	0.95	-0.004
Bi-SGM-H ₂ SO ₄	$\ln(C/C_0) = -0.005t - 0.13$	0.91	-0.005
Ti-SGM-NaOH	$\ln(C/C_0) = -0.0007t + 0.0036$	0.52	-0.0007
Bi-SGM-NaOH	$\ln(C/C_0) = -0.0005t + 0.0048$	0.65	-0.0005

Table S6. Ti-SGM and Bi-SGM Reactor Kinetics

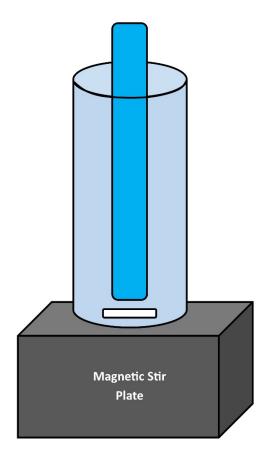
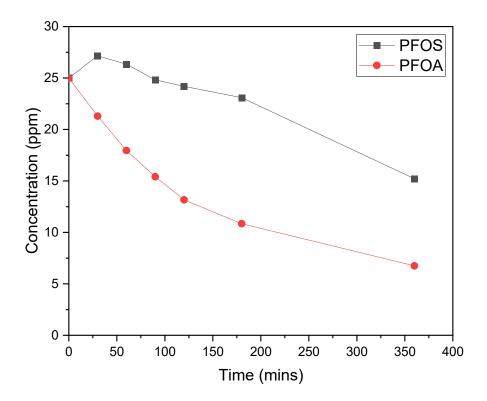



Figure S4. UVC/VUV experimental reactor

Reactor Configuration	$\ln(C/C_{0}) = \mathbf{k}\mathbf{t} + \mathbf{b}$	R ²	k (min ⁻¹)	
Batch Reactor	$\ln(C/C_{0}) = -0.0041t - 0.1$	0.95	-0.0041	
Flow-Through Reactor	$\ln(C/C_{0)}) = -0.017t - 0.1$	0.92	-0.017	
Recirculation Reactor	$\ln(C/C_{0})) = -0.0069t - 0.1$	0.88	-0.0069	

Table

Modified Recirculation Reactor

Figure S5. Degradation of PFOS/PFOA solution in the recirculation reactor with two 85-Watt lamp columns in series and 5% H₂SO₄ amendment. One column was packed with SGM and the other column contained no SGM (photolysis only column).

Table S8. Comparison of treatment type on PFOS and PFOA degradation with the recirculation
reactor at 180 minutes

Treatment Type	PFOS	PFOA	Total PFOS/PFOA
Photocatalysis – Acidic	64%	70%	67%
Photocatalysis – Basic	60%	35%	48%
Photolysis - Acidic	22%	86%	54%
Photolysis - Basic	13%	75%	44%
Photocatalysis/Photolysis - Acidic	40%	74%	57%
Photocatalysis/Photolysis - Basic	61%	85%	73%

Equation 2. EE/O Calculation

$$EE / O = \frac{P}{-\log(C/C_0) \left(\frac{V}{t}\right) (3600)}$$

Where:

EE/O – electrical energy per log order reduction (kWh/m³)

P – power/wattage of UV lamp(s) (kW),

C/C₀ - ratio of PFAS removal, specified as individual or total

V – treated volume (m^3)

t – time (s)

 Table S9. UV/SGM scenarios for linear treatment scale-up

Scenario	Treatment Volume	Number of Columns	Lamps per Column	Wattage per Lamp	Total Wattage
Real	1.3	1	1	85	85
Projected	100	76	1	85	6460
Projected	100	38	1	155	5890*
Projected	100	10	4	155	6200

*By doubling the length of the column, a reduction of 570 watts could be achieved considering

the longer lamps have a slightly lower wattage but an 8% higher UVC/VUV output

Table S10. Comparison of pilot demonstrations for the degradation of PFAS against UV/SGM.Values are linearly extrapolated from the experimental results to treat 100 gallons of solution to

give a comparison baseline.

	Real					Projected		
Treatment Technology	Volume (Gallons)WattageTreatment Time (hours)FlowratePFAS Removed 		Volume Projected (Projected)	Wattage (Projected)				
UV/SGM	1.3	85	24	3.8	93	100 Gallons	6,460	
UV/Sulfite	15.6	1,320	23	3.8	97	100 Gallons	8,461	
Electrochemical Oxidation	5	300	80	1	99*	100 Gallons	6,000	

*PFOS Only