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Introduction  

The Supplemental Materials provides a more comprehensive description of the 

simulation tools and methods used in this study. Also, the document includes more 

information about the performance of our baseline scenarios as well as limitations of the 

study. Finally, this document presents additional results that support and augment the 

main contributions of the study.  

 

Note S1. Baseline Errors for CALFEWS 

In this study, we assess the accuracy of the CALFEWS model by comparing the simulation 

to historical observations for three critical components of the California water system: 

water volume stored behind dams (Figure S3 and S4, and Table S1), dam releases (Figure 

S3 and S4, and Table S2), and pumped water deliveries through the Sacramento-San 

Joaquin Delta (Figure 2 in the main body of the manuscript, and Table S3). Our results 

indicate that the baseline historical CALFEWS simulation (CFEWS-HIS) can reasonably 

capture the complex dynamics of the infrastructure systems and their operations. 

Accuracy deteriorates under the other simulated streamflow scenarios (CGW, NGW, and 

BC). For example, the Nash-Sutcliff efficiencies Nash and Sutcliffe Efficiency (NSE , Nash 

and Sutcliffe 1970, ideal value 1.0) of the CALFEWS simulation of daily water storage 

behind the Shasta dam were 0.92, 0.68, 0.20, and 0.21 for the CFEWS-HIS, CGW, NGW, 

and BC streamflow inputs, respectively (Table S1). Simulated outflow from the other main 

reservoirs of the system showed similar patterns of performance (Table S2). In addition, 

our baseline (CFEWS-HIS) simulations for pumping to the SWP were 0.68, 0.32, 0.26, and 

0.36 for the CFEWS-HIS, CGW, NGW, and BC inputs, respectively (Table S3). Although 

CALFEWS itself as a model is subject to imperfections in its underlying data and 

processes (Oreskes et al. 1994), it is unique in its ability to simulate daily time-scale 

infrastructure dynamics coupled to their financial implications for irrigation districts in 

the Central Valley. In this study, we consider CALFEWS simulations under observed 

streamflow (CFEWS-HIS) as our best-available modeling baseline for the institutionally 

complex water balance dynamics of the system. A more comprehensive performance 

assessment of various components of CALFEWS is presented in (Zeff et al. 2020). 

 

Note S2. Performance Metrics of Input Streamflow to Reservoirs 

We compare the simulated streamflow with the observed streamflow (Section 2.1 in the 

main body of the manuscript and Table S4). Our performance metrics are Mean Error 

(ME), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Nash-Sutcliffe 
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Efficiency (NSE). The following equations were used to calculate these performance 

metrics: 

𝑀𝐸 =
1

𝑁
∑ (𝑆𝑖 − 𝑂𝑖)𝑁

𝑖=1                                                                                                          (1) 

𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑆𝑖 − 𝑂𝑖)|𝑁

𝑖=1                                                                                                     (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑ (𝑆𝑖 − 𝑂𝑖)2𝑁

𝑖=1                                                                                                (3) 

𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑖−𝑂𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−𝑂)
2𝑁

𝑖=1

                                                                                                        (4) 

where, 𝑆𝑖 is the simulated streamflow in day; 𝑂𝑖 is the observed streamflow in day I; 𝑁 is 

the number of records; and 𝑂 is the average streamflow over all records.  These error 

metrics reveal specific types of information about the performance of our hydrologic 

models (Gupta et al. 1998, 2008). For example, RMSE tends to focus on 

misrepresentations of high-flow events, and ME gives an equal weight to all the error 

types during wet and dry periods. 

 

Note S3. Quantile Mapping-Based Bias Correction 

Statistical bias correction has been widely used by hydrologic and atmospheric science 

community to ameliorate the errors included in model simulated states and fluxes such 

as precipitation, temperature, and streamflow. Various methods that have been 

proposed to reduce the effect of these errors. For example, there are simple nudging and 

impact factor methods (Hawkins et al. 2013; Luo et al. 2018) that have been mainly used 

to match the average of model simulated time series with observed. There are also 

parametric or non-parametric distribution-based quantile mapping methods that can 

improve higher moments of the time series (Cannon et al. 2015; Maraun 2013). In 

essence, bias correction is a statistical transformation (Piani et al. 2010) that makes 

model simulations (𝑋𝑚) statistically consistent with historical observations (𝑋𝑜): 

𝑋𝑚
𝑏𝑐 = 𝑓(𝑋𝑚) 

In distribution-based methods the following relationship can describe the overall 

mathematical relationship between model simulated, observed and bias corrected time 

series (Gudmundsson et al. 2012; Mishra et al. 2020): 

𝑋𝑚
𝑏𝑐 = 𝐹𝑜

−1(𝐹𝑚(𝑋𝑚)) 

Atmospheric science research community have also developed more sophisticated bias-

correction methods that simultaneously bias correct closely correlated parameters such 

as precipitation and temperature (Cannon 2018; Cannon et al. 2015; François et al. 2020; 

Luo et al. 2018; Maraun 2013). However, single variate quantile mapping approaches 
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have remained the most prevalent bias-correction method among the hydrologists  for 

improvement of model simulated streamflow. 

In this study, we used a popular statistical bias-correction technique called quantile 

mapping to remove systematic biases of raw WRF-Noah-MP streamflow data. To do this, 

we developed and used an R package called “biascorrection” that follows the 

methodology described by Hamlet and Lettenmaier (1999). In short, the bias correction 

module uses the historical observed streamflow to create the monthly flow quantiles of 

each individual month. After that, it uses the simulated streamflow data to create 

simulated monthly flow quantiles. Afterwards, the bias correction module creates the 

monthly bias-corrected flow by swapping each month of the simulated flow with the 

same quantile from the observed streamflow. Since hydrologic models can simulate the 

average annual flow reasonably well, after constructing the monthly bias-corrected flow, 

we adjust them to make sure that their average annual flow is consistent with what the 

WRF-Noah-MP model has simulated. Finally, we disaggregate the monthly bias-

corrected flow to daily by multiplying the raw daily simulated flow of each month by the 

simulated bias-corrected ratio of that month. Figure S23 shows how the quantile 

mapping bias correction affect the simulated WRF-Noah-MP streamflow to Shasta Dam. 

In short, the bias correction process tends to improve the quality of simulation during 

low-flow periods while creating systematic underestimation tendency during high-flow 

periods. The package can be downloaded from GitHub (https://github.com/keyvan-

malek/biascorrection). In addition, the following blog post 

(https://waterprogramming.wordpress.com/2020/09/15/introducing-the-r-package-

biascorrection/) provides more technical detail about the “biascorrection” module.  

 

Note S4. Water Price Scenarios 

To plausibly estimate revenue effects for different irrigation districts, we have generated 

100 synthetic water price scenarios (Figure S15). A synthetic water price dataset is 

required because at present there are no publicly available databases with detailed 

temporal water pricing for all 25 simulated irrigation districts considered over our period 

of analysis. Drawing on the water rate timeseries of the Semitropic Irrigation district as 

the plausible baseline scenario, it serves to support the generation of the rest of our 

synthetic time series. Our analysis indicate that California has been experiencing an 

overall increasing trend of inflation adjusted water price (Figure S15 – Panel a). Previous 

studies of water price in California argue that the aging infrastructures and the more-

frequent droughts in recent years have made water utilities less financially stable and 

have contributed to this increasing trend for water rates (Donnelly and Christian-Smith 

2013; Wallis-Lage and Chevrette 2012; Wichelns 2010). We implemented the following 

procedure to generate our synthetic pricing scenarios:  

https://github.com/keyvan-malek/biascorrection
https://github.com/keyvan-malek/biascorrection
https://waterprogramming.wordpress.com/2020/09/15/introducing-the-r-package-biascorrection/
https://waterprogramming.wordpress.com/2020/09/15/introducing-the-r-package-biascorrection/
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First, we defined 5 baseline water price rate scenarios. These baseline scenarios represent 

different plausible ranges of water price fluctuations during California’s drought years 

(i.e., 2007, 2008, 2009, 2013, 2014, and 2015). We focus on drought years because these 

periods are the most uncertain times in terms of changing water rates (Medellín-Azuara 

et al. 2012). Our first scenario (Scenario 1) represents a condition that water price 

declines by 25% during the drought years. Scenario 2 identically follows the water rate 

trajectory of our observed Semitropic water rate timeseries. The last three scenarios 

(Scenarios 3, 4 and 5) represent the condition that water rate increases during drought 

years. More specifically, in Scenario 3, Scenario 4, and Scenario 5 water rate increases by 

20%, 50%, and 80%, respectively. The price increase is the most likely direction of price 

change during drought years (Howitt et al. 2014; Medellín-Azuara et al. 2012), which 

tends to encourage water conservation and improves the revenue of districts (Mitchell et 

al. 2017). Our analysis in this study (Figure S15 – Panel b) also demonstrates that water 

price is likely to increase with aggravated supply shortages. The purpose of our water 

pricing scenarios is not meant to be predictive, but instead to provide a wide exploratory 

envelope for discovering consequential outcomes (Moallemi et al. 2020). 

Second, we assigned a range of variability (10%) to all simulation scenarios. For all years, 

we assumed that the standard deviation of water price equals ten percent of the average 

value of each water price scenario during that year. This additional source of pricing 

variation adds stochasticity to the baseline observations, and better represents how 

prices can vary on weekly basis in the real world. As Figure S15 – Panel d indicates, this 

synthetic scenario generation approach allows us to consider a broad range of plausible 

water prices. Also, we assume that water prices in different years follow a normal 

distribution. We test this assumption (Figure S15 – Panel c) and show that the 

distribution of inflation-adjusted water price during different years falls within the 95% 

confidence interval of the theoretical quantiles of a normal distribution. Therefore, we 

used the standard deviation and average water price of each baseline water rate scenario 

and drew 100 samples for each year (20 per scenario), and created one hundred 10-year 

realization of water price for Semitropic irrigation district (Figure 15 – Panel d). Third, we 

use the 100 water price time series that we developed for Semitropic (Figure S15 – Panel 

d) to generate water price scenarios of other irrigation districts. To do that we multiplied 

each of the Semitropic’s water price time series by the ratio of the average price in each 

irrigation district and Semitropic. We also compared our baseline water rate timeseries 

against a recorded annual water price time series obtained through personal 

communication with the Lower Tule irrigation district (Figure S15 – Panel a). However, 

the dataset did not include water prices during the years 2014 and 2015. However, 

because our baseline price rate timeseries (i.e., Semitropic) was similar to Lower Tule’s 

time series, we used Lower Tule’s 2016 water rate to fill the missing value of our baseline 

scenario during the year 2016.   
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Note S5. Study Limitations  

Although our water management model, CALFEWS, has been carefully evaluated in its 

ability to simulate hundreds of water structures as well as sophisticated operational 

decisions and institutional relationships, we do acknowledge that our results inevitably 

suffer from a degree of uncertainty stemming from structural imperfections. Likewise, 

this study concentrates on a subset of key components of the north-central California 

water system, namely, major reservoirs, pumping to CVP and SWP, groundwater banks, 

and irrigation districts, but there are other system components that CALFEWS simulates 

and we do not investigate here, such as delta outflow, environmental flow requirements, 

and the detailed systems of southern California. However, we do not expect that taking 

account of these limitations would fundamentally modify our conclusions about the 

effects of errors on the key agro-hydrologic components of the system. 
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Supplementary Figures 

 

 

Figure S1. Modeling framework used in this study. Panel-1 shows the atmospheric and 

land-surface components of the modeling framework. Panel-2 illustrates the CALFEWS 

water management model and summary of its main components and operational 

considerations. Panel-3 indicates a few of the indicator generated from CALFEWS. 
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Figure S2. A generic integrated water systems simulation platform that is typically used 

in water resources planning and vulnerability assessment studies. Dashed-lines indicate 

components that are not always present in these platforms. 
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Figure S3. Evaluation of CALFEWS performance under different streamflow scenarios. 

Panel a and b show observed vs. CALFEWS-simulated water storage behind two major 

dams in California (i.e., Shasta and Folsom). Panel c and d compare recorded vs. 

simulated reservoir outflow from Shasta and Folsom. The simulated scenarios include 

CALFEWS under the following four streamflow input datasets: i) observed flow from 

California Department of Water Resources’ Data Exchange Center (CFEWS-HIS), ii) raw 

WRF-Noah-MP (NGW), iii) groundwater corrected WRF-Noah-MP (CGW), and iv) bias-

corrected WRF-Noah-MP (CGW). In this figure percent error is calculated through 

dividing the difference between each scenario and observed records by the observed 

records. More information about the error metrics is presented in the Supplemental 

Materials. Also, errors were calculated for the daily time steps and aggregated over each 

month. 
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Figure S4. Evaluation of CALFEWs performance under different streamflow scenarios. 

Panel a and b show observed vs. CALFEWs-simulated water storage behind two major 

dams in California (i.e., Yuba and Oroville). Panel c and d compare recorded vs. simulated 

reservoir outflow from Yuba and Oroville. The simulated scenarios include CALFEWs 

under the following four streamflow input datasets: i) observed flow from California 

Department of Water Resources’ Data Exchange Center (CDEC), ii) raw WRF-Noah-MP 

(NGW), iii) groundwater corrected WRF-Noah-MP (CGW), and iv) bias-corrected WRF-

Noah-MP (CGW). In this figure percent error is calculated through dividing the difference 

between each scenario and observed records by the observed records. More information 

about the error metrics is presented in the Supplementary Note 5. Also, errors where 

calculated for the daily time steps and aggregated over each month. 
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Figure S5. Comparison between the observed and simulated streamflow scenarios at 

Pine Flat Dam. The simulated streamflow scenarios include raw WRF-Noah-MP flow 

(NGW), WRF Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC). 

Panel a. and b. demonstrate the average monthly and average annual streamflow, 

respectively. Panel c., d., e., and f. show the monthly separated probability density 

function of daily streamflow for our four flow scenarios (observed, groundwater 

corrected, no groundwater correction, and bias-corrected). 
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Figure S6. Comparison between the observed and simulated streamflow scenarios at 

Oroville Dam. The simulated streamflow scenarios include raw WRF-Noah-MP flow 

(NGW), WRF Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC). 

Panel a. and b. demonstrate the average monthly and average annual streamflow, 

respectively. Panel c., d., e., and f. show the monthly separated probability density 

function of daily streamflow for our four flow scenarios (observed, groundwater 

corrected, no groundwater correction, and bias-corrected). 
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Figure S7. Comparison between the observed and simulated streamflow scenarios at 

New Melones Dam. The simulated streamflow scenarios include raw WRF-Noah-MP flow 

(NGW), WRF Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC). 

Panel a. and b. demonstrate the average monthly and average annual streamflow, 

respectively. Panel c., d., e., and f. show the monthly separated probability density 

function of daily streamflow for our four flow scenarios (observed, groundwater 

corrected, no groundwater correction, and bias-corrected). 
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Figure S8. Comparison between the observed and simulated streamflow scenarios at 

Millerton Dam. The simulated streamflow scenarios include raw WRF-Noah-MP flow 

(NGW), WRF Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC). 

Panel a. and b. demonstrate the average monthly and average annual streamflow, 

respectively. Panel c., d., e., and f. show the monthly separated probability density 

function of daily streamflow for our four flow scenarios (observed, groundwater 

corrected, no groundwater correction, and bias-corrected). 
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Figure S9. Comparison between the observed and simulated streamflow scenarios at 

Isabella Dam. The simulated streamflow scenarios include raw WRF-Noah-MP flow 

(NGW), WRF Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC). 

Panel a. and b. demonstrate the average monthly and average annual streamflow, 

respectively. Panel c., d., e., and f. show the monthly separated probability density 

function of daily streamflow for our four flow scenarios (observed, groundwater 

corrected, no groundwater correction, and bias-corrected). 
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Figure S10. Comparison between the observed and simulated streamflow scenarios at 

Folsom Dam. The simulated streamflow scenarios include raw WRF-Noah-MP flow 

(NGW), WRF Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC). 

Panel a. and b. demonstrate the average monthly and average annual streamflow, 

respectively. Panel c., d., e., and f. show the monthly separated probability density 

function of daily streamflow for our four flow scenarios (observed, groundwater 

corrected, no groundwater correction, and bias-corrected). 
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Figure S11. Comparison between the observed and simulated streamflow scenarios at 

Don Pedro Dam. The simulated streamflow scenarios include raw WRF-Noah-MP flow 

(NGW), WRF Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC). 

Panel a. and b. demonstrate the average monthly and average annual streamflow, 

respectively. Panel c., d., e., and f. show the monthly separated probability density 

function of daily streamflow for our four flow scenarios (observed, groundwater 

corrected, no groundwater correction, and bias-corrected). 

 



 

 

18 

 

 

Figure S12. Comparison between the observed and simulated streamflow scenarios at 

Yuba Dam. The simulated streamflow scenarios include raw WRF-Noah-MP flow (NGW), 

WRF Noah-MP groundwater-corrected flow (CGW), and bias-corrected flow (BC). Panel a. 

and b. demonstrate the average monthly and average annual streamflow, respectively. 

Panel c., d., e., and f. show the monthly separated probability density function of daily 

streamflow for our four flow scenarios (observed, groundwater corrected, no 

groundwater correction, and bias-corrected). 
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Figure S13. Pumping rate to State Water Project (SWP). This figure compares the 

observed pumping to SWP with simulations of CALFEWs under different streamflow 

scenarios (i.e., observed [CDEC], raw WRF-Noah-MP output [NGW], groundwater 

corrected [CGW], and bias-corrected [BC]). Panels a. and b. show average monthly and 

annual pumping rate to the SWP. Panels c., d., e., and f. show the probability density 

function of daily differences between recorded pumping to SWP and CALFEWs simulated 

pumping under the CDEC, NGW, CGW, and BC, respectively. 
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Figure S14. Streamflow input to different inflow points of CALFEWs during the Spring 

2010. Our streamflow input scenarios include observed [CDEC], raw WRF-Noah-MP 

output [NGW], groundwater corrected [CGW], and bias-corrected [BC]. 
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Figure S15. Synthetic generation of water price scenarios. Panel a shows one hundred 

synthetically generated water price scenarios based on contract water price data for the 

Lower Tule irrigation district. The stochastic abstraction of the mean and variability of 

pricing dynamics reflects a temporally consistent and plausible pricing of water. Panel b 

show the inflation adjusted contract water price data for the Lower Tule irrigation district. 

Panel c indicates how water price changes with SWP water delivery. Panel d shows the q-

q plot of recorded water price with 95% confidence interval. 
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Figure S16. Annual revenue of irrigation districts considered in this study. The simulated 

streamflow scenarios include raw WRF-Noah-MP flow (NGW), WRF Noah-MP 

groundwater-corrected flow (CGW), and bias-corrected flow (BC). In this figure the 

uncertainty bounds are generated from our 100 water price realizations and the solid 

lines demonstrates the average of all those water price scenarios. 
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Figure S17. Annual revenue of irrigation districts considered in this study. The simulated 

streamflow scenarios include raw WRF-Noah-MP flow (NGW), WRF Noah-MP 

groundwater-corrected flow (CGW), and bias-corrected flow (BC). In this figure the 

uncertainty bounds are generated from our 100 water price realizations and the solid 

lines demonstrates the average of all those water price scenarios. 
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Figure S18. Annual revenue of irrigation districts considered in this study. The simulated 

streamflow scenarios include raw WRF-Noah-MP flow (NGW), WRF Noah-MP 

groundwater-corrected flow (CGW), and bias-corrected flow (BC). In this figure the 

uncertainty bounds are generated from our 100 water price realizations and the solid 

lines demonstrates the average of all those water price scenarios. 
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Figure S19. Annual revenue of irrigation districts considered in this study. The simulated 

streamflow scenarios include raw WRF-Noah-MP flow (NGW), WRF Noah-MP 

groundwater-corrected flow (CGW), and bias-corrected flow (BC). In this figure each 

probability distribution function includes one thousand data points representing 

combinations of the ten year simulation period and one hundred water price scenarios. 
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Figure S20. Annual revenue of irrigation districts considered in this study. The simulated 

streamflow scenarios include raw WRF-Noah-MP flow (NGW), WRF Noah-MP 

groundwater-corrected flow (CGW), and bias-corrected flow (BC). In this figure each 

probability distribution function includes one thousand data points representing 

combinations of the ten year simulation period and one hundred water price scenarios. 
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Figure S21. Annual revenue of irrigation districts considered in this study. The simulated 

streamflow scenarios include raw WRF-Noah-MP flow (NGW), WRF Noah-MP 

groundwater-corrected flow (CGW), and bias-corrected flow (BC). In this figure each 

probability distribution function includes one thousand data points representing 

combinations of the ten year simulation period and one hundred water price scenarios. 
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Figure S22. The difference between simulated state-wide irrigation district revenue 

under the baseline streamflow scenario (CFEWS-HIS) and simulate streamflow scenarios 

(i.e., raw WRF-Noah-MP flow (NGW), WRF Noah-MP groundwater-corrected flow (CGW), 

and bias-corrected flow (BC)). The differences are presented for each specific water rate 

scenario and each year. The percent differences are averaged over twenty water price 

realizations in each water rate scenario groups. 
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Figure S23. Impacts of quantile mapping bias correction on average monthly inflow to 

Shasta Dam. The streamflow scenarios to Shasta Dam include observed flow from CDEC, 

raw WRF-Noah-MP output [NGW], and bias-corrected [BC]. 

. 

  



 

 

30 

 

Supplementary Tables 

 

 
CFEW-

HIS 

CGW NGW BC 

Shasta 0.92 0.68 0.20 0.21 

Oroville 0.95 0.00 0.52 0.08 

Folsom 0.82 0.40 0.55 0.51 

Yuba 0.79 0.18 0.45 0.27 

Table S1. Observed dam storage vs. CALFEWs simulations. Nash-Sutcliffe Efficiency (NSE; 

Supplemental Materials 2) of recorded dam storage against CALFEWs simulations under 

different streamflow scenarios. Streamflow scenarios include: i) observed flow from 

California Department of Water Resources’ Data Exchange Center (CFEW-HIS), ii) raw 

WRF-NoahMP (NGW), iii) groundwater corrected WRF-NoahMP (CGW), and iv) bias 

corrected WRF-NoahMP (BC). 

 

 

 
CFEW-HIS CGW NGW BC 

Shasta 0.75 0.41 0.06 0.47 

Oroville 0.80 -0.01 -0.24 -0.01 

Folsom 0.87 0.32 0.28 0.22 

Yuba 0.88 -0.38 -0.52 -0.34 

Table S2. Observed dam outflow vs. CALFEWs simulations. Nash-Sutcliffe Efficiency 

(NSE; Supplemental Materials 2) of recorded dam outflow against CALFEWs simulations 

under different streamflow scenarios. Streamflow scenarios include: i) observed flow 

from CDEC (CFEW-HIS), ii) raw WRF-NoahMP (NGW), iii) groundwater corrected WRF-

NoahMP (CGW), and iv) bias corrected WRF-NoahMP (BC). 

 

 



 

 

31 

 

 

Scenario CFEW-HIS CGW NGW BC 

CVP 0.601 0.091 0.034 0.304 

SWP 0.683 0.323 0.257 0.363 

Table S3. Observed pumping from delta vs. CALFEWs simulations. Performance metrics 

(Supplemental Materials 2) of the simulation of total annual pumping from the delta to 

the State Water Project (SWP) and the Central Valley Project (CVP). The simulated 

streamflow scenarios that were used to run CALFEWs include the baseline scenarios 

(CFEW-HIS), the groundwater-corrected WRF-Noah-MP output (CGW), the WRF-Noah-

MP outputs with no groundwater correction (NGW), and bias-corrected WRF-Noah-MP 

streamflow (BC). In this table, ME, MAE, RMSE, and NSE stand for mean error, mean 

absolute error, root mean square error, and the Nash-Sutcliffe Efficiency, respectively. 

 

 

 
BC CGW NGW BC CGW NGW BC CGW NGW 

Metrics Don Pedro Folsom Isabella 

ME 738.89 579.36 452.11 923.78 1201.02 1196.29 235.87 64.09 43.45 

MAE 2205.51 2102.96 2120.00 3629.14 3488.00 3627.55 747.23 628.97 775.79 

RMSE 4319.26 3984.47 4269.25 8405.65 7883.17 8188.98 1720.83 1498.23 1725.24 

NSE 0.34 0.44 0.36 -0.12 0.02 -0.06 0.29 0.46 0.29 
 

Millerton New Melones Oroville 

ME 689.08 214.82 199.63 414.18 349.08 251.39 1484.95 1818.39 1464.78 

MAE 1865.41 1578.95 1742.77 1406.53 1252.14 1299.65 6794.44 5410.92 6966.59 

RMSE 3519.75 2825.75 3246.54 2842.87 2156.47 2637.21 15337.19 13320.98 15689.85 

NSE 0.45 0.65 0.54 0.20 0.54 0.31 -0.51 -0.14 -0.58 
 

Pine Flat Shasta Yuba 

ME 503.22 157.28 129.35 3575.26 -1142.24 -1824.35 656.17 1631.16 1536.91 

MAE 1830.31 1652.31 1800.01 14249.78 8403.02 12750.50 3355.17 3317.23 3644.80 

RMSE 3637.15 3227.05 3735.67 30799.27 20893.84 25053.60 7469.75 7163.67 8128.50 
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NSE 0.48 0.59 0.45 -0.91 0.12 -0.26 -0.27 -0.17 -0.51 

Table S4. Performance metrics of WRF-Noah-MP and bias corrected streamflow 

scenarios. Error metrics (Supplemental Materials 6) associated with the comparison of 

observed flow (from California Department of Water Resources’ Data Exchange Center; 

CDEC) and the simulation of two WRF-Noah-MP streamflow scenarios: i) groundwater-

corrected WRF-Noah-MP streamflow (CGW); ii) WRF-Noah-MP streamflow outputs with 

no groundwater correction (NGW); iii) bias-corrected WRF-Noah-MP streamflow (BC);. In 

this table, ME, MAE, RMSE, and NSE stand for mean error, mean absolute error, root 

mean square error, and the Nash-Sutcliffe Efficiency, respectively. 

 

 

 
Buena Vista Wonderful 

Metrics CGW NGW BC CGW NGW BC 

ME -0.03 0.55 0.64 4.19 5.63 4.65 

MAE 3.24 3.42 3.49 6.51 7.33 7.59 

RMSE 9.59 9.61 9.97 11.63 11.88 12.29 

NSE 0.3 0.3 0.24 0.63 0.62 0.59 

Table S5. Performance metrics (Supplemental Materials 6) of the simulation of 

groundwater withdrawals associated with two simulated streamflow scenarios (i.e., 

groundwater corrected, CGW; no groundwater correction, NGW; and bias corrected, BC). 

In this table, ME, MAE, RMSE, and NSE stand for mean error, mean absolute error, root 

mean square error, and the Nash-Sutcliffe Efficiency, respectively. The two irrigation 

districts considered in this section are Buena and Henry Miller. 

 

 

District Name Basin 

Approximated 

location in 

Tulare basin 

Water 

Delivery 

Project 

Local Water 

Sources 

Berrenda Mesa Irrigation District Tulare West SWP Delta  

Belridge Irrigation District Tulare West SWP Delta  

Buena Vista Irrigation District Tulare West SWP Delta Kern River 
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Cawelo Irrigation District Tulare Center SWP Delta Kern River 

Henry Miller Irrigation District Tulare West SWP Delta  

Kern Delta Irrigation District Tulare Center SWP Delta Kern River 

Lost Hills Irrigation District Tulare West SWP Delta  

Rosedale-Rio Bravo District Tulare Center SWP Delta Kern River 

Semitropic Water Storage District Tulare West SWP Delta  

West Kern Irrigation District Tulare West SWP Delta  

Wheeler Ridge-Maricopa District Tulare West SWP Delta  

North Kern Irrigation District Tulare East  Kern River 

Delano-Earlimart Irrigation District Tulare East Friant  

Exeter Irrigation District Tulare East Friant  

Kern-Tulare Irrigation District Tulare East Friant Cross Valley 

Lindmore Irrigation District Tulare East Friant  

Lindsay-Strathmore Irrigation District Tulare East Friant  

Lower Tule Irrigation District Tulare East Friant 

Cross valley 

and Tule 

River 

Porterville Irrigation District Tulare East Friant Tule River 

Saucelito Irrigation District Tulare East Friant  

Shaffer-Wasco Irrigation District Tulare East Friant  

Southern San Joaquin Irrigation District Tulare East Friant  

Teapot Dome Irrigation District Tulare East Friant  

Terra Bella Irrigation District Tulare East Friant  

Dudley Ridge Irrigation District Tulare West SWP Delta  

Table S6. Some of the general characteristics of the irrigation districts simulated in this 

study. 
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