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Cumulative Link Models (CLMs) refer to a class of models designed for data where the response variable falls 
in an ordered set of J categories. Let Yi = j if the ith observation belongs to the jth category and let πij = P (Yi 
= j) represent the probability that the ith observation falls into category j. This implies that

J∑
j=1

πij = 1, for all i = 1, 2, · · ·n

Next we define the cumulative probabilities

γij = P (Yi ≤ j) = πi1 + · · ·πij

so that
πij = γij − γi,j−1

At the edge cases then, we have γi1 = πi1 and γiJ = 1 for each i = 1, 2, · · ·n. These cumulative probabilities
are now modeled with respect to the predictor variables using a link function. In this paper, we choose to use
a standard logit link function, which produces a proportion log-odds CLM (i.e. ordered logistic regression).
The assumption is stated mathematically as follows.

γij =
1

1 + exp (−θj −
∑p

k=1 xikβk)

Where xik represents the value of the kth predictor variable for the ith observation, the β parameters denote
the usual regression coefficients and −∞ ≡ θ0 ≤ θ1 ≤ · · · ≤ θJ−1 ≤ θJ ≡ ∞ are known as the threshold
coefficients. In total, there are J−1 threshold coefficients and p regression coefficients (where p is the number
of predictor variables) and these coefficients are estimated with maximum likelihood. Maximum likelihood
estimates (MLE’s), are the maximizers of the Log-likelihood function. For this problem, the Log-likelihood
function can be written using indicator functions as follows.

`(θ1, · · · θJ−1, β1, · · ·βp|y1, · · · yn) =
n∑

i=1

J∑
j=1

1(Yi = j) log πij

This optimization problem is solved efficiently and accurately using the clm function in the R package
ordinal. Once these parameters have been estimated, one can easily extract estimates for the probabilities
πij as a function of the predictor variables. If we desire to predict which class an observation belongs to, we
can do this by choosing the j which maximizes the probability πij .

Ŷi = argmax
j
πij

Figure S1. Estimation and interpretation of Cumulative Link Model (CLM) parameters, use of 
models for prediction
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The ordered logistic regression models obtained LOOCV accuracies of 49.5% and 59.8% for DPR and IPR 
respectively. We claim that the demographic variables retained by the models (Table 1) have a significant 
impact on the predictive power of the models. To justify this claim, we compare the results to a simple but 
reasonable probabilistic model and conduct a formal hypothesis test to show that the ordered logistic regres-
sion models are effective. The null classifier makes predictions at random with probabilities proportional to 
how often each class occurs the data. For i = 1, 2, · · · n, we have

(DPR Null Prediction)i =


Willing to accept , with probability = 0.484

Neutral , with probability = 0.221

Unwilling to accept , with probability = 0.295

,

(IPR Null Prediction)i =


Willing to accept , with probability = 0.580

Neutral , with probability = 0.237

Unwilling to accept , with probability = 0.183

.

Formally, we would like to conduct the following hypothesis test.

H0 : There is no difference in accuracy between the two models

H1 : The CLM model has higher accuracy that the null model

Using the null classifier, we classify each of the n observations and calculate the accuracy. Repeating
this process 10, 000 times, we construct empirical distributions for the accuracy of the classifier under the
null Hypothesis. The figure below shows both of these empirical distributions. The null distributions are
approximately Normal with a standard deviation of 0.012 in each case and a mean of 0.365 and 0.445 for
DPR and IPR respectively. The vertical dotted line in each panel illustrates the actual prediction accuracies
of the ordered logistic regression models. It is clear that the observed prediction accuracies, for both IPR
and DPR, are far greater than they would be under the null hypothesis (p− val ≈ 0). Thus we have strong
evidence to reject the null hypothesis and we conclude that our models gain significant predictive power by
using demographic information.
1

Figure S2. Justification of ordered logistic regression LOOCV accuracies
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Figure S3. Level of trust in various institutions to provide accurate information on water reuse
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Figure S4. Level of trust in ABCWUA by education level compared to survey sample as a whole
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