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GCM evaluation methods  

An important part of the GCM evaluation was to test the  ability of GCMs in simulating the climate 

variability and extremes  (Randall et al., 2007). However, there is no preferred criteria to choose a 

subset of GCMs, although several studies have made this choice based on the ability of the GCMs 

to simulate the local climate (Ashofteh et al., 2015; Elhakeem et al., 2015; Singh et al., 2015; 

Whateley et al., 2016). The number of GCMs selected in these studies range from one to nine. 

Evaluation methods such as skill score, correlation coefficients, mean, median, standard deviation, 

anomalies, root mean square error, bias, extreme indices, empirical orthogonal functions, and 

principal component analysis have been used in previous studies (Anandhi and Nanjundiah, 2015; 

Errasti et al., 2010; Frei et al., 2003; Meehl et al., 2007a; Meehl et al., 2007b; Perkins et al., 2007). 

A good review of available methods and details of earlier studies can be found  in Johnson and 

Sharma (2009) and in Table 8 in Errasti et al. (2010). 

Water utilities are increasingly incorporating climate change into their planning activities using 

several methodologies. Many studies use climate information from only a single GCM (Ashofteh 

et al., 2015; Fortier and Mailhot, 2015), whereas  others incorporate results from multiple climate 

models (Elhakeem et al., 2015; Islam and Gan, 2014). The latter method allows one to estimate a 

range of possible outcomes for any particular climate change scenario. Another approach is to use 

the ensemble mean from multiple climate models (Benestad, 2003; Smith et al., 2009; Tebaldi and 

Knutti, 2007). Using this approach, only one outcome is produced.  

In this study we used daily output from the Intergovernmental Panel for Climate Change Fourth 

Assessment Report (IPCC AR4) GCM simulations of 20th century climate (20C3M scenario).  We 

use the older GCMs participating in the phase 3 of the Coupled Model Intercomparison Project 

(CMIP3) rather than more recent phase 5 GCM simulations (CMIP5) because the evaluations 
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presented here were a component of a larger study that began in 2008, when CMIP5 GCMs were 

not available. We believe that the approach adopted here for water supply studies can also be used 

in evaluating CMIP5, since CMIP5 GCMs are “strongly tied to their predecessors”  (Knutti et al., 

2013; McMahon et al., 2015). We have published several papers that document using a subset of 

GCMs  (Anandhi et al., 2011a; Anandhi et al., 2013a; Matonse et al., 2013; Matonse et al., 2011; 

Mukundan et al., 2013; Pradhanang et al., 2013; Samal et al., 2013).  Here, we document the 

methods used to choose the subset of GCM data that were used for the NYC water supply climate 

change simulations 

Study region and data  

The New York City (NYC) municipal water supply is derived from three large watershed regions: 

the Croton, the Catskills and the Delaware. The Catskill and the Delaware systems are ~193km 

north of NYC and west of the Hudson River, and are referred to as the West of Hudson (WOH) 

watersheds. They provide at least 90% of NYC’s daily water demand and are an unfiltered water 

supply. Water quality is maintained through the protection of natural ecosystem services in the 

watersheds. The quantity and quality of water in the WOH watersheds are constantly monitored 

using a system in situ automated monitoring stations as well as periodic manual observations. 

Water entering the distribution system is chlorinated and treated with UV light.  

The WOH watersheds are part of the Eastern Plateau Climate Division of New York, and the area  

consists of six reservoir watersheds (Cannonsville, Askokan, Nerversink, Schoharie, Rondout, and 

Pepacton; Figure 1a,b) which encompasses an area of ~4100 km2. The climate is humid continental 

and has cold winters and abundant rainfall and snowfall. This region experiences a pronounced 

seasonal cycle of temperature and a relatively uniform distribution of precipitation throughout the 

year [Figure-2, in Anandhi et al. (2011b)].  In this region, snowfall historically accounts for about 
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20% of total precipitation, which is 1000-1200 mm per year. The spatial distribution of 

temperature is characterized primarily by a southeast-to-northwest gradient. The spatial 

distribution of precipitation is influenced by the Atlantic Ocean, the Great Lakes, various storm 

tracks (e.g. coastal versus continental storm systems) and orography (Burns et al., 2007; Frei et 

al., 2002). Potential future climate change has been examined in some parts of the WOH region 

(Burns et al., 2007; Frei et al., 2002) and the larger region, e.g. Eastern North American or ENA 

(Anderson et al., 2010; Christensen et al., 2007; Giorgi and Bi, 2005; Giorgi and Francisco, 2000; 

Mahlstein and Knutti, 2010 ; Tebaldi et al., 2004; Tebaldi et al., 2005), but never specifically for 

the full WOH watershed area. 

Two methods of spatially averaging GCM results-- CCG and CLG-- are compared in this study 

for five meteorological variables: precipitation, average, maximum and minimum temperatures, 

and wind speed (Ppt, Tave, Tmax, Tmin and Wind) during the time-period from 1960-2000. CCG 

uses a single grid location close to the WOH watershed (purple star in Figure-1a), and for CLG we 

pooled data from seven grid locations surrounding the WOH watershed (yellow squares in Figure-

1a, approximately at 2.5º grids) for the land areas in the sub-continent USA. Two types of observed 

data (OD1 and OD2) were used in this study. OD1 is a gridded dataset obtained from Maurer et 

al. (2002) with a daily time-step that has a grid resolution of 1/8-degree. For this application, data 

from seven grid cells are extracted (yellow boxes in Figure-1). OD2 is based on the daily time-

series of air temperature and precipitation collected from meteorological stations (18 stations for 

precipitation and 3 for temperature) that were either within or adjacent to the six WOH watersheds 

and wind data collected from a shore-based station near each reservoir. (Figure-1b). Thiessen 

polygons method was used for averaging precipitation from nearby weather stations, while inverse 

distance squared weighted averaging for temperature and wind for OD2 (NYCDEP, 2004). For 
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temperature, the environmental lapse rate was applied to correct differences between the weather 

station’s elevation and the mean watershed elevation while averaging. More details about the 

datasets can be obtained from previous research (Anandhi et al., 2011b; Anandhi et al., 2013b). In 

both these datasets, winds are measured at 10m height and temperatures at 2m height.  

Daily simulations from 20 GCMs participating in the World Climate Research Programme's 

(WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for 

baseline scenario (20C3M) were downloaded for the five meteorological variables and several of 

the ensemble members (Table S1). The grids surrounding the study region were extracted and then 

interpolated to a common 2.5º grid using bilinear interpolation. Data from seven grid cells are 

extracted (yellow boxes in Figure 1) at similar location to OD1. 
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Table S1. Names of the GCMs and their acronym, country of origin, and realization numbers for 
the five variables used in the study are listed. Acronyms are used throughout the text to refer to 
models. 
 

S.N GCM I.D * Acronym GCM realization numbers or run numbers Country 
Ppt Tave Tmax Tmin Wind ** 

1 BCCR-BCM2.0 Bcc 1 1 1 1 1 Norway  

2 CCSM3 Ncc 1,3,5,6,7,8,9 1,3,5,6,7,8,9 - - - USA 

3 CGCM3.1(T47) cc4 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 Canada 

4 CGCM3.1(T63) cc6 1 1 1 1 1 Canada 

5 CNRM-CM3 cnr 1 1 1 1 1 France 
6 CSIRO-Mk3.0 cs3 1,2,3 1,2,3 1,2,3 1,2,3 1,2 Australia 
7 CSIRO-Mk3.5 cs5 1,1a 1,1a,2,3 1,1a,2,3 1,1a,2,3 1,2,3 Australia 

8 ECHAM5/MPI-OM mpi 1,4 1,4 1,4 1,4 1,4 Germany  

9 ECHO-G miu 1,2,3 1,2,3 1,2,3 1,2,3 2 Germany/Korea  

10 FGOALS-g1.0 iap 1,2,3 1,2,3 1,3 1,3 1,2,3 China 
11 GFDL-CM2.0 gf0 1 1 1 1 1 USA 
12 GFDL-CM2.1 gf1 2 2 2 2 2 USA 
13 GISS-AOM ga0 1 1 1 1 1 USA 
14 GISS-ER gir 1 1 1 1 1 USA 
15 INGV-SXG  ing  1 1 1 1 1  
16 INM-CM3.0 inm 1 - - - 1 Russia 
17 IPSL-CM4 ips 1,2 1,2 1,2 1,2 1,2 France 
18 MIROC3.2(hires) mih 1 1 1 1 1 Japan 

19 MIROC3.2(medres) mim 1,2 1,2,3 1,2,3 1,2,3 1 Japan 

20 MRI-CGCM2.3.2 mri 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1 Japan 

 Total no. scenarios  44 45 38 38 30  

*As provided by Lawrence Livermore National Laboratory’s Program for Coupled Model 
Diagnosis and Intercomparison (PCMDI): http://www-
pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php 
Note: Ppt, Tave, Tmax, Tmin, and Wind in the table are acronyms for precipitation, average, 
maximum and minimum temperature and wind, respectively. Winds were measured at 10m 
height and temperatures at 2m height. ** Wind in GCM is calculated from zonal and meridional 
winds. 
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Justification for using precipitation, temperatures and wind climate variables 

Ppt, Tmax, Tmin, Tave and Wind are important climate variables in the study region that are used 

as inputs to an integrated system of watershed and reservoir models [NYCDEP, 2013]. Ppt 

influences the hydrology (e.g. runoff, evapotranspiration, ground water) of the region.  This affects 

the timing, magnitude, and total fluxes of nutrients and turbidity entering the reservoirs. 

Temperature affects snow accumulation, snowmelt, and evapotranspiration rates, and in turn the 

timing and delivery of streamflow, nutrients, and turbidity. Temperature can also influence the 

results of ecological model simulations of plant phenology [Anandhi, 2016]; the growing season 

length [Anandhi et al., 2013a; Anandhi et al., 2013b]; the timing of wet, dry, warm and cold spells 

[Anandhi et al., 2016]; and the occurrence of freeze events [Anandhi et al., 2013a]. Temperature 

based models describe the heat energy received by the plant over a given time period and relate 

the accumulation of heat energy to plant development or growth processes [Anandhi, 2016]. 

Similarly, temperature-based models can be used to simulate the freeze events such as first fall 

freeze and last spring freeze, which can then be used to estimate growing season length [Anandhi 

et al., 2013a; Anandhi et al., 2013b]. The spells represent periods of excessive warmth, cold, 

wetness, or dryness [Anandhi et al., 2016]. Extended periods with either excessive or low rainfall, 

or either high or low temperatures cause stress on plants. Such stress has many ecological and 

hydrological consequences such as affecting plant growth, development and yield as well as 

changes in growing season and implications on the water cycle . Wind affects both surface waves 

and the internal seiche movement, which will in turn influence sediment resuspension. Wind 

effects also promote vertical mixing which in turn affect vertical water density differences and the 

timing of the onset and the loss of thermal stratification. Wind impacts vertical mixing in the 
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reservoirs, which will affect light and nutrient availability and phytoplankton growth and 

succession. 

Methodology 

The methodology flowchart in Figure 1c is described in detail in this section. 

Step 1. Identify purpose for the GCM evaluation.  

Our purpose for GCM evaluation is to use derived outputs from GCMs as inputs for hydrology 

and water quality models, a water system operations model, and reservoir hydrothermal and water 

quality models. 

Step 2. Identify variables required for evaluation.  

The meteorological variables required by each of these models are different. For example, our 

hydrology model requires precipitation and average air temperatures while our reservoir 

hydrothermal models require those variables along with wind speed and solar radiation variables. 

Step 3. Identify the temporal scale and domain required for evaluation.  

Temporal scale refers to the timescale (e.g. daily, monthly, seasonal, annual) of values that are 

included in the analysis.  Temporal domain refers to the time of year (e.g. January, winter, annual) 

and depend on the purpose of the study. For our analysis we considered GCM evaluation at a daily 

temporal scale and seasonal temporal domain (summer, winter, autumn, spring).   

Step 4. Identify characteristics of variable for evaluation.  

The characteristics of the variable refer to the statistical properties-- such as mean, median, extreme 

events, variance, etc.-- that are important to the study. For our study, the entire frequency 

distribution of the variable was identified as the characteristics of variable for evaluation. 

Step 5. Identify appropriate performance metric for ranking models. 
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Different metrics focus on different characteristic of the variable. We chose the probability-based 

skill score (PSS) for our study as it is appropriate for studying the entire frequency distribution of 

the variable. 

Step 6. Identify spatial scale. 

The spatial scale of the variable can be identified in two ways (CLG, CCG). The synoptic scale of 

the variable can be used as the spatial scale for evaluation and it may vary with variable/region of 

study. The synoptic scale, also known as the large scale or the cyclonic scale in meteorology, is a 

horizontal length scale of the order of 1000 kilometers (about 620 miles) or more. In circumstances 

where the synoptic scale is not known in advance, evaluation can be carried out in various spatial 

scales ranging from one, four, seven or more surrounding GCM grids before selecting a spatial 

scale. In our study, we used the second approach and examined the performance for two spatial 

scales in relation to the study region, namely CLG and CCG, and finally choose CLG as our spatial 

scale.   

Step 7. Calculate performance index. 

The index was calculated for each variable, GCM and temporal domain. 

Step 8. Rank the GCMs. 

Based on performance index values for each variable / temporal domain, the GCMs were ranked. 

Step 9. Identify the criteria for model selection. 

The criteria for model selection may be broadly divided into criteria to eliminate poorly performing 

models and criteria to select models that clearly perform better than the majority. Criteria may 

depend on the resources available. Thresholds of performance index values or the number of 

models have both been used. 
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Skill of CMIP3 models  

The skill of the models was evaluated using basic statistical measures and probability distribution 

function (PDF) based skill scores (SS). For each meteorological variable, season, and spatial scale, 

GCM simulations were evaluated by comparing them individually with the two observation 

datasets (OD1 and OD2). The four seasons used are:  winter (DJF), spring (MAM), summer (JJA), 

and fall (SON), representing the months of December through February, March through May, June 

through August, and September through November respectively. The statistical measures were 

composed of parametric (mean, standard deviation, minimum, maximum) and non-parametric 

[percentiles: 5th, 25th, 50th, 75th, 95th; interquartile range (IQR)] measures.  PDF based SS are 

calculated from the overlapping area between the PDFs (observed and GCM) (Anandhi and 

Nanjundiah, 2015). In the first case (referred to as CCG), the SS was obtained from the PDF from 

the single GCM grid closest to the centroid of the watershed (represented as star in Figure-1) and 

the PDF from OD2. In the second case (referred to as CLG), the SS was obtained from PDF from 

all the seven GCM land grids surrounding the WOHs and the PDF from OD1. In cases when there 

was more than one time-series for an observation or GCM, a PDF was constructed by the combined 

dataset from all timeseries to develop the representative distribution. For example, for each GCM 

in CLG, a combined dataset from all seven grids was used to construct the representative 

distribution. 

SS is estimated mathematically using equations in  (Anandhi and Nanjundiah, 2015). The 

advantage of this method is its simplicity and visual intuitiveness. The SS is the overlapping area 

between the PDFs (observed and GCM), and ranges from 0 to 1. The highest possible SS equals 1 

and occurs only when the modeled and observed PDFs are same (complete overlap of PDFs). 

GCMs with a SS of 0 indicates that there is no overlap of model and observed PDFs.  SS can be 
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used in evaluating multiple variables at different spatial and temporal scales.  The use of SS to 

evaluate GCM models implicitly assumes that the match between a model’s baseline simulation 

and observed historical data will be indicative of the models’ ability to simulate future climate 

conditions. While there is no strong evidence that this is the case, it is logical to base the GCM 

evaluation on comparison to historical data since future data was not available and the convergence 

of GCM future climate conditions were not estimated.  More details of SS can be obtained from 

Anandhi et al. (2011b) and Anandhi and Nanjundiah (2015).  

Ranking procedure 

In this study, the skill of CMIP3 models in simulating the variables (Ppt, Tave, Tmax, Tmin, Wind) 

for CLG were represented using (1) PDFs (Figure-2) of the observed (black bold line), the range 

of GCM simulations (shaded portion), the multi-model ensemble mean (red bold line) and the 

median (red dotted line); (2) boxplots of statistical measures, observed mean statistic (triangle, ∆) 

and GCM ensemble mean statistics (circle, ο) in the four seasons (Figure-3a,b);  and (3) bar graphs 

of skill scores of all GCMs in the four seasons (Figure-S1). For each combination of 

meteorological variable and season, ranking was carried out for both the statistics and the skill 

scores. For each variable and season, GCMs were arranged in the descending order of SS, with the 

GCM having the highest SS given rank 1; when ranking by the basic statistical measures, the 

GCM’s whose statistical measures had the smallest difference was assigned rank 1. The ranked 

GCMs were then compared. In this study, the skill of CMIP3 models in simulating the variables 

(Ppt, Tave, Tmax, Tmin, Wind) Similar analysis was carried out for CCG scale using OD2 dataset. 

Only boxplots of statistical measures, observed mean statistic (triangle, ∆) and GCM ensemble 

mean statistics (circle, ο) in the four seasons are shown (Figure-S2 to S6). 
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Results and Discussion  

Comparison of CMIP3 models (CLG scale) to observed data (OD1)  

GCM Models tend to overestimate the number of small Ppt events (1 to 3 mm/day, Figure-2) and 

small to medium Ppt events (Figure-3, minimum; 5th to 75th percentiles) but underestimate larger 

events (3 to 16 mm/day, Figure-2, Figure-3, 95th percentile, maximum except in winter and spring). 

Observed Ppt was better simulated by most GCMs in summer and fall seasons, though they 

overpredicted the mean observed Ppt during winter and spring as well as the interquartile range in 

most seasons (except winter) (Figure-3, mean). Almost all models underpredicted the median and 

standard deviation of Ppt in all seasons (Figure-2, median). The SS ranged from 0.65 to 0.95 for 

Ppt in all the four seasons. Similar overestimation of small events were observed in Australia 

(Perkins et al., 2007) and India (Anandhi and Nanjundiah, 2015). Overestimation of small events 

‘GCM drizzle’ can contribute to the overestimation of total precipitation because the small amount 

of water associated with these events covers the entire area of the grid cell in the model, while in 

reality small events rarely show a homogenous large-scale distribution. Between-model variability 

was highest for smaller events and during JJA. This could be because summer Ppt is typically 

convective in nature, and is probably less reliably simulated by GCMs than synoptic features since 

local convection is a sub-grid-scale process (Toews and Allen, 2009). Biases (differences between 

GCM simulations and observations) in Ppt can influence hydrological model results in a number 

of ways. For example, the overestimation of small events and underestimation of large events may 

affect the timing, magnitude, and total fluxes of nutrients and turbidity entering the reservoirs. 

Therefore, it seems likely that those GCMs that underestimate the magnitudes of large events will 

underestimate the magnitude of nutrient flux and turbidity (Anandhi et al., 2016).  
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In general, the statistical distributions of the temperature variables (Tave, Tmax, Tmin) were 

reasonably well captured by models when compared with Ppt and Wind. Similar results were 

observed across OD1. Among the temperatures, Tave was better simulated than Tmax and Tmin. 

The models tended to underestimate the number of cold days, especially during winter season 

(Tmax and Tmin in Figure-3, minimum, 5th to 25th percentiles), and overestimate the number of 

warm days during winter season (Tmax and Tmin in Figure-3, maximum, 75th and 95th 

percentiles). The largest temperature biases, as well as the largest between-model variability, were 

found in summer (Row 3 in Figure-2). In all seasons, the models tended to overestimate the 

frequency of lower Tmax values and underestimate the frequency of higher Tmax values. The 

reverse was observed for Tmin in summer and fall seasons. The SS ranged from 0.55 to 0.95 for 

Tave, 0.3 to 0.95 for Tmax, 0.4 to 0.95 for Tmin, in the four seasons (Figure-4a). GCM temperature 

biases could affect snow accumulation, snowmelt, and evapotranspiration rates, and, in turn, the 

timing and delivery of streamflow, nutrients, and turbidity. It could also influence the results of  

ecological model simulations in terms of plant phenology (Anandhi, 2016), the length of growing 

seasons (Anandhi et al., 2013a; Anandhi et al., 2013b), the timing of warm and cold spells 

(Anandhi et al., 2016), and the occurrence of freeze events (Anandhi et al., 2013b). The tendency 

of GCMs to under predict minimum daily air temperature could affect reservoir hydrodynamics 

and mixing because nighttime cooling of the reservoir affects convective mixing, and additionally 

diurnal and seasonal variations in reservoir thermal structure.  

The simulated Wind distribution compared unfavorably to the observed distribution (Figure-2). 

Most models overestimated smaller winds (Figure-3, minimum; Figure 2, 0-5 m/sec) and 

underestimated the mean and median winds, as well as the frequency of large events. The largest 

model biases and the largest between-model variability were found for smaller events. Models 
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tended to overestimate the frequency of small events (0-5 m/sec) and underestimate the frequency 

of large events.  Similar results were observed for CCG (Figure-S6). Models overestimated the 

minimum wind (Figure-2; minimum) and underestimated the median and larger wind-events.  

Similar results were observed for CCG using OD2 dataset (Figure-S6). The SS ranged from 0.2 to 

0.95 for Wind in the four seasons (Figure-4a). Wind distributions across the WOH region which 

have a significant topographical variation are variable and difficult to capture by the relatively 

coarse resolution of the GCMs. The tendency for these GCMs to underestimate small wind events 

(< 5 m/s) and overestimate large events (> 5 m/s) may also influence the hydrodynamics and 

mixing processes in the reservoir. Overestimated wind will lead to deeper and more intense vertical 

mixing, which will affect light and nutrient availability as well as phytoplankton growth and 

succession. Wind also affects both surface waves and the internal seiche movement, which will in 

turn influence sediment resuspension. Inaccurate wind forcing in the reservoir models will have 

differing seasonal effects depending on vertical density differences and can be expected to 

influence the timing of the onset and loss of thermal stratification.  

The GCM ranks and SS ranking procedure 

In general, no one model was consistently ranked best by SS for all of the meteorological variables 

(Ppt, Wind, Tave, Tmax and Tmin), or during all of the seasons (DJF, MAM, JJA, SON). The 

results of the SS ranking procedure for all ensemble members of a GCM are summarized as a 

function of season (Figure-S1) and SS arranged in descending order for each variable (Figure-4b). 

The closeness of the statistical measures of the GCM simulation data to that of the observations 

can be observed in Figures 3. 

The magnitudes of skill scores did not vary between seasons for precipitation and wind, though 

there was a higher variability in skill during summer for Ppt.  For temperature, the procedure 
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showed a lower magnitude of SS during summer. Among seasons, spring had a higher 

mean/median skill score for all five variables.  Fall’s mean/median skill scores were also high for 

temperature variables and wind. For each meteorological variable, different ensemble members of 

the same model had similar SS in the SS ranking procedure.  This can indicate that the skill scores 

were not due to random or chaotic processes but were in fact related to model formulation. We 

calculate an average SS for each GCM and meteorological variable.  

We found no clear relationship between SS and three model characteristics (horizontal resolution, 

convective scheme and flux correction). The reasons for the lack of a clear relationship could be 

because the climate models often shared similar types of code, used common input datasets, and 

are developed by scientists with similar expertise. Furthermore, some institutions have produced 

more than one GCM that shares many similarities. This may result in some models having similar 

biases (Jun et al., 2008; Knutti et al., 2010). Our results corroborate other studies carried out at 

multiple locations and temporal scales, which have found that it may not be straightforward to 

associate GCM performance with  model characteristics (Anandhi et al., 2011b; Anandhi and 

Nanjundiah, 2015; Dai, 2006; Kim et al., 2008; Kripalani et al., 2007). 

Overall rankings based on the CLG dataset showed that cc6, cc4, gao, ing and cs0 had the highest 

skill scores in this region; however, the ranking for individual variables was different (Table 1). 

Inm and ncc GCMs were eliminated while averaging because the model simulations for all the five 

meteorological variables were not available. Cs5 seemed to have consistently low ranks in the 

region for Ppt and temperature variables.  Gir had very different statistics (which were outside the 

range of figures and so not shown) compared to the rest of the models for Ppt. Ranking based on 

the CCG dataset were similar to that described above for CLG (only statistics shown for CCG, S2 

to S6).  
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There is no obvious way to choose a subset of GCM models from the results of this study that is 

clearly superior since there is a gradual, not abrupt, decrease in model skill as one goes from 

highest to lowest skill score. Furthermore, different models performed better for different 

meteorological variables and performance measures. This can greatly complicate choosing a 

subset of models if the models simulations depend on multiple meteorological drivers. The 

simplest way to choose a subset of models is to identify how many models are appropriate for the 

variable(s) of interest and to choose from these based on the combined SS rankings that include all 

needed meteorological variables. However, based on our results, we recommend using as many 

GCM datasets as possible, as we were not able to identify a clear subset of models that was superior 

for all the meteorological variables used in our water supply simulations. Combining the SS 

ranking procedure that utilizes the entire distribution of the meteorological variables with the 

ranking procedure that utilizes extreme of the distribution can be useful in some cases.  

Since no one model was best for the various combinations used in this study, one of the subjective 

decisions required for the type of analysis presented here is the weighting that should be given to 

the meteorological variables included in the overall evaluation.  As an example, precipitation is 

generally a key variable for water supply but is not simulated as well as air temperature in GCMs. 

GCMs can have good skill in simulating large scale patterns of mean precipitation such as the 

zonal mean distribution, but they lack skill in accurately simulating regional distributions of 

precipitation (Wehner et al., 2010). Further, the regional orography is smoothed and not correctly 

represented by the large grid sizes used in GCMs (Anandhi and Nanjundiah, 2015; Pan et al., 

2011), and the relevant cloud microphysical processes are probably inaccurately simulated, in 

climate models (Wehner et al., 2010).  
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Depending on the location and research question of other variables (such as temperature and wind 

speed) may be as or even more important when deciding (Zion et al., 2011).  For example, for 

winter precipitation, the state of precipitation (i.e. liquid or solid) and snow melt-- both of which 

depend on temperature-- will influence the magnitude and timing of streamflow and associated 

constituent loads entering the reservoirs (Mukundan et al., 2013; Pradhanang et al., 2013). 

Turbidity loading in reservoirs also depends on temperature and precipitation (Rossi et al., 2016).  

If the application is related to reservoir water quality, then thermal, dynamical, and/or biological 

processes which influence phytoplankton growth may be critical (Samal et al., 2012). In such a 

case, temperature and wind speed may be more important than precipitation.  The relative ranking 

given to each meteorological variable in the skill score ranking will therefore depend to some 

extent on the modelling application to which the data will be input 

Despite decades of work on developing various decision support tools for water managers, there 

remains a disconnect between the availability of future climate scenarios and the use of this 

information in water quality management. Furthermore, there is a need for tailoring the 

information in climate scenarios to make them more applicable for use in models that support 

decision making (Bolson et al., 2013; Kirchhoff et al., 2015). This study addresses one part of this 

gap. The methodology used by NYCDEP to screen GCMs for use in water supply simulations is 

presented, so that it can be of use to others involved in climate change evaluations where there is 

a need to limit their choice of GCM data. We found that there were limitations in the skill score 

approach since the ranked order of the GCMs vary with spatial, temporal scales, versions of the 

GCMs and the meteorological parameter of interest. For example, GCM rankings at daily time-

scales could be different than rankings at monthly scales; CMIP3 GCM rankings could be different 

from CMIP5 rankings. We observed that the top-ranked GCMs at the CCG and CLG scales were 
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different.  Consequently, we concluded in our case that we could not simply identify a sub-set of 

GCMs that would be suitable for all our simulation models. However, the results presented here 

are specific to the NYC water supply region and ongoing work in this area will make use of the 

CMIP5 data.  The methodology presented here could be of greater value in different locations and 

in cases where fewer meteorological variables will be evaluated. 

The evaluation procedure presented here is only one step in the preparation of future climate 

scenarios that were used to drive NYCDEP watershed and reservoir models.  Chosen GCMs can 

be further processed using various downscaling approaches (Anandhi et al., 2011a; Anandhi et al., 

2009; Anandhi et al., 2012; Anandhi et al., 2014; Anandhi et al., 2008; Fortier and Mailhot, 2015; 

Johnson et al., 2012). Then input into other models (e.g. hydrologic models) to estimate model 

results at finer spatial scales. 
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Figure S1. Skill scores of AR4 climate models. Barplots indicate the variation in skill scores for 
five meteorological variables (Ppt, Tave, Tmax, Tmin, Wind). Four bars are plotted for each 
GCM/realization combination, where each bar represents a season (DJF, MAM, JJA, and SON) 
for CLG using OD1 dataset. 
 
 
 
Statistics estimated for CCG region using OD2 

The GCMs were evaluated at CCG spatial scale based on a number of parametric and non-

parametric measures, including the 5th, 25th, 50th, 75th, and 95th percentiles; the mean; the 

interquartile range (IQR); and the standard deviation in addition to the skill scores (figures S2-S6). 
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Figure S2. Precipitation statistics. The box and whisker plots indicate statistics calculated for daily 
precipitation for the various AR4 climate models across the four seasons, namely DJF, MAM, JJA, 
and SON for CCG spatial scale. These plots are interpreted as follows: the middle line shows the 

median value, the top and bottom of box show the upper and lower quartiles (i.e., 75
th 

and 25
th 

percentile 
values), and the whiskers show the minimum and maximum model values. The ‘*’ and circle in the 
figure represents the observed and GCM ensemble mean of the statistics respectively for seasons 
DJF, MAM, JJA, SON. The GISS–er model statistic values that were calculated were excluded 
from the plots.  The results are for CCG using OD2 dataset.  

* Observed       O  Ensemble mean      
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Figure S3. Average temperature statistics. The box and whisker plots indicate statistics calculated 
for daily average temperature from various AR4 climate models across the four seasons, namely 
DJF, MAM, JJA, and SON for CCG spatial scale. These plots are interpreted as follows: the middle 

line shows the median value, the top and bottom of box show the upper and lower quartiles (i.e., 75
th 

and 25
th 

percentile values), and the whiskers show the minimum and maximum model values. The ‘*’ 
and circle in the figure represents the observed and GCM ensemble mean of the statistics 
respectively for seasons DJF, MAM, JJA, and SON.   

* Observed       O  Ensemble mean      
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Figure S4. Maximum temperature statistics. The box and whisker plots indicate statistics calculated 
for daily maximum temperature calculated from various AR4 climate models across the four 
seasons, namely DJF, MAM, JJA, and SON for CCG spatial scale. These plots are interpreted as 
follows: the middle line shows the median value, the top and bottom of box show the upper and lower 

quartiles (i.e. 75
th 

and 25
th 

percentile values), and the whiskers show the minimum and maximum model 
values. The blue ‘*’ and circle in the figure represents the observed and GCM ensemble mean of 
the statistics respectively for seasons DJF, MAM, JJA, and SON.  
 
  

* Observed       O  Ensemble mean      
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Figure S5. Minimum temperature statistics. The box and whisker plots indicate statistics calculated 
for daily minimum temperature calculated from various AR4 climate models across the four 
seasons, namely DJF, MAM, JJA, and SON for CCG spatial scale. These plots are interpreted as 
follows: the middle line shows the median value, the top and bottom of box show the upper and lower 

quartiles (i.e. 75
th 

and 25
th 

percentile values), and the whiskers show the minimum and maximum model 
values. The ‘*’ and circle in the figure represents the observed and GCM ensemble mean of the 
statistics respectively for seasons DJF, MAM, JJA, and SON.   

* Observed       O  Ensemble mean      
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Figure S6. Wind speed statistics. Box and whisker plots indicate statistics calculated for daily wind 
speed calculated from various AR4 climate models across the four seasons, namely DJF, MAM, 
JJA, and SON for CCG spatial scale. These plots are interpreted as follows: the middle line shows 

the median value, the top and bottom of box show the upper and lower quartiles (i.e., 75
th 

and 25
th 

percentile values), and the whiskers show the minimum and maximum model values. The ‘*’ and 
circle in the figure represents the observed and GCM ensemble mean of the statistics respectively 
for seasons DJF, MAM, JJA, and SON.  
 
  

* Observed       O  Ensemble mean      
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