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Abstract: Following the theory of evolutionary power spectral density (EPSD) for non-stationary 

stochastic processes, it is anticipated that the non-stationary fluctuating wind velocity can be 

generated by resorting to a deterministic modulating function used to modulate the stationary 

fluctuating wind velocity. Naturally, the key to the reproduction of non-stationary fluctuating 

wind velocity lies in seeking out an effective deterministic modulating function. Attention has 

been focused in the present study on how to obtain appropriate deterministic modulating 

function enabled to modulate stationary fluctuating wind velocity. According to the Kaimal 

power spectrum, a deterministic modulating function is deduced in detail in the fourth section of 

this paper. In the same way, other modulating functions can be also obtained based on different 

power spectra, such as Davenport power spectrum, Simiu power spectrum and so on. In the 

process of simulating non-stationary wind velocities through the derived deterministic 

modulating function, spline interpolation is introduced herein to reduce the increasing number of 

Cholesky decomposition of the time-varying spectral density matrix. Results obtained from the 

fifth section of this paper corroborate the effectiveness and faithfulness of the simulated 

non-stationary stochastic processes, and show that the derived modulating function can capture 
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Introduction 

Extreme wind events in many districts around the world are caused by severe convective 

thunderstorm winds and typhoon-induced winds, which are responsible for significant structural 

damage and failures. This sort of wind flow varies significantly from the traditional atmospheric 

boundary layer wind flows in light of its unique mean wind speed vertical profile, rapid time- 

varying mean wind speed, and spatially strongly correlated wind fluctuations. Extreme winds 

exhibit the transient non-stationary features which may remarkably influence wind-structure 

interaction and wind load effects on buildings (Chen 2008). More specifically, not only does the 

load quantity change with time and frequency, but the direction in which these loads impinge on 

structures also changes, thus further complicating the load and performance assessment process. 

Apparently, in order to obtain more reliable wind-resistant designs, it is imperative and of 

practical interest to capture the transient non-stationary phenomena in thunderstorm downbursts 

and typhoon-induced winds with resorting to the numerical simulation techniques. Naturally, it 

is envisaged to develop an efficient yet accurate simulation method of transient non-stationary 
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winds.  

Monte Carlo-based simulation approaches, which may generate the sample functions with 

the probabilistic characteristics of target stochastic process, have been widely employed in 

simulating the stochastic processes (Li and Li 2012). The scope of simulations spans 

uni-dimensional to multi-dimensional fields; univariate to multivariate processes; homogeneous 

to non-homogeneous fields; stationary to non-stationary; Gaussian to non-Gaussian; and 

conditional to unconditional cases. To date, the following approaches are available for the 

simulation of stochastic processes: (1) auto-regressive (AR) model in the white noise filtration 

method (WNFM), such as Spanos and Mignolet (1987), Grigoriu et al. (1988), Yeh and Wen 

(1990), Novak et al. (1995), and Li and Li (2011); (2) move-regressive (MA) model in the 

WNFM, e.g. Mignolet and Spanos (1990), Spanos and Mignolet (1990); (3) auto-regressive 

moving average (ARMA) model in the WNFM, for example, Kozin (1988), Kareem and Li 

(1992), Rossi et al. (2004), and Li and Li (2012); and (4) spectral representation, referred 

thereinafter to as the SR, method, for instance, Grigoriu (1993), Li and Kareem (1991), 

Deodatis (1996), Chen and Letchford (2005a), and Li et al. (2011) . AR and MA can be included 

in ARMA model (Mignolet and Spanos 1992; Spanos and Mignolet 1992), which is a 

counterpart to the SR method. It is noted that the computational efficiency of the SR method is 

rather low. A possible remedy to this issue is to introduce the fast Fourier transform (FFT) 

algorithm into the SR method. Yang (1972) showed that the FFT algorithm can remarkably 

enhance the computational efficiency of the SR method, and furthermore developed a formula 

to simulate the random envelop processes. Wittig and Sinhat (1975) demonstrated that the SR 
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method combined with the FFT algorithm appears to be more than an order of magnitude faster 

than other simulation methods. Further, Li and Kareem (1997) used a computationally efficient 

FFT-based approach to simulate the multivariate Gaussian non-stationary random processes 

(Regarding the reproduction of seismic ground motions) with the prescribed evolutionary 

spectral description. Unfortunately, the FFT algorithm is not directly applicable to the 

non-stationary case. However, when the modulating function is a deterministic time function, 

the FFT algorithm may then be employed for the simulation of the non-stationary stochastic 

process. The SR method has very high demands on both the computer memory and 

computational speed but does not have the problem of model selection. Likewise, it is easy to 

implement and moreover, render high accuracy. Therefore, the SR method has yet been 

receiving increasing attention in simulating the multivariate stochastic processes. In view of 

these, the SR method will be taken into consideration in this paper. 

It is known that the simulation of non-stationary stochastic processes may be simplified via 

representing non-stationary stochastic processes in terms of stationary processes modulated by 

slowly varying deterministic functions, referred to as uniformly modulated stationary processes. 

Saragoni and Hart (1973) partitioned the non-stationary stochastic process into several segments 

and then proposed a piecewise stationary model. Later, an extension of the Saragoni-Hart model 

was made by Der Kiureghian and Crempien (1989). They represented the model as a summation 

of modulated banded white noise. Li and Kareem (1991) also used the modulated stationary 

stochastic process concept. A non-stationary process was expressed as a sum of mutually 

correlated stationary processes modulated by a deterministic time function. The spectrum of the 
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stationary processes and the deterministic modulating time function can be derived through 

matching a prescribed evolutionary spectrum. Liang et al. (2007) presents a rigorous derivation 

of a previously known formula for simulation of one-dimensional, univariate, non-stationary 

stochastic processes integrating Priestley’s evolutionary SR theory. The utilization of the SR 

method thus is believed to be possible in simulating the non-stationary stochastic process. 

It is worth pointing herein out that most simulations of the non-stationary stochastic 

processes have involved around the reproduction of seismic ground motions known to be highly 

non-stationary (Kareem 2008). The literature (Kareem 2008) presents an overview of the 

simulation of seismic ground motions. Recent research works on non-stationary winds mainly 

consist of the contributions by Wang and Kareem (2004; 2005), Xu and Chen (2004), Chen and 

Letchford (2004; 2005b; 2007), Chay et al. (2006) and Chen (2008). In some literatures (Chen 

and Letchford 2004; Chen 2008), the function of time-varying mean wind speed multiplying a 

constant is given directly as the modulating function without detailed derivation and prove. 

Furthermore, the given modulating function is only a function of time. According to the theory 

of evolutionary power spectra, a modulating function should be the function of time and 

frequency, namely non-uniform modulating function. Due to the lack of the valid modulating 

function, the numerical simulation of transient non-stationary winds has been rather limited. 

Therefore, it is significant to find the appropriate modulating function for the simulation of 

non-stationary fluctuating winds. 

This study deals with the numerical simulation of non-stationary wind velocity fields 

through the SR method coupled with the spline interpolation algorithm (SIA), which is aimed at 
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reducing the increasing number of the Cholesky decomposition of power spectral matrix with 

the duration of simulation. Apparently, an important work of the present paper is to present an 

efficacious approach to obtain a proper deterministic modulating function utilized to modulate 

non-uniformly the stationary fluctuating wind velocity. Eventually, the present methodology is 

applied to the reproduction of fluctuating wind speed time series at three dissimilar points 

envisaged of non-stationary wind velocities. 

SR method of non-stationary stochastic processes 

Take into account a multivariate non-stationary stochastic process with the components, 

respectively, being 1 2( ), ( ), , ( )nu t u t u t , and furthermore with the mean value equal to 

zero, more specifically, 

[ ( )] 0 ( 1,2, , )jE u t j n, ),                        (1) 

The correlation matrix is given by 

0 0 0
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0 0 0
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Simultaneously, the power spectral density (PSD) matrix is written as follows: 

0 0 0
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0 0 0
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0 0 0
1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )
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0 (00 (0 (0 (n n(
0 (0

               (3) 

Apparently, in relation to the non-stationary stochastic processes, the correlation matrix is a 

function of two time instants t  and t  (More specifically, t  represents the time and t  
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denotes the time lag.), while the PSD matrix is a function of both frequency  and time t . 

Among existing definitions of non-stationary spectra, the most widely used is probably 

Priestley’s evolutionary power spectral density (EPSD) (Priestley 1965; Priestley 1988). By 

resorting to the theory of evolutionary power spectra for non-stationary stochastic processes, the 

PSD functions of non-stationary stochastic processes 1 2( ), ( ), , ( )nu t u t u t
 are defined 

as follows: 

20( , ) ( , ) ( ) ( 1,2,3, , )j j jS t A t S j n                     (4) 

0 *( , ) ( , ) ( , ) ( ) ( ) ( ) ( , 1,2,3, , , )j k j k j k jkS t A t A t S S j k n j k      (5) 

In the preceding Eq.(5), the star  denotes complex conjugate; ( , ) ( 1, 2, 3, , )jA t j n  

refer to the modulating functions; ( ) ( 1, 2, 3, , )jS j n  represent the PSD functions of 

stationary stochastic processes; and ( , 1, 2, 3, , , )j k j k n j k  is the coherence functions. It is 

worth pointing out that Eqs.(4) and (5) mean that the modulating function ( , )jA t  measures 

the change in the EPSD with respect to the stationary PSD function ( )jS . Likewise, the 

following two transformations display the relationship between the elements of the correlation 

matrix 0 ( , )t tR  and the corresponding elements of the PSD matrix 0 ( , )tS .  

0( , ) ( , ) ( 1,2,3, , )i
j j jR t t S t e d j n                (6) 

0( , ) ( , ) ( , 1, 2, 3, , , )i
j k jkR t t S t e d j k n j k            (7) 

In order to simulate the one-dimensional multivariate non-stationary stochastic process 

( ) ( 1, 2, , )ju t j n , the PSD matrix 0 ( , )tS  must be first decomposed under consideration 

into a product of two matrices, which is given by 

0 *( , ) ( , ) ( , )Tt t tS H H                         (8) 
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In the preceding equation, the superscript T  represents the complex conjugate transpose of a 

matrix; and ( , )tH
 

is a lower triangular matrix below.  

11

2 1 2 2

1 2

( , ) 0 0

( , ) ( , ) 0
( , )

( , ) ( , ) ( , )n n n n

H t
H t H t

t

H t H t H t

H

0

000

(((n n ((((
                  

(9) 

in which, all the diagonal elements are the real and non-negative functions of frequency ; and 

it is generally admitted that the off-diagonal elements are the complex functions of frequency 

. ( , )tH can be solved through the Cholesky decomposition of 0 ( , )tS . 

Again, it is assumed that the off-diagonal element ( , )j mH t  may be written in the polar 

form as follows: 

( , )( , ) ( , ) ( 1,2, , , 1,2, , , )j mi t
j m j mH t H t e j n k n j k          (10) 

where 

1
Im ( , )

( , ) tan
Re ( , )

j m
j m

j m

H t
t

H t                        (11) 

In the preceding equation, Im and Re refer to the imaginary and real parts of a complex 

number, respectively. 

According to Deodatis (1996), the non-stationary stochastic process ( ) ( 1,2, , )ju t j n),
 can 

be reproduced by the following series as N . 

1 1

( ) 2 ( , ) cos ( , ) ( 1,2, , )
n N

j j m l l j m l ml
m l

u t H t t t j n, ),   (12) 

where the circular frequency ( 1, 2, 3, , )l l l N ; N refers to the sufficiently large 

dividing number of circular frequency; /u p N  denotes the circular frequency increment; 

up  refers to the upper cutoff circular frequency, with the condition that, when l up , the 
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value of ( )jmH  becomes trivial; ml  represents the sequences of independent random 

phase angles, distributed uniformly over the interval [0, 2 ]. 

It is worth mentioning herein that in accordance with the central limit theorem (Shinozuka 

and Deodatis 1991), the simulated non-stationary stochastic process ( ) ( 1, 2, , )ju t j n, ),  is an 

asymptotically Gaussian as N . 

Introducing SIA into SR method 

Since the Cholesky decomposition has to be conducted separately for each frequency l  at 

each time instant t , the total number of implementing the Cholesky decomposition with respect 

to Eq.(12) is equivalent to n N . Therefore, the computational effort of the SR method is rather 

tremendous for the simulation of non-stationary stochastic processes. Likewise, for the 

multivariate non-stationary stochastic processes with the phase angles, the cross PSD matrix 

0 ( , )j kS t  is a complex matrix. Accordingly, the element ( , ) ( , ) j mi
jm jmH t H t e  of the 

obtained lower triangular matrix ( , )H t  based on the Cholesky decomposition is also 

complex. Notice that ( , )j mH t  varies continuously with the circle frequency at each time 

instant t . It is therefore inferred that as long as ( , )j mH t  at some appropriate circle 

frequency points are calculated, ( , )j mH t  at other circle frequency points can then be 

obtained by using the cubic SIA. Since the spline function possesses the advantages of both the 

smoothness and continuance, it has been widely utilized to interpolate and fit data in 

engineering.  

The following is the framework that the SIA is introduced into the SR method for the 
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improvement of computational efficiency. 

First, it is assumed that the circle frequency interval [0, ]u  is evenly divided into r  

sub-intervals by using 1r  circle frequencies 1 2 1, , , r 1  but content with 

0 10 r urr . With that, the corresponding ( , ) ( 0, 1, 2, , )j m iH t i r  can 

be calculated.  

Then, it is assumed that both ( , ) ( , ) ( 0, 1, 2, , )j m i j m iH t H t i r( )j m i( , )H ( )j m ( , ))( , )  and second 

continuous derivative ( , )j m i i tH t P( )j m i( , )H t( )j m i( , ) ( 0, 1, 2, , )i r ,  consequently, ( , )jmH t( , )jmH ( ,jm  at 

other circle frequency points can be calculated by resorting to the cubic spline interpolation, 

more specifically, 

2
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     (13) 

In the preceding equation, the second continuous derivative ( 0, 1, 2, , )i tP i r, ),  may be 

determined by using the three-moment equation. 

On introducing the SIA into ( )j mH , Eq.(12) for the simulation of the multivariate 

non-stationary stochastic processes can be rewritten as follows: 
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1 1

( ) 2 ( )cos ( , ) ( 1,2, , )
n N

j j m l l j m l ml
m l

u t H t t j nj m lj m l( )(( )( )co(( )( )( )co( )co , ),     (14) 

Derivation of deterministic modulating function 

In the conventional approaches for the prediction of wind-induced response of slender structures, 

the boundary layer longitudinal wind velocity ( )f t  at a given height is generally assumed to 

be an ergodic random process, which consists of a constant mean wind velocity component 

U and a longitudinal fluctuating wind velocity component ( )u t in the form: 

( ) ( )f t U u t                              (15) 

It is worth pointing herein out that the term ‘‘mean’’ refers to an average over a time 

interval T , thus effectively meaning that the mean wind velocity component is given by the 

following equation: 

0

1
( )

T
U f t d t

T
                            (16) 

In the preceding equation, generally, T  is taken as 1 h or 10 min with respect to wind effects 

on structures, correspondingly leading to the so-called hourly or 10 min mean wind velocity 

(Lawsoon 1980). 

However, the boundary layer wind measured during both thunderstorm and typhoon may 

not comply with the assumption of the ergodic or stationary random process (Kareem 2008). A 

recent preliminary study (Xu and Chen 2004) of non-stationary wind data recorded in the field 

during a nearby typhoon reveals that the mean wind velocity over 1 h often takes on a 

significant temporal (slowly time-varying) trend. On the basis of this situation, a non-stationary 

wind model has been put forward by Xu and Chen (2004). This model (which is taken into 
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consideration in the present paper) means that the non-stationary wind velocity is viewed as a 

deterministic time-varying mean wind velocity ( )U t( )U (  plus a fluctuating wind velocity ( )u t that 

can be modeled as a zero-mean stationary or non-stationary random process, which has the 

form: 

( ) ( ) ( )f t U t u t( ) ( )( ) (( )( )(                             (17) 

It is known that the stationary fluctuating random process admits the well-known spectral 

representation (e.g., Cramer and Leadbetter 1967) below. 

( ) ( )i tu t e d Z                            (18) 

whereas the non-stationary fluctuating random process can be formulated as follows:  

( ) ( , ) ( )i tu t A t e d Z                          (19) 

where ( , )A t  is a deterministic modulating function with two variables  and t ; and 

( )Z represents a spectral process with orthogonal increments which has a distribution function 

in the interval ( , ) .  

Obviously, unlike the simulation of stationary stochastic processes, an appropriate 

deterministic modulating function needs to be predetermined in simulating the non-stationary 

fluctuating wind velocity. 

Time-varying PSD function  

Arbitrary non-stationary wind velocity during the time [0,T] can be divided into /n T t 

segments. For one segment with [ 1 1,t t t ], the time-varying mean wind velocity 

1( ) ( )
j jz zU t U t1( ) ( )1j jz ( )
j jj j
( )U ( ) (( ) ( 1z ( )( ) , and the time-varying PSD function 1( , ) ( , )

j j j jz z z zG t G t  when the interval 
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t  is very transitory. Therefore, the segment is considered as stationary wind velocity with 

mean wind velocity 1( )
j jz zU U t1( )1jzjj

U (( 1z  and PSD function 1( ) ( , )
j j j jz z z zS G t . 

 In order to model the two-sided PSD function 1( , )
j jz zG t  of the approximately 

stationary wind velocity fluctuations with transitory interval [ 1 1,t t t ], the expression 

proposed by Kaimal et al. (1972) is taken into consideration herein, which is given by 

2
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           (20) 

According to the logarithmic law, kzU  at the height kz  can be calculated as 

0 0
1 1

0 0

ln( / ) ln( / )
( ) ( )

ln( / ) ln( / )k j j k

k k
z z z z

j j

z z z z
U U U t U t

z z z z 1( ) ( )1j kz ( 1j 1( 1U ( ) (1z ( 1U ( )1            (21) 

Simultaneously, the coherence function between the velocity fluctuations at two different 

heights jz  and kz
 proposed by Davenport (1968) is taken into consideration in the present 

paper, which is given by 

1
1 1

( , ) ( ) exp exp
12 ( ) ( )( )
2

k j
k j

z k j z k j

z z
z z

C z z C z z
t Coh

U t U tU U

z k j

( ) ( )U ( ) () 1)1k jz k 1( 1 )1z ( 1k
( 1U ( ) ()1z ( 1

        (22) 

in which zC  is a constant that may generally be set to be equal to 10 for structural design 
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purposes (Kristensen and Jensen 1979; Simiu and Scanlan 1986). 

In regard of the stationary fluctuating wind velocity, the phase angle ( )j k  can be 

represented in the form suggested by Di Paola (1998) as  

( , )

( )
( ) j k

j k j k
a p p

z z
                           (23) 

Likewise, the apparent velocity of waves can be assumed to be the following form given by 

Simiu and Scanlan (1986). 

( , )
( )

k jz zj k
a p p

U U

C
                          (24) 

In the preceding equation, C

 

refers to an appropriate coefficient that has to be determined 

from experimental data. In the present paper, 5.5C
 in the literature (Peil and Telljohann 

1996) is taken into account. 

Employing Eqs.(23) and (24), we compute that 

1 ( , )
1 1

( ) ( ) ( )
( , ) ( )
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k j k j

j k j k j k
j k j k j k

a p p z z z z

z z C z z C z z
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)

( ) ( )1k j

j k(

z ( 1k 1( 1U ( ) () (1z ( 1
     (25) 

Hence, the cross PSD function 1( , )
j kz zG t  of the stationary wind velocity fluctuations in 

[ 1 1,t t t ] can then be determined as follows: 
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For the non-stationary fluctuating wind velocity during the time[0, ]T , its time-varying PSD 

function can be obtained when 0t . So, the time-varying PSD function is expressed as 

follows: 
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Simultaneously, the time-varying cross PSD function can be determined using the 

following expression:  
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Evidently, the non-stationary fluctuating wind velocity with both the time-varying PSD 

function and cross PSD function can be simulated with resorting to modulating stationary 

fluctuating wind velocity. In order to generate the non-stationary fluctuating wind velocity, an 

appropriate deterministic modulating function for modulating of the stationary fluctuating wind 

velocity with Kaimal spectrum will be derived in details in the next sub-section. 
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A proper deterministic modulating function 

Based on the EPSD (Priestley 1967; Priestley 1988), the non-stationary stochastic process ( )u t  

with a zero-mean value admits the preceding Eq.(19), i.e. 

( ) ( , ) ( )i tu t A t e d Z                          (29) 

Likewise, ( )Z satisfies  

 [ ( )] 0E d Z                                (30) 

1 2 1 1 2 1 2[ ( ) ( )] ( ) ( )E d Z d Z S d d                  (31) 

in which ( )S  represents the PSD function of the corresponding stationary stochastic process.  

Now, it is assumed that the fluctuating wind velocity is modeled as a non-stationary 

stochastic process and furthermore its PSD function of modulated stationary fluctuating wind 

velocity is in obedience to the Kaimal power spectrum. It follows that the EPSD function 

0 ( , )
j jz zG t  of the non-stationary fluctuating wind velocity can be expressed in the following 

form: 
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      (32) 

Taking into account that 0 ( , )
j jz zG t  in Eq.(32) is equivalent to ( , )

j jz zG t  in Eq.(27). 

Eq.(32) can be further recast in the following form: 
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It is known that the time-varying PSD being founded on a deterministic power spectrum 

can be represented by EPSD. Hence, we derive that 

5/3

1 50
( ) 2

( , )
1 50

2 ( )

j j

j

j

j

z z

jz

z

z

U t U
A t

zU
U t

( )
jz ( )
j
( )U ( )z ( )

11

j

( )((
jz ( )
jz (

                 (34) 

Likewise, for other power spectra such as Davenport, Harris and Simiu, the corresponding 

deterministic modulating functions can be derived in the same way, and they have been listed in 

Table 1. 

Based on Kaimal power spectrum, the evolutionary cross power spectrum density (ECPSD) 

function 0 ( , )
j kz zG t  can be derived through a deterministic modulating function as Equation 

(34). 
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    (35) 

Seeing that Eq.(35) is equivalent to Eq.(28), the ECPSD function 0 ( , )
j kz zG t  is also 

equal to the time-varying cross PSD function ( , )
j kz zG t . So, the derivation of deterministic 

modulating function is effective for the modulation of stationary fluctuating wind velocities. 

Application of the proposed technique 

The aim of this section is to numerically simulate the non-stationary fluctuating wind velocity 

time series at three dissimilar points 1, 2, and 3 envisaged, shown in Figure 1, with resorting to 

the derived deterministic modulating function above. Likewise, the SIA is introduced into the 

SR method for reducing the number of the Cholesky decomposition of power spectral matrix. 

The variables 1 2 3( ), ( ), ( )u t u t u t  are, respectively, employed to represent the three components 
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of this one-dimensional trivariate stochastic process. Kaimal power spectrum and corresponding 

modulating function listed in Table 1 are taken into consideration herein. It is hypothesized that 

the time-varying mean wind velocity at the first point 1 (height 35z m) satisfies 

35 35 [1 cos( )] 45 [1 0.3cos(0.0052 )]U U t t35 35 [U U35 35 [U35 [ m/s. It is worth pointing out that the 

time-varying mean wind speed can be also generated by using a sequence of independent 

random numbers from normal distribution and Weibull distribution (Aksoy et al. 2004; Torrielli 

et al. 2011). For the downburst, the time-varying mean wind speed, namely the non-turbulent 

wind velocity of downburst can be simulated by empirical model or analytical model (Chen and 

Letchford 2004; Chay et al. 2006). Likewise, the surface rough roughness length is taken as 

0 0.001266z m, which corresponds to the shear velocity of the flow * 1.76u m/s. It is 

pointed herein out that the values 0 0.001266z m and * 1.76u m/s are taken from Simiu 

and Scanlan (1986). Then, the time-varying mean wind velocities at the second and third points 

are calculated in terms of 45 46.1[1 0.3cos(0.0052 )]U t45 46.1U45 46.146.1  and 145 51.3 [1 0.3cos(0.0052 )]U t145 51.3U145 51.351.3 , 

respectively. In the present simulation, the upper cutoff circle frequency is set equal to be 

4up  
rad/s, the dividing number of circle frequency is selected to be 2048N , and 

0.785t s is the time step of numerical simulation with a time length equal to 3216.99T s. 

By resorting to the short-time Fourier transform (STFT), the EPSD function can be estimated 

from the generated non-stationary fluctuating wind velocity by using the proposed method. The 

STFT, ( , )F t , of stochastic process, ( )u t , is defined by the convolution integral below. 

 ( , ) ( ) ( ) iG t u h t e d                        (36) 

In the preceding equation, ( )h t  represents an appropriate time window. In the present 
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paper, the time window squared function is selected to be 
2 22 / 21

( ) ( 0.25)
2

th t e . 

The square of the module for the EPSD function, namely ( , )G t , can then be explicitly written 

as follows: 

1 22

1 2 1 2( , ) ( ) ( ) ( ) ( ) i iF t u u h t h t e e d            (37) 

In fact, to estimate EPSD function, there are a number of methods. For example, it is also a 

good choice to adopt wavelet, which is studied as a more advanced approach to estimate 

EPSD functions of non-stationary stochastic processes (Spanos and Failla 2004; Spanos et al. 

2005). 

Figure 2 [including (a), (b), and (c)] displays the sample functions of longitudinal 

non-stationary fluctuating wind velocities at three dissimilar points 1, 2, and 3 generated by 

using the present method. In order to better visualize the differences and the similarities among 

these three time histories, Figure 3 presents the enlarged views of the initial 600s of simulated 

sample functions displayed in Figure 2. As far as the degree of correlation among these three 

time histories is concerned, Figure 3 clearly demonstrates that with the decreasing of the 

distance between arbitrary two points, the loss of coherence between two samples, 

corresponding respectively to these two points, takes on a decreasing trend. For example, since 

the distance between the points 1 and 2 is only 10 m apart, there is a small loss of coherence 

between 1( )u t  and 2( )u t . On the other hand, there exists a considerable loss of coherence 

between 1( )u t  and 3( )u t  and between 2( )u t  and 3( )u t , as the point 3 is located at 110m 

from the point 1 and 100m from the point 2 (see Figure 1). The coherence between the 

generated wind fluctuations weakens along with the distance increases. Evidently, this 
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phenomenon is controlled by the coherence function. Simultaneously, it can be clearly detected 

from Figure 3 that there exists a phase angle between arbitrary two samples at the 100s time 

instant. Figures 4 and 5, respectively, provide both the temporal auto-correlation and 

cross-correlation functions of the generated sample functions displayed in Figure 2 with respect 

to the corresponding targets at the time instant 100.53t s. Figures 4 and 5 clearly demonstrate 

that the simulated ( , )j kR t t  is in reasonable agreement with the target, 0 ( , )j kR t t , while 

admitting that there exists a small degree of differences. Further, these differences tend to 

disappear when the auto- and cross-correlation functions, ( , )j kR t t  is computed in terms of 

the 20000 sample functions at the time instant 100.53t s. Under this scenario, the simulated 

( , )j kR t t  is in remarkable agreement with the target, 0 ( , )j kR t t . Additionally, it can be 

detected from Figure 5 that the peak values of auto- and cross-correlation functions exhibit the 

time shift. This phenomenon embodies that the sample possesses the phase difference. Finally, 

by means of the STFT, the EPSD function, ( , )G t , is estimated from these sample time 

histories and plotted in Figure 6. Indubitably, the simulated EPSD functions possess the 

time-varying features. Therefore, the present procedure is capable of fully capturing the 

non-stationarity. Moreover, Figure 7 presents the EPSD functions of the generated sample 

functions displayed in figure 2 with reference to the corresponding targets at the time instant 

100.53t s. It is seen from Figure 7 that the EPSD functions, 1( , )G t , are generally in 

agreement with the targets at the time instant 1 100.53t s . 

In order to demonstrate the superiority of introducing SIA into SR method (the SSR 

method) in enhancing the computational efficiency of generating non-stationary stochastic 
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processes, the dividing number of circle frequency 4096, 8192N  and the length of simulation 

time 4823.04 , 6430.72T s s  are also taken into consideration. The Cholesky decomposition in 

the SSR method is implemented on only 128 circular frequency points at each instant of 

simulation. The comparisons among several different schemes are made and listed in Table 2. It 

can be seen from Case 1 in Table 2, the elapsed time for the simulation with SR is 347s, while 

that for the simulation with SSR is only 58s. The time consumption of SSR reduces more than 

80% the elapsed time of SR. Along with the increasing of the length of simulation time, the 

proportion of the elapsed time between SSR and SSR keeps about 17% as seen from Case1 to 

Case 3. Apparently, in the calculation speed the SSR has considerable advantage over the SR. 

Furthermore, the superiority becomes more remarkable with the increasing of N. For example, 

in Case 5, the elapsed time of SSR is 8.9% of the time consumption of SR, and the percentage is 

the smallest in these cases. This is because, the number of the Cholesky decomposition in the 

SSR method keeps constant with the value equal to 128 at each instant of simulation, but in the 

SR method the decomposition number is also more and more as N increases. Therefore, 

introducing SIA into SR method is able to enhance the computational efficiency of simulating 

non-stationary stochastic processes. 

It is noted that the above-mentioned fluctuating wind speeds shown in Figure 2 take on 

weak non-stationarities. The main reason may be that the time-varying mean wind speed of the 

modulating function is slowly time-varying function with small-amplitude and long-period. For 

simulating strong non-stationarity, the turbulent wind velocity of downburst is taken into 

account. As displayed in Figure 8, the modified OBV model (Chay et al. 2006) is considered as 
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the non-turbulent wind velocity of downburst, namely the time-varying mean wind speed. In 

like manner, Kaimal power spectrum and corresponding modulating function listed in Table 1 

are also taken into consideration herein. Figure 9 presents the generated downburst, and Figure 

10 displays the simulated turbulent wind velocity which takes on strong non-stationarity. The 

non-stationarity is relevant to the modulating function. It can be seen from Figure 10 that the 

amplitude of fluctuating wind speed is bigger when the non-turbulent wind velocity of 

downburst is greater, which is consistent with what expressed by the Equation (34). By means 

of the STFT, the EPSD function is also estimated from the simulated turbulent wind velocity of 

downburst and plotted in Figure 11. Undoubtedly, the simulated EPSD function possesses the 

time-varying features. 

6. Conclusions 

Nowadays, most simulations of the non-stationary stochastic processes have been 

developed around the reproduction of earthquake ground motions known to be highly 

non-stationary. In the present paper, instead, generation of the non-stationary fluctuating wind 

velocity has been addressed. Non-stationarity is achieved by modulating the stationary 

fluctuating wind velocity.  

The present study proposes an effective approach to obtain appropriate deterministic 

modulating function enabled to modulate non-uniformly stationary fluctuating wind velocity, 

which is believed to be new in the literature. By means of derivation, a deterministic modulating 

function is deduced in detail according to the Kaimal power spectrum. Likewise, other 
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deterministic modulating functions can be also derived based on different power spectra, such as 

Davenport power spectrum, Harris power spectrum, Simiu power spectrum and so on. On the 

other hand, when digitally simulating the non-stationary stochastic processes through the SR 

method, there is a need for reducing the increasing number of the Cholesky decomposition of 

the time-varying spectral density matrix. Distinguished from the FFT algorithm, the SIA can be 

used when the modulating function is a deterministic time-frequency function. Thus, the SIA is 

taken into account and thereupon introduced into the SR method so as to decrease the Cholesky 

decomposition of the time-varying spectral density matrix. An example application to 

reproducing the non-stationary fluctuating wind velocity time series at three dissimilar points 

envisaged is described in detail. Results confirm the effectiveness and faithfulness of the 

simulated non-stationary stochastic processes, and show that the derived modulating function 

can capture fully the nonstationarity of wind velocities. Finally, based on the proposed 

technique, the turbulent wind velocity of downburst is generated to simulate the strong 

non-stationarity. 

The aforesaid elucidation demonstrates that the present procedure can generate a library of 

non-stationary fluctuating wind velocity for use in wind-resistant analysis and design. 
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Figure captions list 

Fig.1 Locations of points 1, 2, and 3 along a vertical line. 

Fig.2 The generated sample functions for longitudinal non-stationary fluctuating wind 

velocities at three different heights.  

Fig.3 Enlarged views of the initial 600s of the simulated sample functions for 

longitudinal non-stationary fluctuating wind velocities at three different heights, 

displayed in Fig. 2. 

Fig. 4. Temporal auto-correlation functions of the generated sample functions displayed 

in Fig. 2 with respect to the corresponding targets at the time instant 100.53t s . 

Fig. 5. Temporal cross-correlation functions of the generated sample functions 

displayed in Fig. 2 with reference to the corresponding targets at the time instant 

100.53t s . 

Fig. 6. EPSD functions of the generated sample functions displayed in Fig. 2. 

Fig. 7. EPSD functions of the generated sample functions displayed in Fig. 2 with 

regard to the corresponding targets at the time instant 100.53t s . 

Fig. 8. The time-varying mean wind speed of downburst generated using the modified 

OBV model. 
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Fig. 9. Wind speed time history of the generated downburst 

Fig. 10. Turbulent wind speed time history of the generated downburst 

Fig. 11. EPSD function of the generated turbulent wind speed displayed in Fig. 10 
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Fig. 1. Locations of points 1, 2, and 3 along a vertical line. 
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Fig. 2. The generated sample functions for longitudinal non-stationary 

fluctuating wind velocities at three different heights.  
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Fig. 3. Enlarged views of the initial 600s of the simulated sample functions for 

longitudinal non-stationary fluctuating wind velocities at three different heights, 

displayed in Fig. 2.  
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Fig. 4. Temporal auto-correlation functions of the generated sample functions 

displayed in Fig. 2 with respect to the corresponding targets at the time instant 

100.53t s= . 
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Fig. 5. Temporal cross-correlation functions of the generated sample functions 

displayed in Fig. 2 with reference to the corresponding targets at the time instant 

100.53t s= . 
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Fig. 6. EPSD functions of the generated sample functions displayed in Fig. 2. 
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Fig. 7. EPSD functions of the generated sample functions displayed in Fig. 2 with 

regard to the corresponding targets at the time instant 100.53t s= . 
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Fig. 8. The time-varying mean wind speed of downburst generated using the 

modified OBV model. 
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Fig. 9. Wind speed time history of the generated downburst 
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Fig. 10. Turbulent wind speed time history of the generated downburst 
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Fig. 11. EPSD function of the generated turbulent wind speed displayed in Fig. 10. 
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Table 1: Derived modulating function corresponding to the wind velocity power spectrum such as Kaimal, Davenport, Harris and Simiu. 
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Table 2: Comparisons of the computational efficiency between SSR and SR 

Cases  
The dividing 
number of 

frequency N

The length of 
simulation 
time T (s)

Time Consumption TC
(s)

100SSR

SR

TC
TC

(%)SR SSR

1 2048 3216.99 347 58 16.7

2 2048 4823.04 521 89 17.1

3 2048 6430.72 697 118 16.9

4 4096 6430.72 1486 161 10.8

5 8192 6430.72 2833 253 8.9
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