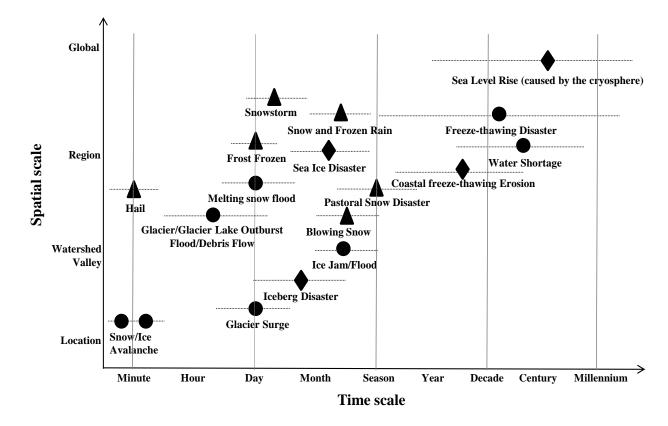
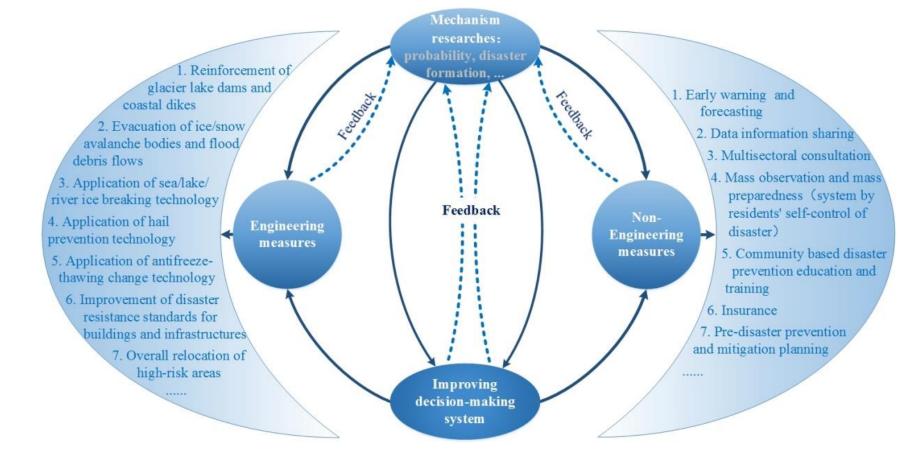
SUPPLEMENTAL MATERIALS

ASCE Natural Hazards Review


Global Snow- and Ice-Related Disaster Risk: A Review


Wang Shijin, Yang Yuande, and Che Yanjun

DOI: 10.1061/(ASCE)NH.1527-6996.0000584


© ASCE 2022

www.ascelibrary.org

(Black dots, triangles and diamonds represent three types of disasters on land, on the ocean and in sky, respectively; Dotted line represents the duration of the disaster)

6 Supplemental Material Figure S2 Framework of snow and ice-related disasters prevention and response strategies

11 Supplemental Material Table S1 Snow and ice-related disasters on land and their triggering factors and main disaster-bearing bodies

Sub- disaster	Triggering factors	Main	Examples	Sources
		disaster-bearing		
		bodies		
Snowstorm disaster	Short-term extreme snowfall event	Transportation	Heavy Snowstorm Hits US, Prompts Mass Flight Cancellations in Chicago, Kansas in 2018	
		Transportation		Zarzycki, 2018.
		Housing		
Freezing rain and	Icing on the disaster-bearing body during snow and freezing rain process	Building construction	Starting on January, 2008, tens of thousands of passengers were stranded on Beijing-Zhuhai Expressway due to freezing rain and	
snow disaster		Transportation		Chen et al., 2011
(including ice		Electric lines		Liu et al., 2013
storm)		Fruit industry	snow weather.	
Hail disaster	Rapid and dense landing of small and medium ice particles (ice embryos) after encountering cold water droplets	Crops	On April 25, 2019, Colorado holds the title of most costly state for hail damage in the U.S	Wang et al., 2016
		Fruit industry		Gunturi and Tippett, 2017
		Vegetable industry		Allen et al., 2019
		Agricultural products		Andret al., 2019
Frost disaster	When the temperature drops sharply in the autumn and winter, water vapor directly condenses on the object	Crops		Wang et al., 2016
		Fruit and fruit industry	A frost event in Kenya in January 2012 caused a loss of about 9.6	Faustand Herbold, 2018
		Vegetable industry	million United States dollars	Cohen and Gninghaye, 2018
		Agricultural products		Kotikot et al., 2020
Ice avalanche	Large-scale ice masses sliding or landing or ice breaking off from the hanging glacier	Residents	Deposits of the ice avalanche from Allalin glacier, which killed 88 workers at the construction site for the Mattmark dam (hydropower	Schweizer et al., 2015
		Infrastructure		Shugar et al., 2021
			reservoir), Saas Valley, Southern Swiss Alps on August 30, 1965	
Avalanche	Large-scale snow (block) sliding or landing	Alpine tourists	Avalanche at Walenstadt (Schattenbach), Switzerland	Haeberli et al., 2015, 2021
		Infrastructure		Ballesteros-Cánovas et al., 2018
Glacier surge	Rapid movement of glaciers caused by the interaction	Residents,	Variegated Glacier, Alaska.	Harrison et al., 2015;

	between rapid deformation of ground moraine	Pastures		Rashida et al., 2018
	hydrological processes under the ice	Infrastructure		
Pastoral snow disaster	Deaths caused by snow cover and insufficient livestock feed	Livestock Residents	From December 2018 to March 2019, 57,900 livestock has died because of the snow disaster, which leads to the direct economic losses of 0.192 billion CNY.	Wang et al., 2019a
Drifting or Blowing snow	Weather events caused by strong winds in the snow area	Road Transportation	Blowing snow off the road in the Mayetas area, Tacheng administration of the Xinjiang Uygur Autonomous Region, China (January 2013)	Nishimura et al., 2014
GLOF	Dam Break Flood caused by ice collapse, continuous precipitation, pipe surge, etc.	Residents Roads, Bridges Infrastructure Downstream residents	Lake Palcacocha, Peru, with two security dams in the foreground (dam on the left clearly damaged by 2003 lake overflow)	Wang et al., 2015, 2020 Kougkoulos et al., 2018 Veh et al., 2020
Glacier flood/debris flow	Melting/debris flow formed by melting glaciers, or accompanied by heavy rainfall, volcanic eruptions	Roads Bridges Power stations Infrastructure	The downstream area of Chorabari Glacier experienced flood/debris flow in Central Himalaya, India	Shen et al., 2009 Petley, 2013
Melting snow	Spring flood formed by melting snow	Cultivated land Downstream residents	Snowmelt floods in Kazakhstan, April 2015.	Duan et al., 2018 Niedzielski et al., 2019
Ice jam/flood	Ice blocks the river and raises the upstream water level; when thawing, the downstream water level rises and forms the flood	Water conservancy Hydropower Shipping	Ice-jam flooding, Ounasjoki River, Finland	White et al., 2007 Lindenschmidt et al., 2018 Rokaya et al., 2018
Freeze-thawing disaster	Strong freezing and thawing effect	Road network Pipe network Wire network Other infrastructure	Potential risk of above-ground pipe network in the frozen soil area of Ice-rich coasts of North Yakutfu, Russia	Streletskiy et al., 2015 Hjort et al., 2018 Farquharson et al., 2019

12 Note: Some low-frequency and derivative cryosphere disasters such as volcano-glacier/snow mudslides (Cáceres, 2016; Hemmings et al. 2016; Reinthaler et al., 2019), earthquake-ice collapse disasters, freeze-thaw-rockfall

13 disasters, ice and snow debris flows-salting lakes (blocking the river), avalanche-landslides-blocking rivers, are omitted.

14 Cáceres B.E., 2016. Dramatical reduction of Cotopaxi Glaciers during the last volcano awakening 2015-2016. In: AGU Fall Meeting Abstracts.

15 Hemmings B., Whitaker F., Gottsmann J. et al. 2016. Non-eruptive ice melt driven by internal heat at glaciated stratovolcanoes. J. Volcanol. *Geotherm. Res.*, 327, 385–397.

16 Reinthaler J., Paul F., Granados H. et al. 2019. Area changes of glaciers on active volcanoes in Latin America between 1986 and 2015 observed from multi-temporal satellite imagery. J. Glaciol., 65(252), 542–556.

17

18 Supplemental Material Table S2 Snow and ice-related disasters on the ocean and their triggering factors and main disaster-bearing bodies

	I			1
Sub- disaster	Triggering factors	Main disaster-bearing	Examples	Sources 20
Sub- disaster	Triggering factors	bodies	Lxanpies	2
Iceberg disaster	Iceberg moving with heavy fog	Drilling platforms Offshore residents Facilities	The village of Ilulissat in western Greenland is surrounded by icebergs that have calved from the Jakobshavn Glacier	Haeberli et al., 2 61 2021 23
Sea ice disaster	Sea ice formation and disappearing, ice flotation, Ice shelf collapse, etc.	Ports Harbor facilities Drilling platforms Navigation safety Coastal aquaculture	CCG icebreaker freeing vessels beset in pressured ice, East Coast of Newfoundland in April 2007.	29 Haeberli et al., 26 2021 23 29
Coastal freeze-thaw erosion	Coastal collapse caused by freezing and thawing in permafrost regions	Land Coastal landscape Buildings Infrastructure	The erosion and collapse of the Arctic permafrost coastal zone	AWI, 2013 3 Haeberli et al., 201 2021; 3 Fritz et al., 2017 3 Wright et al., 2013,
Sea level rise disaster	Sea level rise caused by melting of glaciers	Homeland security Infrastructure Land area	Male, Maldives	Muis et al., 2016 3 Wahl et al., 2017 3 3

39 Reference

- 40 Allen J.T., Giammanco I.M., Kumjian M.N., et al. 2019. Understanding Hail in the Earth System. Rev. Geophys., 58(1): doi:
- 41 10.1029/2019RG000665.
- 42 AWI. 2013. Thawing permafrost: the speed of coastal erosion in Eastern Siberia has nearly doubled. http://www.awi.de/en/news/
- 43 Ballesteros-Cánovas J.A., Trappmann D., Madrigal-González J., et al. 2018. Climate Warming Enhances Snow Avalanche Risk in the Western
- 44 Himalayas. PNAS, 115: 201716913.
- 45 Chen Q.L., Li Z., Fan G.Z., et al. 2011. Indications of stratospheric anomalies in the freezing rain and snow disaster in South China, 2008. Sci
- 46 China Earth Sci, 54(8): 1248-1256.
- 47 Cohen L. and Gninghaye D. 2018. Modeling the risk of frost in France, ENSAE Paris Tech.
- 48 Duan Y.C., Liu T., Meng F.H., et al. 2018. Inclusion of Modified Snow Melting and Flood Processes in the SWAT Model. Water, 10: 1715.
- 49 Eberhard Faust E., Herbold J. 2018. Spring frost losses and climate change-Not a contradiction in terms. Munich Re. https://www.munichre.com/.
- 50 ECMIAK (Emergency Committee of the Ministry of Internal Affairs in Kazakhstan). 2015. Kazakhstan-15,000 Evacuated as Melting Snow
- 51 Causes Floods in 4 Regions. <u>http://floodlist.com/asia/Kazakhstan</u>.
- 52 Fritz M., Vonk J.E., and Lantuit H. 2017. Collapsing Arctic coastlines. Nat. Clim. Change, 5: 6–7.
- 53 Gunturi P. and Tippett M. K. 2017. Managing severe thunderstorm risk: Impact of ENSO on U.S. tornado and hail frequencies, Tech. rep.,
- 54 WillisRe.
- 55 Haeberli W. et al. 2021. Snow and Ice-Related Hazards, Risks, and Disasters (Second Edition). Elsevier.
- 56 Haeberli W., Whiteman C., Shroder J.F. 2015. Snow and Ice-related Hazards, Risks, and Disasters. Elsevier, pp. 677-712.

- 57 Harrison W.D., Osipova G.B., Nosenko G.A. 2015. Glacier Surges//Haeberli W., Whiteman C. (Eds.). Snow and Ice-related Hazards, Risks and
- 58 Disasters. Elsevier, pp. 437-485.
- 59 Hjort J., Karjalainen Q., Aalto J., et al. 2018. Degrading permafrost puts Arctic infrastructure atrisk by mid-century. Nat. Commun., 9: 5147.
- 60 Kotikot S.M., Flores A., Griffin R.E., et al. 2020. Statistical characterization of frost zones: Case of tea freeze damage in the Kenyan highlands. Int
- 61 J Appl Earth Obs Geoinformation, 84: 101971. doi.org/10.1016/j.jag.2019.101971.
- 62 Kougkoulos I., Cook S.J., Jomelli V., et al. 2018. Use of multi-criteria decision analysis to identify potentially dangerous glacial lakes. Sci. Total
- 63 Environ., 621: 1453.
- 64 Lindenschmidt K.E., Huokuna M., Burrell B.C., et al. 2018. Lessons learned from past ice-jam floods concerning the challenges of flood mapping.
- 65 Int J River Basin Manag, DOI: 10.1080/15715124.2018.1439496.
- Liu X., Gao A., Zhao J. 2013. Characteristics and causation of the freezing rain and snow disaster in western south China in 2011. J Nat Disast,
 22(6): 232-239.
- 68 Muis S., Verlaan M., Winsemius H.C., et al. 2016. A global reanalysis of storm surges and extreme sea levels. Nat. Commun., 7: 11969.
- 69 Niedzielski T., Szymanowski M., Miziński B., et al. 2019. Estimating snow water equivalent using unmanned aerial vehicles for determining
- 70 snowmelt runoff. J Hydrol, 578: 124046.
- 71 Nishimura K., Yokoyama C., Ito Y., et al. 2014. Snow particle speeds in drifting snow. J Geophys Res: Atmos, 119, 9901-9913.
- 72 Petley D. 2013. More photographs of the aftermath of the Kedarnath debris flow disaster. <u>Https://thegenerator.news/</u>.
- Rashida I., Abdullaha T., Glasser N.F., et al. 2018. Surge of Hispar Glacier, Pakistan, between 2013 and 2017 detected from remote sensing

- 74 observations. Geomorphology, 303: 410-416.
- Rokaya P., Budhathoki S., Lindenschmidt K.E. 2018. Trends in the Timing and Magnitude of Ice-Jam Floods in Canada. Scientific Reports, 8:
- 76 5834.
- Schweizer J., Bartelt P., Herwijnen A. 2015. Snow Avalanches//Haeberli W., Whiteman C., Shroder J.F. Snow and Ice-related Hazards, Risks and
 Disasters. Elsevier, pp. 677-712.
- 79 Shugar D.H., Jacquemart M., Shean D. et al. 2021. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya.
- 80 Science, 10.1126/science.abh4455.
- 81 Streletskiy D. A., Anisimov O., Vasiliev A. 2015. Permafrost Degradation. In: Snow and Ice-Related Hazards, Risks and Disasters, 303-344.
- 82 Veh G., Korup O., Walz A. 2020. Hazard from Himalayan glacier lake outburst floods. PNAS, 117(2): 907-912.
- Wahl T., Haigh I.D., Nicholls R.J., et al. 2017. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat.
 Commun., 8: 16075.
- 85 Wang J.A., Yue Y.J., Zhao J.T., et al. 2016. Snow, Frost, and Hail Disasters in China. In: Shi P.J. Natural Disasters in China, Elsevier, 187-237.
- 86 Wang S.J., Che Y.J., Ma X.G. 2020. Integrated risk assessment of glacier lake outburst flood (GLOF) disaster over the Qinghai-Tibetan plateau
- 87 (QTP). Landslides, 17(12), 2849-2863.
- 88 Wang S.J., Zhou L.Y., Wei Y.Q. 2019a. Integrated Risk Assessment of Snow Disaster (SD) over the Qinghai-Tibetan Plateau (QTP). Geomat Nat
- 89 Haz Risk, 10(1): 740-757.
- 90 White K.D., Tuthill A.M., Furman L. 2007. Studies of ice jam flooding in the united. In: Proceedings of conference on extreme hydrological

- 91 events: new concepts for security, 11–15 July 2005 Novosibirsk, Russia. Dordrecht: Springer.
- 92 Wright L.D., Wei W., Morris J. 2019. Coastal Erosion and Land Loss: Causes and Impacts. 10.1007/978-3-319-75453-6 (Chapter 9): 137-150.
- 23 Zarzycki C.M. 2018. Projecting Changes in Societally Impactful Northeastern U.S. Snowstorms. Geophys. Res. Lett., 45(5): 2067-2075.
- 24 Zemp M., Huss M., Thibert E., et al. 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature,
- 95 568(18): 382-386.
- 96
- 97