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Section S1. Statistical Forecasts and Projections of Regional Temperature and 

Precipitation for Engineering Applications 

While use of climate model projections is a more common approach of facilitating engineering 

applications with future climate conditions, an alternative to climate models is to use statistical 

forecasting techniques on the basis of historical regional climate observations. For example, 

Cheng et al. (2014) provided a method of integrating non-stationarity into extreme value analysis 

to forecast temperature and precipitation extremes. Lai and Dzombak (2020) utilized long-term 

historical trends at different U.S. cities to provide near-term forecasts in various climate 

variables. As indicated in Figure 1 of the main text, the approach of using statistical forecasting 

provides a different option for applying climate model projections. 

Use of historical observations and statistical forecasting provides an efficient and interpretable 

approach but can also be subject to limitations. Previous studies such as Krakauer and Fekete 

(2014) have showed that, extrapolation of historical trends can provide reliable local 

precipitation information for up to 25 years in the future. In addition, statistical forecasting with 

historical data can be "advantageous" to practitioners as Hyman et al. (2014) has argued. An 

integrated technique that combines statistical forecasting with the global climate model 

projections was developed in Lai and Dzombak (2021), serving as an additional alternative. 

However, use of historical observations and statistical forecasting techniques depends on the 

availability and quality of regional historical climate data. Due to the scope of this work, 

evaluation of statistical forecasting methods in engineering applications were not further 

analyzed. 
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Section S2. Integrating Climate Projections in Engineering Applications 

As discussed in the main text, a wide range of techniques have been applied for integrating 

climate projections among engineering applications, leading to different climate variable formats 

required. The required climate variable formats are indicated in part A of Figure 1 of the main 

text. Overall, provided with time series of future climate variables, methods that use these time 

series for climate projections can be generally categorized into two main types regarding their 

use in engineering applications: using the time series as a direct input for engineering process 

models or further processing the projections to obtain climatic variable values (instead of the 

original time series).  

The first type refers to the applications that feed future time series of climate variables into 

process models (or impact models) to analyze impacts of climate change in the system, e.g., 

Mechanistic–Empirical Pavement Design Guide model (Meagher et al. 2012), Variable 

Infiltration Capacity model (Van Vliet et al. 2016), and Infrastructure Planning Support System 

(Chinowsky et al. 2019). The integration of GCMs and process models was also referred as 

“chain-of-models” approach (NASEM 2018).  

On the other hand, time series of climate variables may be further utilized to produce derived 

series or variables such as annual maxima (Tryhorn and Degaetano 2011), annual partial duration 

(DeGaetano and Zarrow 2011), annual degree days (Chaturvedi et al. 2013), pavement 

temperatures (Underwood et al. 2017). These derived variables are utilized to estimate “climatic 

design values” (Auld et al. 2010); and this variable format is referred to as climatic design values 

(compared to the use of time series in the previous approach). 
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Consequently, the types of methods to incorporate climate model projections in engineering 

applications can limit the applicable climate datasets or the available decisions, similar to the 

requirements on the temporal and spatial resolutions of climate projections as presented in part A 

of Figure 1 of the main text. For example, when the chain-of-model approach is applied and 

daily temperature and precipitation are required, quantile mapping may be the more appropriate 

post-processing techniques as it can consider the different intensities and modify the distributions 

of daily temperature and precipitation projections (Maraun et al. 2010). 

At the same time, when climatic design values are derived from the time series of climate model 

projections, a change factor method can be applied to modify these estimated climatic design 

values. For example, during the two performed case studies, the change factor technique was 

utilized in this way to adjust the estimates of pavement maximum design temperatures in Los 

Angeles (LA) and the 1-day precipitation amount with 5-year return period in New York City 

(NYC) as a post-processing adjustment. 

Information about the use of the two methods of integrating climate model projections and 

number of GCMs used in the review of 50 engineering applications reported in the literature is 

provided in Table S1, as a supplement to the information provided in the Table 1 of the main text. 

Identification of the use of the two methods in these previous studies was conducted based on 

our assessment of the information provided in the studies, and such information was not included 

in Figure 2 of the main text because many studies did not explicitly describe the formats of 

climate variables used and the results in Table S1 are thus subject to limitations. 
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Table S1. Additional information on the identified engineering studies in which climate model 

projections of future temperature and (or) precipitation were used 

Sectors IDs Topics Studies Implementation 

methods(a) 

Number of 

GCMs used(b) 

Notes(c) 

Buildings and other 

structures 

1 Building energy with roof 

design 

Hosseini et al. (2018) DCV HadCM3 The "morphing" method by Jentsch (2013) to 

modify weather files 

2 Building energy use Reyna and Chester (2017) DCV 10 Use of the "morphing" method 

3 Building energy use Shen (2017) DCV HadCM3 Use of the "morphing" method 

4 Carbonation of concrete 

structures 

Talukdar and Banthia (2016) COM CanESM2 Projections of CO2 concentrations were also 

used to study the carbonation in concrete 

5 Corrosion of steel structures Nguyen et al. (2013) DCV 9 The GCM projections were adjusted with 

pattern scaling by OzClim; relative humidity 
and wind speed were also used 

6 Energy and building 

performance 

Jentsch et al. (2013) DCV HadCM3 Modify existing weather files using climate 
model projections 

7 Landslide Peres and Cancelliere (2018) COM 3 The GCM projections were used to perturb 
the parameters of a rainfall generator 

8 Urban heat island effect Zhang and Ayyub (2018) DCV 10 ARRM method was used to downscale and 
bias correct GCM projections 

9 Urban planning Carter et al. (2015) DCV 12 (UKCP09) Climate data are provided by WGs (with 

RCM-modified parameters); including other 

climate change impacts assessed 

Cold Regions 10 Alaska infrastructures Melvin et al. (2017) COM; DCV 5 Alaska specific Sta.Dwn-GCM (monthly 
resolution); temporal disaggregation to daily 

data 

11 Design ice loads Jeong et al. (2019) COM CanESM2 Calculation of ice accretion is based on 

freezing precipitation amount 

12 Permafrost Hjort et al. (2018) DCV 15 WorldClim data were used (with statistical 

downscaling and bias correction) 

13 Rain-on-snow flood Musselman et al. (2018) DCV 19 The GCM projections were used to perturb 
the parameters of WRF model 

Energy 14 Electricity distribution with 

wood poles 

Merschman et al. (2020) DCV All GCMs in BCSD Impacts from hurricanes were also considered

15 Electricity systems with 

temperature 

Sathaye et al. (2013) DCV 3 

16 Electricity transmission 

capacity 

Bartos et al. (2016) COM 11 Thermal model was calibrated with historical
observations 

17 Electric power supply Bartos and Chester (2015) COM 2 

18 Peak electricity demand Auffhammer et al. (2017) COM All GCMs in 

MACA (assumed) 

A statistical model was used to calculate 
energy load with daily weather data; unclear 

temporal resolution of MACA (assumed to be

monthly) 

19 Peak electricity demand Burillo et al. (2019) COM CCSM4 Dynamical downscaling with WRF model 

20 Power generation systems Van Vliet et al. (2016) COM 5 

21 Water stress for power 
production 

Ganguli et al. (2017) DCV 45 Water availability is based on GCM while 

stream temperature was based on BCSD 

(with calibration on observed stream 
temperature) 

Transportation 22 Aircraft takeoff performance Coffel et al. (2017) DCV 27 Temporal disaggregation to hourly data 

23 Bridges with floods Wright et al. (2012) DCV 4 Peak flows were estimated with 100-year 

peak precipitation amount; change of peak 
flows with the historical level was calculated

24 Culvert with wildfire debris FHWA (2017) DCV 11 Sta.Dwn-GCM (unclear which one); 24-hour 
precipitation amounts were assessed 

25 Pavement Underwood et al. (2017) DCV 19 Possible alternative: AASHTO 

26 Pavement FHWA (2016a; b) DCV 11 Sta.Dwn-GCM (unclear which one); unclear 

whether further bias correction method was 
used 

27 Pavement Mallick et al. (2014) COM GFDL Including impacts from temperature and 
precipitation increase, sea level rise, and 

hurricanes 

28 Pavement Meagher et al. (2012) COM 3 Temporal disaggregation from 3-hr to 1-hr; 

include temp, prcp, wind spd, perc sunshine, 
humidity as input 

29 Rail networks Chinowsky et al. (2019) COM 5 Infrastructure Planning Support System was 

used to incorporate climate projections and 

calculate different variables 

30 Rail networks Palin et al. (2013) DCV HadCM3 Rail networks in the U.K. 
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31 Roadway network with flash 

floods 

Kermanshah et al. (2017) DCV CCSM4 Daily precipitation was used to calculate 5% 
thresholds 

Urban Water 

Systems 

32 Detention basin Moglen and Rios Vidal 

(2014) 
DCV 2 NOAA Atlas 14 were used as the historical 

rainfall amounts 

33 Water distribution systems Bondank et al. (2018) DCV Ensemble; unclear 

how many 

Sta.Dwn-GCM (unclear which one) 

34 Water utilities Vogel et al. (2015) – 

NYCDEP 
COM 15-20

35 Water utilities Vogel et al. ((2015) - PWB COM 20 Including other climate variables 

36 Water utilities Vogel et al. 2015) - SPU COM 20 Temporal disaggregation to hourly data 

37 Water utilities Vogel et al. (2015) - TBW COM NA Decided Dyn.Dwn-GCM as a supplement; 
various Dwn. techniques compared 

38 Sewer overflow Fischbach et al. (2017) COM 2 

39 Stormwater Cook et al. (2017) DCV 6 Temporal disaggregation to hourly data 

40 Stormwater Zahmatkesh et al. (2015) COM All GCMs in BCCA Daily precipitation was used to calculate 5% 

thresholds 

41 Stormwater Rosenberg et al. (2010) COM 1 model for each 

scenario 

Hourly precipitation projections were fitted in 
hydrologic model to estimate streamflow 

Water Resources 42 Eutrophication with 

precipitation 

Sinha et al. (2017) COM 16 Separate datasets used for the U.S. and the 

world; temperature data was also utilized 

43 Freshwater algal blooms Chapra et al. (2017) COM 5 Including other climate variables; not clear 

whether further bias correction method was 
used 

44 Ground water resources Shrestha et al. (2016) COM 5 The GCM projecitons were adjusted with 
pattern scaling 

45 Water quality Gelda et al. (2019) COM 20 Temporal disaggregation to hourly data; 

including other climate variables; water 

quality models were not yet utilized 

46 Water quality Boehlert et al. (2015) COM IGSM-CAM 

47 Water quality Chang et al. (2015) COM 24 

48 Water quality and quantity Alamdari et al. (2017) COM CCSM Utilized historical data to calibrate SWMM 

model 

49 Water resource infrastructures Drum et al. (2017) COM 9 Sta.Dwn-GCM (unclear which one) 

50 Streamflow Robinson and Herman (2019) COM All BCSD Verify with historical streamflow data 

(a)
COM: chain-of-model approach; DCV: derived climatic values 

(b)
When one GCM was used, the name of the GCM is specified

(c)
Sta.Down: Statistically downscaled projections; Dyn.Down: Dynamically downscaled projections 
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Section S3. GCMs and downscaling methods 

Additional descriptions and background information of GCMs and downscaling approaches are 

provided in this section, as a supplement to the discussions provided in the main text. 

S3-1. GCMs

GCMs resolve different physical processes such as coupled interactions between oceans and land 

with the integration of future greenhouse gases concentration. Projections from GCMs can be 

acquired from the World Climate Research Programme’s Coupled Model Intercomparison 

Project (CMIP), currently at phase 6 (Eyring et al. 2016a), while the downscaled projection 

products commonly used in engineering applications belong to phase 5 (Taylor et al. 2012). 

GCMs from CMIP5 can provide historical simulations as early as 1850 and future projections up 

to 2300 (Taylor et al. 2012) and therefore the GCM projections generally satisfy all required 

infrastructure design lives. 

It is important to note that GCMs are subject to different model designs and assumptions (such as 

different climate sensitivity, response time of global temperature increase, and ocean heat uptake 

(Taylor et al. 2012)) and the selection and inclusion of different GCMs can be a major source of 

uncertainty during engineering practices. The individual projections or the model bias values of 

GCMs depend on the their underlying assumptions or limitations in solving physical processes, 

e.g., a warm bias from several GCMs in upwelling zones at west coast of continents including 

west coast of the U.S. (Eyring et al. 2019). A careful selection of GCMs can potentially reduce 

errors for a studied region (Maraun et al. 2017), however, such process was seldom conducted 

for engineering applications. A more commonly employed approach is to utilize a number of 
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different GCMs and create an ensemble of projections in engineering applications, such as in 

Cook et al. (2017). 

Spatial resolution should be determined for the use of GCM projections; and downscaling 

techniques are required if raw GCM projections do not satisfy the requirement in spatial 

resolutions. Depending on individual models, GCMs are limited in the spatial resolutions when 

solving global climate processes and the resolutions are generally about 100 km (Pierce et al. 

2014). Consequently, the low resolutions of GCMs can limit the capability of representing 

regional climate for engineering applications (Jack and Katragkou 2019) and downscaled GCM 

projections will be preferred for these applications. Downscaling methods are further discussed 

in the Section C-2. 

Additionally, for a particular engineering application, one or several future climate change 

scenarios should be selected, representing the uncertainty in future greenhouse gas 

concentrations (Moss et al. 2010) and, in the more recently developed CMIP6, with the 

additional consideration of socioeconomic scenarios (O’Neill et al. 2017) . In CMIP5, different 

representative concentration pathways (RCPs) refer to the uncertainty in determining future 

climate conditions inherited from different possible human response to the changing climate 

(Moss et al. 2010). A high concentration scenario should be considered if the impact assessment 

is decided to be more conservative. 

S3-2. Downscaling

Because GCMs are in low spatial resolution (~100km) and often projections with higher 

resolutions are needed to represent regional climate, downscaled GCM projections – with the 

integration of GCM projections and downscaling techniques – can be obtained to facilitate 
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engineering applications. Downscaling techniques can be generally categorized into two 

approaches, i.e., dynamical and statistical downscaling methods.  

To provide finer-resolution forecasts, RCMs were utilized to resolve regional-scale atmospheric-

land-ocean coupled physical processes using GCM projections as boundary conditions (Hall 

2014). Because the physical processes that govern the magnitude and variations of climate 

variables are explicitly resolved in RCMs, results from dynamical downscaling are physically 

consistent. Examples of dynamical downscaled projections include the North America - 

Coordinated Regional Climate Downscaling Experiment (NA-CORDEX; Giorgi and Gutowski 

2015) of CMIP5 and North American Regional Climate Change Assessment Program 

(NARCCAP; Mearns et al. 2009) of CMIP3. 

Because the use of an RCM can explicitly resolve climate variables in daily or sub-daily time-

step, dynamically downscaled projections with sub-daily resolutions can be provided (Cook et al. 

2017). Engineering applications that require sub-daily projections (e.g., to assess intensity of 

precipitation extremes) are consequently limited to the dynamically downscaled projection 

products if temporal disaggregation is not employed, as also discussed in the main text. 

On the other hand, instead of using RCMs to resolve regional physical processes, a second 

category of downscaled projections are directly produced based on statistical relationship 

between fine-resolution historical observations and GCM projections. These statistical 

downscaling procedures provide the fine-resolution regional projections by assuming projected 

larger weather phenomenon in GCMs is statistically correlated with finer observed regional/local 

weather phenomena (Maraun et al. 2010). Linear and non-linear regression models and analog 

methods are some examples of statistical downscaling techniques. Examples of downscaled 

GCM datasets (some were specifically developed for the U.S. or North America) include, bias 
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corrected constructed analogs (BCCA; Brekke et al. 2013), localized constructed analogs 

(LOCA; Pierce et al. 2014), and multivariate adaptive constructed analogs (MACA; Abatzoglou 

and Brown 2012). 

As exhibited in Figure 2 of the main text, statistical downscaled GCM projections are the more 

commonly utilized climate model projections in the 50 previously reported engineering 

applications examined in this work. However, the particular types of statistical downscaled GCM 

projection products vary among different studies and the reasons why a particular type was used 

were often not discussed. Studies like Kilgore et al. (2019) have recommended and utilized 

LOCA in hydrological designs because the LOCA products were specifically resolved in the 

shapes of daily forecast distributions and belong to the more recent CMIP5 instead of the 

previous phase CMIP3. 
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Section S4. Post-processing Techniques 

Further descriptions of post-processing techniques and methodology of applying these 

techniques are provided in this section, in addition to the discussions provided in the main text. 

The post-processing techniques include methods to increase the level of agreement between 

model projections and historical observations. This is because that discrepancy or model bias can 

still exist between model grid-level simulations and historical observations (especially when 

compared to station-level observations), although finer-resolution downscaled projections may 

be already obtained. Note that this type of post-processing technique also has been referred to as 

“downscaling” in some previous studies such as in Switzman et al. (2017), however, such a term 

was not adopted in this work to avoid confusion with downscaled projection products and 

because these post-processing techniques require an action of processing the projection results 

for engineers. Because of the discrepancy between model projections and historical observations, 

these further processing techniques are often necessary to transfer the gridded model projections 

to match the historical observations in station (or point) level, as studies like Mannshardt-

Shamseldin et al. (2012) suggested. Additionally, because dynamical downscaling techniques 

rely on RCMs to resolve physical processes and is limited by computational power, the highest 

spatial resolutions of dynamical downscaled GCM projections over the U.S. are typically at 0.22º 

(about 25 km) in NA-CORDEX (Mearns et al. 2017), and thus post-processing techniques may 

be needed to transfer to station-level projections. Both change factor and quantile mapping can 

be used for increasing the alignment of projections with observations. 

The post-processing techniques can also be applied for temporal disaggregation to facilitate the 

use of climate model projections in finer temporal resolutions. Given that required temporal 
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resolution can be a constraint in selecting climate model projections, both change factor or 

quantile mapping can be used as temporal disaggregation techniques to post-process and obtain 

projections at finer temporal resolutions. Historical observations at desired temporal resolutions 

are required, however.  

Furthermore, some engineering applications have specific requirements involving the use of 

weather files produced by weather generators; and GCM projections are often used to modify the 

parameters of weather generators during post-processing. Weather generators are statistical 

simulation models that can produce sequences of weather variables based on parameterization 

and correlation of different variables (Wilks and Wilby 1999). As further discussed in Section D-

3 of Supplemental Material, climate model projections are post-processed in this case to consider 

effect of future climate change on the output of weather generators (referred as GCM-modified 

weather files in this work). 

Depending on the specific engineering applications, it is important to note that a particular post-

processing technique can be applied differently and can be applied with different purposes. For 

example, a change factor technique can be applied to adjust a whole continuous time series of 

climate variables prior to the utilization of such a time series or to modify derived climate 

variables (estimated from unmodified projections) as a final adjustment. At the same time, 

techniques like change factor can be used with the purposes of correcting bias as well as 

performing temporal disaggregation. 

S4-1. Change factor

Change factor (or delta) method is a common post-processing technique used in engineering 

applications. During the post-processing, historical observed climate variables are added (for 
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temperature) or multiplied (for precipitation) with a ratio estimated between historical and future 

simulations from a single GCM or an ensemble of GCMs (Maraun 2016). The change factor 

approach is based on the following: 

𝑦𝑚𝑜𝑑𝑒𝑙𝑒𝑑 𝑓𝑢𝑡𝑢𝑟𝑒; 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑    =  
𝑦ℎ𝑖𝑠𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑦ℎ𝑖𝑠𝑡,𝑚𝑜𝑑𝑒𝑙𝑒𝑑
× 𝑦𝑓𝑢𝑡𝑢𝑟𝑒,𝑚𝑜𝑑𝑒𝑙𝑒𝑑  =  

𝑦𝑓𝑢𝑡𝑢𝑟𝑒,𝑚𝑜𝑑𝑒𝑙𝑒𝑑

𝑦ℎ𝑖𝑠𝑡,𝑚𝑜𝑑𝑒𝑙𝑒𝑑
× 𝑦ℎ𝑖𝑠𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

= 𝐶𝐹 × 𝑦ℎ𝑖𝑠𝑡,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (S1) 

where ymodeled future; modified is the change-factor-modified future climate variables in the projected 

period, yhist, observed is the historical observed climate variables, yhist, modeled is the historical 

simulated climate variables from climate models, and yfuture, modeled is the future simulated climate 

variables from climate models. 

A similar approach to the change factor method is the direct method, in which a ratio between 

historical observations and modeled historical simulations is estimated to adjust GCM future 

simulations (Maraun 2016). 

Change factor method can be applied to transfer grid-level model projections to station-level or 

used as a temporal disaggregation technique, as mentioned previously. For example, stormwater 

runoff assessment is commonly employed with change factor to adjust rainfall volume and 

intensity in previous studies, as presented in Table 1 and Figure 2 of the main text. On the other 

hand, change factor were also used to produce hourly precipitation amount, e.g., in Zahmatkesh 

et al. (2015). 

S4-2. Quantile mapping

In contrast to adjusting the mean or percentiles with the ratios in the change factor method, 

quantile mapping is a more flexible post-processing technique by adjusting the distributions of 
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climate model projections. In quantile mapping, a reference period is used to establish a 

relationship (or transfer function; Maraun 2016) between the distributions of historical 

observation and the distributions of GCM historical simulations. This transfer function is then 

applied to GCM future simulations to reduce model bias or to produce station-level projections. 

Consequently, the use of transfer functions in a quantile mapping approach is similar to the 

calculation and applying of ratios in the direct method mentioned previously. 

Quantile mapping techniques have been applied in previous studies and for different purposes. 

For example, Kuo et al. (2014) utilized a quantile mapping method on dynamical downscaled 

GCM projections to reduce model bias and assessed future extreme precipitation events at 

Alberta, Canada. Studies like Mannshardt-Shamseldin et al. (2012) have used quantile mapping 

to modify the distributions of downscaled GCM projections to match the station-level 

observations. Moreover, quantile mapping techniques have also been utilized to tailor the model 

projections and match the required temporal resolutions, such as in Coffel et al. (2017) and 

Meagher et al. (2012), as presented in Table 1 and Figure 2 of the main text. 

S4-3. GCM-modified weather files

Weather generators are commonly used to provide weather files for engineering applications 

such as in building energy use estimation (Shen 2017). The GCM-modified weather files can be 

used to consider future climate change in these engineering practices. The GCM-modified 

weather files are obtained by utilizing climate model projections to modify or “perturb” (Maraun 

et al. 2010) different parameters in weather generators, e.g., change factors can be calculated 

from climate model projections to perturb the parameters. While the GCM-modified weather 

generators are a traditional approach, more advanced weather generators like full-field weather 
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generators also exist and have shown more potential (Maraun et al. 2010). Note that in the case 

of GCM-modified weather generators, weather generators provide the source of climate datasets 

for engineering applications while climate model projections are only used (i.e., post-processed) 

to modify the parameters of weather generators. Because the nature of some engineering 

practices requires the use of weather files, the GCM-modified weather files were more often 

utilized in these practices as presented in Table 1 and Figure 2 in the main text. 

S4-4. Other techniques

Several other techniques can also be used to post-process climate data to facilitate engineering 

applications, for the purposes of bias-correcting model projections or providing projections in a 

desired format. For example, methods like linear extrapolation can be used to perform temporal 

disaggregation for temperature (Coffel et al. 2017). An approach of obtaining weights for 

different downscaled GCM projections and using a “probabilistic simple climate model” 

(Rasmussen et al. 2016) to produce probabilistic projections has been utilized to evaluate future 

economic damages caused by climate change in the U.S. (Houser et al. 2017). Regression 

models, e.g., in Mannshardt-Shamseldin et al. (2012), can be used to establish the transfer 

function between GCM simulations and historical observations to improve model bias. Similar to 

the use of weather generators, these approaches require more steps of post-processing. 

Applications of these alternative approaches in engineered systems and evaluation of the 

uncertainty from these techniques were not further assessed in this work. 
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Section S5. Specifications for Two Case Studies 

Detailed descriptions of the calculation processes for the case studies of the high-temperature PG 

grade for asphalt binder during pavement design in LA and the stormwater drainage pipe 

diameter for a design relevant to a 1-hour, 5-year-return storm in NYC are provided in this 

section, as supplements to the discussions provided in the main text. 

S5-1. Case study of selecting high-temperature PG grade for pavement design in LA

Estimates of maximum pavement design temperature and the subsequent selection of high-

temperature PG grade for asphalt concrete pavement design in LA were used as a case study of 

incorporating temperature projections in engineering applications. While the PG grade also 

requires an estimate of minimum design temperature (and subsequent selection of low-

temperature grade), the maximum design temperature was assessed in this study because the 

maximum pavement design temperature is expected to be more substantially affected by climate 

change impact – a higher design temperature will lead to a higher asphalt binder requirement. 

Following the PG method, the maximum pavement design temperature can be calculated as 

(TRB Superpave Committee 2005; Underwood et al. 2017): 

𝑇𝑝𝑎𝑣,ℎ𝑖𝑔ℎ = 0.9545 ((𝑇𝑎𝑖𝑟,ℎ𝑖𝑔ℎ + 𝑧 × 𝜎𝑎𝑖𝑟,ℎ𝑖𝑔ℎ) − 0.00618𝐿𝑎𝑡2 + 0.2289𝐿𝑎𝑡 + 42.2) − 17.78 (S2) 

where 𝑇𝑎𝑖𝑟,ℎ𝑖𝑔ℎ and 𝜎𝑎𝑖𝑟,ℎ𝑖𝑔ℎ are the average and standard deviation of annual warmest 

consecutive-seven-day Tmax for a particular period (moving 30-year periods in this case), 𝐿𝑎𝑡 is 

the latitude of the study location, and 𝑧 is the z-score for normal distribution as a consideration 

for pavement reliability. A 98% reliability (with 𝑧 = 2.055) was used for the analyses in this 

study. The annual consecutive-seven-day Tmax is estimated as an average of Tmax for the seven 

consecutive days. 
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The calculated values of pavement maximum temperature (at 98% reliability) can be then used to 

select the corresponding high-temperature PG grade. Further adjustments and offset values can 

be included or added to the calculated pavement maximum temperature to consider the 

additional damages from traffic and consider the pavement depths (FHWA 2016a), although such 

adjustments were not made in this case study. For the high-temperature PG grade, the commonly 

available increments are: 46, 52, 58, 64, 70, 76, and 82 ºC (Underwood et al. 2017), which were 

used for determining the selected high-temperature PG grade in in this case. Based on the 

estimated maximum pavement design temperature, the first increments higher than the pavement 

maximum temperature were selected, e.g., if the maximum pavement design temperature is 

estimated at 65 ºC, a 70-ºC grade is selected. 

S5-2. Case study of selecting pipe diameter for stormwater drainage design in NYC

The case study of stormwater drainage design in NYC was based on the estimates of 1-day 

precipitation amount with 5-year return period and subsequent selection of pipe diameter for a 

design of 1-hour, 5-year-return storm. While precipitation amounts with other return periods can 

also be calculated, this study focused on the effect of different decisions on the estimates of 

climatic design values and thus the amount with 5-year return period (which has a relatively 

higher recurrence rate) was calculated. Similarly, the estimation of pipe diameters for other 

storms (e.g., 30-min, 5-year return or 2-hour, 5-year-return storm) can be conducted. Here, the 

design was based on the 1-hour, 5-year-return storm using a similar calculation for a 1-hour 

storm as in Cook et al. (2020), following the same assumptions on the drainage area in Cook et 

al. (2020). 

The estimation of stormwater drainage pipe diameters requires three steps in this case: the 

estimation of the maximum 1-day precipitation amount with 5-year return period, the estimation 
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of peak runoff with respect to the 1-hour, 5-year-return storm, and the estimation of pipe 

diameter based on the peak runoff.   

The 1-day precipitation amount with 5-year return period was estimated by fitting annual 

maximum 1-day precipitation from a particular period (moving 30-year periods in this case) with 

General Extreme Value (GEV) distributions using L-moment in this study. Given the fitted GEV 

distribution, the 5-year return period is calculated as the amount of precipitation with an annual 

20% probability of exceedance. It is worth noting that the GEV fitting is subject to uncertainties 

including the uncertainty from the estimated GEV parameters. These uncertainties were not 

considered and were excluded from the analyses in this work as the main objective of this work 

was to assess the possible different outcomes or sensitivity of the results caused by the different 

decisions made during the application of climate model projections. 

Similar to the approach used in Cook et al. (2020), the Rational method was used in this study to 

estimate the peak runoff from the 1-hour, 5-year storm: 

𝑄𝑝 = 𝑐𝑖𝐴 (S3) 

where Qp is the peak runoff for the drainage area (cubic feet per second), c is the runoff 

coefficient (unitless) for the landscape of interest, i is the rainfall intensity (inches per hour), and 

A is the drainage area (acres). 

As in Cook et al. (2020), a moderately urbanized neighborhood with a drainage area of 10 acres 

was assumed and assessed in this case study. For the moderately urbanized neighborhood, the 

runoff coefficient c  of 0.65 was used (Cook et al. 2020). To simplify the calculation, a 

relationship between the 60-min precipitation amount and 1-day precipitation amount (both with 

5-year return period) in NOAA Atlas 14 (NOAA 2017) was used to obtain the projected 60-min
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precipitation amount using the previous estimated 1-day precipitation amount (with 5-year return 

period). Note that the available precipitation amount (median estimates) in NOAA Atlas 14 is 

1.61 inch for 60 minutes and 4.70 inch for 24 hours at the NYC Central Park station. The 

estimated 1-day precipitation amount from the previous step was adjusted to be the 24-hour 

amount (times 1.13) because the daily precipitation is reported for a fixed 24-hour interval and 

can be less than the maximum 24-hour precipitation amount. The adjustment ratio 1.13 was 

based on the same value used in NOAA atlas 14 (DeGaetano and Zarrow 2011). Similarly, the 

60-min precipitation amount was used as the precipitation intensity i for the design

corresponding to a 1-hour storm. 

After the peak runoff is estimated, the pipe diameter can then be calculated using the Manning’s 

equation (Cook et al. 2020):  

𝐷𝑟 = (
𝑛𝑄𝑝

0.31𝑘𝑛√𝑆0
)

3

8
(S4) 

where Dr is the pipe diameter, n is the roughness coefficient, 𝑆0 is the channel slope, and 𝑘𝑛is a

coefficient of the velocity versus slope relationship. 

Following the same assumptions made for the case study in Cook et al. (2020), the roughness 

coefficient was assumed to be 0.013 for ordinary concrete lining, 𝑘𝑛 equals 1, and 𝑆0  equals

0.005 (as 0.5%).  

Similar to the selection of high-temperature PG grade in the previous case study, the stormwater 

drainage pipe size can be determined based on the available increments for the pipe diameters. 

The available increments around the estimated pipe diameters are: 18, 21, 24, 27, 30, 36, and 42 

inches (corresponding to 450, 525, 600, 675, 750, 900, and 1050 mm; Cook et al. 2020), and in 

this case, the first increments larger than the estimated pipe diameters Dr were selected.  
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S5-3. Post-processing and the calculation of 30-year moving estimates

For the two case studies, post-processing techniques were applied with the projection results 

obtained from different downscaled projection products, GCMs, and climate change scenarios 

(using both climate projections and historical observations) to estimate the values of maximum 

pavement temperature with 98% reliability in LA and maximum 1-day precipitation amount with 

5-year return period in NYC. The climate model projections were acquired at the grid locations 

nearest to two local weather stations for the two cities (Los Angeles Downtown/USC station, 

GHCN ID: USW00093134; New York City Central Park station, GHCN ID: USW00094728). 

These two downtown weather stations provide continuous long-term historical records (starting 

from 1878 for Los Angeles and 1869 for New York City) for the two cities (more information 

can be found at National Weather Service website such as 

https://www.weather.gov/okx/CentralParkHistorical or Lai and Dzombak (2019)). The historical 

observations for the two weather stations were then used to evaluate and post-process the climate 

model projections. 

The two post-processing techniques were applied in different ways to obtain the design values 

for the case studies. As discussed in the main text and in the previous section, the change factor 

approach modifies the results of the two estimated design values (i.e., the maximum pavement 

temperature with 98% reliability and the maximum 1-day precipitation amount with 5-year 

return period) based on the estimates from the historical observations and GCM historical 

simulations. The quantile mapping technique (a non-parametric method, which matches the 

empirical cumulative distributions with 20 quantiles, was used in this study) modifies the daily 

temperature and precipitation projections prior to the estimation of the two design values. Both 

post-processing techniques require a particular reference period. Two different 30-year periods 

https://www.weather.gov/okx/CentralParkHistorical
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(1961-1990 and 1991-2020) were used as the historical reference periods for the case studies, 

with the results presented in Figures S1 (further discussed) and Figure 6 in the main text. 

Furthermore, it is important to note that moving 30-year estimates were calculated and are 

presented for the two case studies, similar to the moving 30-year averages of the annual average 

temperature and precipitation presented in Figures 3 and 4 of the main text. The use of 30-year 

moving estimates is to facilitate the calculation of average and standard deviation of annual 

warmest consecutive-seven-day Tmax in Eq.(S2) and to reduce the effect of annual variations 

presented in the temperature and precipitation series (similar to the effect from using a 30-year 

moving average filter). The process of applying moving 30-year estimate is (with the pavement 

design temperature estimates as an example): for each year in the series, annual maximum 

consecutive 7-day Tmax of this year and 29 years prior were calculated; the calculated maximum 

consecutive 7-day Tmax during this 30-year period was used to estimate 𝑇𝑎𝑖𝑟,ℎ𝑖𝑔ℎ and 𝜎𝑎𝑖𝑟,ℎ𝑖𝑔ℎ; 

and then the maximum design temperature was calculated using Eq.(S2) given the estimated 

𝑇𝑎𝑖𝑟,ℎ𝑖𝑔ℎ and 𝜎𝑎𝑖𝑟,ℎ𝑖𝑔ℎ. For the graphs of 30-year moving estimates (or the 30-year moving 

averages) presented in this study (such as part (b13) of Figure 4 of the main text), the 30-year 

moving estimates are presented at the last years of the 30-year periods in the time series. For 

example, the maximum design temperature for 1975 exhibited in part (b13) of Figure 4 in the 

main text shows the results based on the daily temperatures during 1946-1975. 

S5-4. Additional results for the assessment of post-processing in the two case studies

As a supplement to the results of Figure 6 presented in the main text, additional analysis and 

comparison on the use of two post-processing techniques with different downscaled projection 

products were conducted and are presented in this section. Specifically, the results of the two 
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case studies when different downscaled projection products from one GCM (CanESM2) with 

post-processing are presented in Figure S1. To provide more detailed evaluation of the two post-

processing techniques (the change factor and quantile mapping methods), some additional 

findings on the results of Figure 6 in the main text (i.e., the LOCA downscaled results from 32 

GCMs with post-processing) are provided in this section as well.
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Figure S1. Assessing the use of post-processing techniques for different downscaled projection products in the two case studies. The first two 

columns present the results when the change factor method is used while the right two columns present the results when the quantile 

mapping method is used. Two reference periods were used (indicated as red vertical dashed lines): 1961-1990 period used in (a1) and (b1); 
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and 1991-2020 period used in (a2) and (b2). The moving 30-year estimates are presented for the time series. For the results of high-

temperature PG grade and pipe diameter, the horizontal lines indicate the selected increments with the moving 30-year estimates (y-axes 

present the available increments) while the vertical lines indicate the increases (or decreases) of the increments based on the historical 

observations and different projections.
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Similar to Figure 6 in the main text, the results of Figure S1 suggest that the post-processing 

techniques can improve the projection results, although these techniques are also subject to some 

limitations. While the quantile mapping moderately improved the alignment with the design 

values estimated from historical observations according to Figure S1, the change factor method 

can shift the design value estimates from the projections to the observation level more 

substantially. Some limitations of the post-processing techniques are evident in Figure S1, 

including the variations of results with different post-processing techniques (Cook et al. 2020), 

the inflated underlying future trends (Maraun 2013), the sensitivity to the selection of a reference 

period (Hawkins and Sutton 2016), and reducing the “added-values” (Karmalkar 2018) from 

downscaling methods. Notably, the raw GCM projections directly obtained from CanESM2, 

which exhibit significant model bias in Figure 4 in the main text, are comparable to the 

downscaled projections after post-processing in Figure S1. With the use of post-processing 

techniques, the differences between raw and downscaled GCM projections (and likely the added-

values from downscaling) were consequently reduced, especially for the change factor presented 

in Figure S1. Considering that both statistical downscaling and post-processing techniques 

modify the projections based on statistical methods and historical observations, one statistically 

downscaled projection product is likely sufficient when post-processing is applied, as also 

mentioned in the main text. Dynamically downscaled projections produced from RCMs may 

provide additional regional information but are relatively limited to the number of GCMs and 

scenarios compared to the LOCA or other statistically downscaled projections. 

Further, as presented in Figure 6 of the main text, one downscaled projection product (the LOCA 

projections) was assessed with the post-processing in order to compare and evaluate the results 

with different scenarios and GCMs. Similar to the findings in Figure S1, post-processing can be 
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useful to improve the alignment of the projections with the observations but can also be 

challenging. In Figure 6 of the main text, both the projection uncertainty from different GCMs 

and projected future trends were modified after applying with post-processing especially for 

RCP8.5. Compared to the results with no post-processing in Figure 5 of the main text, the 

uncertainty from different GCMs increased in Figure 6 of the main text especially for the 

precipitation-related case study in NYC. The selected high-temperature PG grades and pipe 

diameters generally are among the three increments, although the particular years for the 

increases of increment needed vary largely, suggesting large uncertainty in the projections. If 

different sources of uncertainties can be numerically combined (i.e., a sum of uncertainties from 

different GCMs, downscaling, future scenarios, and post-processing techniques as presented in 

Figures 6 of the main text and Figure S1), the uncertainty levels can be greater.  

On the other hand, for these two case studies, the increase of one or two increments (depending 

on the historical baseline) will likely be sufficient to withstand the projected future changes of 

temperature and precipitation up to 2100, although the projected years that require the increases 

of increment are subject to large uncertainty. Therefore, depending on engineering applications, 

an ensemble of GCM projections (avoiding individual model errors) to understand the necessary 

adaptation efforts needed is potentially of greater value than projections for a specific time 

period (which are subject to substantial uncertainty). In addition, other post-processing 

techniques that can better integrate the GCM projections with the historical observations are 

potentially needed. 
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Section S6. Future Development for Use of Climate Model Projections 

Research is in progress to improve the understanding on applying climate model projections 

(specifically for a particular climate-variable-related assessment or for assessment using different 

downscaling methods and different GCMs) and new versions of GCMs and downscaling 

products are being released in a continuous manner. To facilitate and incorporate the new 

information or new products of climate model projections in future engineering applications, 

some of ongoing research and studies are discussed in this section. The future development or 

improvement can potentially reduce the different stages of uncertainties with respect to the 

decisions involved, while the general procedures of applying climate model projections in Figure 

1 of the main text are expected to remain applicable with the new model projections or 

information.  

The first potential future development for engineering applications is the new phase of GCM 

projections. As also discussed in the main text, commonly used downscaled GCM projection 

products in the identified 50 engineering applications generally belong to CMIP5. The new 

source/phase of GCMs (phase 6, CMIP6; Eyring et al. 2016) has been released (Eyring et al. 

2016a; IPCC 2017). As analyzed in Figure 3 in the main text, some GCM results from CMIP6 

are available as of March 2021. One important development is the establishment of a new set of 

future socioeconomic scenarios – with different pathways considering socioeconomic changes – 

shared socioeconomic pathways (SSP; O’Neill et al. 2017), compared to the representative 

concentration pathways (RCPs) of CMIP5. Following the new phase of GCM projections, the 

new downscaled projection products are expected to be developed in the coming years, and 

promise to facilitate engineering applications with more recent climate model projections. Some 
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comparisons of the GCM projections between CMIP5 and CMIP6 for the two case locations 

(Los Angeles and New York City) are provided in Figure 3 of the main text. 

To address the uncertainty from different downscaling methods, research such as EU Validating 

and Integrating Downscaling Methods for Climate Change Research (VALUE) project (Jack and 

Katragkou 2019) is in progress and aims to fulfill the user needs of evaluating different 

downscaling methods. These studies can provide insight about which downscaling methods are 

more appropriate for which types of applications. According to the first-stage results from 

VALUE project (Maraun et al. 2018), different downscaling approaches have different relative 

characteristics and a careful evaluation or deep understanding of utilized downscaling techniques 

is important when applying to a particular application. 

Research is in progress to improve the understanding on the performance of different GCMs and 

reduce the uncertainty from the ensemble of different GCMs (Eyring et al. 2019). Earth System 

Model Evaluation Tool (ESMValTool; Eyring et al. 2016a) and Coordinated set of Model 

Evaluation Capabilities (CMEC; USDOE 2019) are some examples of GCM comparison and 

evaluation projects. Results of such effort can provide more guidance on questions like which 

GCMs can provide more accurate projections for which climate variables. Techniques such as 

multi-model weighting (Cannon 2015) and “Emergent Constraints” (Eyring et al. 2019) can be 

used to select the best performed GCMs or reduce uncertainty bounds during climate change 

impact assessments. Efforts such as the NOAA Regional Integrated Sciences and Assessments 

(RISA) program (Briley et al. 2020) and a USGS initiative (Terando et al. 2020), as also 

discussed in the main text, will help to bridge the gaps and to provide useful information on the 
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use of climate model projections in practical applications, e.g., the production of the “Consumer 

Report style” GCM documents (Briley et al. 2020). 

Providing improved regional climate change assessments especially for state and local levels has 

been widely discussed and progress is being made. Climate model projections have been 

increasingly used in state and local climate change assessment plans such as Austin TX (City of 

Austin 2018), Boston MA (City of Boston 2016), Indianapolis IN (City of Indianapolis 2019), 

and New York State (DeGaetano and Castellano 2017), as also described in the main text. Recent 

development such as “Science for Climate Action Network” (SCAN; Moss et al. 2019) has 

provided a non-federal platform for collaboration between different communities, especially in 

providing improved regional climate information and facilitating practitioners such as civil and 

environmental engineers. Discussions about improving regional climate projections for practical 

applications can also been found in a number of recent studies (e.g., Arnott et al. 2016; Bremer et 

al. 2019; Kirchhoff et al. 2019; Martel et al. 2021). Together with improvement in downscaled 

GCM projections, such efforts can further reduce the challenges for engineers to incorporate 

regional climate information in engineering practices. 
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