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S.1 Detailed Description of Model Setups

S.1.1 Machine Learning Models

The following gives a brief and somewhat simplified introduction to ourmachine learning
models; we refer to Gauch et al. [2019] for more details on our training procedures. We use
two types of models: the gradient-boosted regression tree (GBRT) framework XGBoost [Chen
and Guestrin, 2016] and a Long Short-Term Memory (LSTM) architecture [Hochreiter and
Schmidhuber, 1997]. Both models take as input the average temperature and total precipitation
of the previous thirty days, concatenated with static basin attributes (area, mean river slope and
length, mean basin slope, mean river bank width and depth, mean elevation, Manning’s river
flood plain coefficient, mean streamflow, Manning’s river channel coefficient, and a binary
variable indicating whether the basin is regulated). All inputs are lumped for each basin, and
we train one model on all basins combined.

GBRTare based on regression trees. Regression trees construct a directed, tree-like graph
during calibration. Each root-to-leaf path maps a distinct conjunction of input properties (e.g.,
(temp > 0) ∧ (precip > 0)) to a predicted streamflow value. To generate a prediction for
a given day, we search the path that evaluates to True for that day’s input and predict the
corresponding streamflow value. GBRT iteratively train multiple regression trees to predict
the previous iteration’s error and additionally apply regularization techniques.

The LSTM is a type of neural network that processes lumped time series. As we ingest
the time series, the network updates internal memory states that it considers when generating
predictions. Unlike process-based hydrologic models, these states do not have any semantic
interpretation but are learned by the model. To tune the network parameters (weights), we
generate predictions with the current weights, calculate their error, and update the parameters
to improve the predictions.

S.1.2 LBRM

The Large Basin RunoffModel (LBRM, described in Croley II [1983], with recent mod-
ifications described in Gronewold et al. [2017]) is a lumped conceptual model that propagates
daily precipitation and temperature into subbasin runoff. LBRM was developed by NOAA
Great Lakes Environmental Research Laboratory (GLERL) specifically for use in simulating
total runoff contribution to the Great Lakes. It is one of a suite of models run by the U.S. Army
Corps of Engineers – Detroit District for simulating historical runoff into the Great Lakes as
well as informing seasonal net-basin supply forecasts as part of the U.S. contribution to the
internationally coordinated 6-month forecast of Great Lakes water levels. LBRM is the only
rainfall-runoff model that is used operationally to produce forecasts of runoff for use in water
level forecasts on a seasonal to interannual basis. As it is configured at USACE-Detroit, the
model operates on 121 subbasins throughout the Great Lakes, 21 of which are located in the
Lake Erie basin. The Lake Erie subbasins range in size from 119 km2 to 16 806 km2.

For this study, LBRM’s nine parameters are calibrated for each Lake Erie subbasin using
a Dynamically Dimensioned Search algorithm (DDS) [Tolson and Shoemaker, 2007] encoded
within the Ostrich optimization software package [Matott, 2017]. The DDS algorithm is run
for 300 iterations for each of the 21 USACE subbasins simulating runoff for the period from
January 1, 2010 to December 31, 2014 while discarding the first year as warm-up. The RDRS
dataset was lumped to the subbasins and used as forcings. The objective during calibration
is to maximize the Nash-Sutcliffe Efficiency score between simulated subbasin runoff and
area-ratio-derived estimates of subbasin runoff provided by GLERL [Hunter et al., 2015].
This calibration is performed for each of the 21 USACE sub-basins. The Area-Ratio method
[Fry et al., 2014] is subsequently used to retrieve the hydrographs for the 46 objective 1 and
objective 2 streamflow gauges based on the 21 optimal USACE setups.
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S.1.3 Lumped and semi-distributed GR4J

The GR4J rainfall-runoff model is a parsimonious lumped model with four parameters
and is usually operated at a daily scale [Perrin et al., 2003]. This model has been widely
used in hydrologic modelling studies for both operational and investigative purposes, and it
has shown good performance in streamflow simulation [Seiller et al., 2017; Arsenault et al.,
2018; Wright et al., 2018]. The original GR4J model is comprised of a runoff production
store, a routing store and two unit hydrographs. Since the simulation of the snow processes
is necessary in this study, the original 4-parameter GR4J model was coupled with the Cema-
Neige snow module [Valéry et al., 2014]. This snow module simulates the snow cover and
snowmelt processes with two parameters. Further, the 6-parameter GR4J model is emulated
by the Raven model [Craig et al., 2020]. The GR4J model requires daily precipitation, air
temperature and potential evapotranspiration series as inputs. The potential evapotranspiration
is estimated using the Hargreaves equation. This empirical approach is based on the air
temperature and incoming solar radiation, where the incoming solar radiation is calculated
using the equation based on Dingman [2015]. In this study, there are two versions of the GR4J
model used in this study both emulated in Raven: (1) Lumped GR4J (GR4J-lp) model, which is
established at the lumped watershed scale, thus simulating hydrological processes for the entire
watershed. The GR4J-lp model ignores river channel routing process. (2) Semi-distributed
GR4J (GR4J-sd) model, which requires a discretization of watershed. It simulates the runoff
production processes within each sub-watershed independently, and then routes water from
sub-watersheds to the outlet. Since awatershed is discretized into several sub-watersheds based
on the topographical characteristics, river channel routing processes can be better simulated in
this model version for large watersheds. Meteorological forcing, i.e., daily precipitation and
air temperature, are aggregated from the grid-cell to sub-watershed scale based on the RDRS
data set (Table 2). The runoff production and potential evapotranspiration calculation in both
GR4J model versions are the same. The GR4J-lp model uses six parameters (four for the
original GR4J model and two for the snow module) for calibration. The Manning’s coefficient
of the river channel is additionally used in the GR4J-sd model for river routing calibration. In
this study, both the GR4J-lp and GR4J-sd are calibrated in the 46 catchments and validated in
seven catchments (Section S.2). A single-gauge calibration strategy is applied for the model
parameter calibration that the parameters are independently tuned in each catchment, and thus
yielding 46 different parameter sets after optimization. The Dynamically Dimensioned Search
(DDS) algorithm is employed to auto-calibrate model parameters [Tolson and Shoemaker,
2007]. The DDS is used here by employing the optimization software toolkit Ostrich [Matott,
2017]. The Nash-Sutcliffe efficiency (NSE) is utilized as the calibration objective function.
The auto-calibration at each catchment terminates when the maximum budget of 1000 model
evaluations is reached. The calibration at each catchment is repeated for ten independent trails
to eliminate the influence of randomness. The best result out of these ten trails is reported.

S.1.4 HYMOD2-DS

HYMOD [Boyle et al., 2000] is a conceptual hydrological model for catchment-scale
simulation of rainfall-runoff processes. The model uses precipitation and potential evapo-
transpiration (PET) as inputs to generate streamflow and actual evapotranspiration (AET) as
outputs. The model is based on the probability-distributed storage capacity concept of Moore
[1985], which represents the vertical soil moisture accounting process. The original HYMOD
is lumped in nature, where the horizontal routing is carried out by a Nash Cascade (leaky linear
reservoirs connected in series to represent surface and subsurface flows across the watershed)
and a leaky linear reservoir (to represent baseflow).

In this study, we used a modified version of the original HYMOD model. The soil
moisture accounting process is based on the new HYMOD2 [Roy et al., 2017], which has an
improved parameterization for the evaporation process. HYMOD2 is coupled with a river
routing model to be suitable for modeling a distributed watershed system as described in Wi
et al. [2015]. Additionally, we also coupled the Degree Day Snowmodel [Martinec, 1975] with
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HYMOD2 since snow is an important factor for several of the catchments under consideration.
PET is derived based on the Hamon method [Hamon, 1961], in which, daily PET is computed
as a function of daily mean temperature and hours of daylight. We call this modified model,
the HYMOD2-DS, where "DS" is used to denote the distributed version of HYMOD2. In this
version of the model, we calibrated a total of 12 parameters, one from the PET module, one
from the snow module, six from HYMOD2, and four from the routing module.

The model was calibrated using the Shuffled Complex Evolution (SCE) algorithm [Duan
et al., 1992] with two complexes. In total 25 loops equaling about 2000 model evaluations
are used as the calibration budget to minimize the mean squared error of each of the 46
sub-watersheds.

S.1.5 SWAT-EPA

The Soil and Water Assessment Tool (SWAT) model is a semi-distributed process based
hydrologic model considering the physical characteristics of the watershed including surface
elevation, soil type, land use, and factors affecting water routing within the watershed [Arnold
et al., 1993; Neitsch et al., 2011]. Moreover, it contains modules that simulate agricultural
activities such as irrigation and fertilization. Given that 74% of Lake Erie basin are covered
by agricultural cropland [of Canada, 2015; Survey, 2014] providing large quantity of nutrient
load into Lake Erie [Dolan and Chapra, 2012], we constructed a SWAT model to investigate
agriculture activity affects on stream water quality in Lake Erie basin. Streamflow as a part of
the output of the model was provided to GRIP-E project comparing with other hydrological
model. The model was setup by the co-authors at the U.S. Environmental Protection Agency
(EPA) and will be called SWAT-EPA hereafter.

In this project, ArcSWAT 2012.10.21 with SWAT Rev. 670 (https://swat.tamu.
edu/software/arcswat/) was used to construct a SWATmodelwith inputs shown inTable 3.
The Lake Erie basin was delineated based on a DEMwith area of 9057 ha. The study area was
divided into 176 sub-watersheds and contained 3398 Hydrological Response Units (HRUs)
based on soil type, land use, and slope length with thresholds of 5%, 5%, and 10%, respectively.
The model simulated daily stream flow from 2010 to 2014 with two years warming period.
Calibration process was achieved by using the SWAT-CUP SUFI2 algorithm [Abbaspour et al.,
2004]. The calibration process was performed on three gauge stations (04159492, 02GG006,
and 04213000) to maximize Nash-Sutcliffe Efficiency (NSE) [Nash and Sutcliffe, 1970] and
the fitted values were further applied to the rest of stations in objective 1. SWAT-EPA did not
contribute to objective 2.

S.1.6 SWAT-Guelph

Soil and Water Assessment Tool (SWAT) [Arnold et al., 1998] is a physically based,
semi-distributed continuous long-term simulation model developed by United States Depart-
ment of Agriculture (USDA). The model was setup by the co-authors at the University of
Guelph and will be called SWAT-Guelph hereafter. The model divides a watershed into
sub-basins which are further divided into hydrological response units (HRUs) – the compu-
tational units of the model. The conditioned HydroSHEDS digital elevation model (DEM)
with spatial resolution of 90m (https://hydrosheds.cr.usgs.gov/index.php) was used
to derive stream network and 699 sub-basins making sure that considered streamflow gaug-
ing location corresponds to a sub-basin. The Soil Landscapes of Canada (SLC) version
3.2 (http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/base.html) at 1:1million scale
was merged with the digital general soil map of the US (STATSGO), available at Arc-
SWAT database (https://swat.tamu.edu/software/arcswat/) at 250 m spatial reso-
lution to create a combined soil map. The soil map was overlaid with the Terra and Aqua
combined MODIS Land Cover Type (MCD12Q1) version 6 (https://lpdaac.usgs.gov/
dataset_discovery/modis/modis_products_table/mcd12q1_v006) with spatial reso-
lution of 500 m, and the DEM derived slope map to create 7777 HRUs. In the next step, the
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Regional Deterministic Reforecast System (RDRS) based daily precipitation, maximum and
minimum temperature, solar radiation, relative humidity and wind speed data were used to
create a functional SWAT model. The Curve number (CN) method [USDA-SCS, 1986] was
used to calculate surface runoff and infiltration. Similarly, Penman-Monteith equation was
used to calculate evapotranspiration and variable storage routing [Williams, 1969] was used
to channel routing. The SWAT-CUP and its SUFI2 algorithm [Abbaspour et al., 2004] was
used to conduct multi-site calibration of 17 model parameters known to influence streamflow
in similar watershed [Zhang et al., 2018] in a daily time step, considering Nash-Sutcliffe Ef-
ficiency (NSE) [Nash and Sutcliffe, 1970] as the objective function. In the process, a single
iteration of 2000 model runs was conducted.

It need to be noted that some model parameters in SWAT are global (e.g., SMTMP.bsn)
while others are local (e.g., SURLAG.hru). This is leading to the fact that validation results
for the same station depend on the objective meaning that two validation time series for the
same station can be derived. This can be seen, for example, in Fig. 2C and 2D of the main
manuscript where the performance of the stations is different for the two objectives.

S.1.7 mesoscale Hydrologic Model (mHM)

The mesoscale Hydrologic Model (mHM) [Samaniego et al., 2010; Kumar et al., 2013]
is a distributed hydrologic model that use grid cell as a primary hydrologic unit and accounts
for variety of hydrologic processes including canopy interception, root-zone soil moisture, in-
filtration, evapotranspiration, runoff generation as well as river flows along the stream network
[Thober et al., 2019]. mHM reached the technology readiness level 9 with the Copernicus Cli-
mate Change Service proof-of-concept (pre-operation) project EDgE [Samaniego et al., 2020].
This model is also used operationally in the German Drought Monitor [Zink et al., 2016]. The
model is forced with the daily gridded fields of at least precipitation, and minimum/ maximum
temperature. mHM provides several evapotranspiration (PET) parameterization that depend
on the data availability (e.g., Hargreaves-Samani, Penman-Monteith, Priesley-Taylor). It uses
a novel multiscale parameter regionalization (MPR) scheme to account for the sub-grid vari-
ability of basin physical properties that allows for the seamless predictions of water fluxes
and storages at different spatial resolutions and ungauged locations [Rakovec et al., 2016;
Samaniego et al., 2017]. The model has been extensively evaluated in several studies, the code
is open source, available on online repository git.ufz.de/mhm.

mHM was run in two versions with efforts combining two different organizations –
hereafter named as “mHM-Waterloo” and “mHM-UFZ”. While the both model versions uses
the same source code (www.ufz.de/mhm; release version 5.10), they differ in their usages of
underlying basins physiographical data-sets (see Table 3 for more details) and in general model
set-ups. The main difference between the two models is the parameters estimation approach.
In mHM-Waterloo the transfer parameters are estimated for each basin independently whereas
in the mHM-UFZ, they are found as a compromise solution for all basins. Another reason
of different model performances is the selection of the datasets used to setup the models (see
Table 2 in the main manuscript). The “mHM-Waterloo” version was established for each
basin separately with parameters being specifically calibrated to each study basin; whereas
the “mHM-UFZ” was established as a regional model with a single set of model parameters
being applicable to each individual group of study basins (i.e., objective 1 and objective 2). In
this way, we designated the “mHM-Waterloo” version more to the lumped category (i.e., basin
specific) and “mHM-UFZ” to the distributed one. Both model versions were calibrated using
Nash-Sutcliffe Efficiency (NSE) as the objective functions and the Dynamically Dimensioned
Search (DDS) [Tolson and Shoemaker, 2007] as the optimization algorithm with 1000 model
iterations. The model in general has up to 50 free calibration parameters; however a controlled
calibration experiment carried out by [Rakovec et al., 2019] showed similar performance of
mHM over 492 US basins using the full range calibration parameters and subset of randomly
selected 14 parameters.
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S.1.8 HYPE

The Hydrological Predictions for the Environment (HYPE) model is an operational
hydrologic model developed at the Swedish Meteorological and Hydrological Institute. HYPE
includes hydrological processes above ground, land routines and deep processes such as
snow/ice accumulation and melt, evapotranspiration, soil moisture of up to three soil layers
and flow paths, frozen soil infiltration, groundwater movement and aquifer recharge, surface-
water routing through rivers and lakes, and human perturbations through diversion, reservoirs,
regulation, irrigation and water abstractions [Lindström et al., 2010]. Though HYPE is more
conceptual in nature, it operates at a sub-basin scale and integrates physiographic characteristics
related to elevation, land cover/land use, and soil types which control the spatial variation of
the processes represented. HYPE is used for operational hydrological forecasts in Europe
[Pechlivanidis et al., 2014] and was also adapted for large-scale applications across climate
regions [Arheimer et al., 2020; Bajracharya et al., 2020; Pechlivanidis and Arheimer, 2015;
Strömqvist et al., 2009]. The initial set of parameters used for the development of the HYPE
model for the Lake Erie Basin is taken from the Arctic-HYPE configuration described in
Stadnyk et al. [2020]. We usedHYPEversion 5.7.0 available at https://sourceforge.net/
projects/hype/files/. An objective function is optimized for multiple stations using daily
streamflow and a composite criterion combining the average of the Nash-Sutcliffe efficiencies
of selected sub-basins and the average of their relative bias. Thus, a stepwise automatic
calibration approach based on the Differential Evolution Markov Chain method [Braak, 2006]
is employed to derive a set of optimal values for the model parameters. These parameters
are general or linked to land use/land cover and soil types. The HYPE model code is open
source and supported by wiki documentation (http://www.smhi.net/hype/wiki/doku.
php?id=start) and users’ discussion forum.

S.1.9 VIC

The Variable Infiltration Capacity (VIC) model is a macro-scale distributed hydrological
model that balances both thewater and surface energy budgets [Liang et al., 1994; Liang, 2003].
This model has been extensively applied in hydrology such as streamflow simulation [Reed
et al., 2004; Gao et al., 2010; Livneh et al., 2013]. VIC simulates land surface-atmospheric
fluxes of moisture and energy such as evapotranspiration, surface runoff, baseflow, radiative
fluxes, turbulent fluxes of transport, and sensible heat within the grid-cell. The gridded
runoff components, comprising surface runoff and baseflow, are then routed to the basin
outlet. In this study, the image version 5.1.0 of VIC model is used, which can be retrieved
at https://vic.readthedocs.io/en/master/Development/ModelDevelopment. The
VIC model is built for the RDRS forcing grid-cells with a resolution of 15 km × 15 km in
the Lake Erie basin. The DEM, soil, and land cover data specified in Table 3 are utilized
for VIC parameterization. These data are all aggregated to the 15 km grid-cell scale. In
addition, VIC requires sub-daily meteorological drivers from the RDRS forcing data set, i.e.
precipitation, air temperature, atmospheric pressure, incoming shortwave radiation, incoming
longwave radiation, vapor pressure, and wind speed. Since the VIC version 5.1.0 does not
internally contain a routing module, the Raven model is employed as an independent routing
module for the VIC. The VIC-generated runoff and baseflow fluxes at the grid-cell scale are
first aggregated to the sub-watershed scale, and then routed to the catchment outlet in terms
of hillslope routing and river channel routing processes. There are multiple user-calibrated
parameters in VIC model furnished by Gao et al. [2010]. In this study, seven parameters are
selected for model calibration based on Xie et al. [2007] and Wen et al. [2011]. The seven
parameters selected are the exponent of the variable infiltration capacity curve 1, the maximum
velocity of baseflow �B<0G , fraction of �B<0G where non-linear baseflow begins �B, fraction
of maximum soil moisture where non-linear baseflow occurs,B, thickness of the top thin layer
31, the middle layer 32, and the bottom layer 33. More details of the parameter definitions
and value ranges can be found in Gao et al. [2010]. In this study, the VIC model is calibrated
in 46 catchments and validated in seven catchments (Section S.2). A global gauge calibration
strategy is applied for the model parameter calibration that the parameters are concurrently
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tuned in each catchment, thus yielding only one parameter set after optimization. The VIC
model is auto-calibrated using Ostrich [Matott, 2017] using the Dynamically Dimensioned
Search algorithm (DDS) [Tolson and Shoemaker, 2007]. The median Nash-Sutcliffe efficiency
(NSE) of streamflow at the 46 calibration stations is utilized as the calibration objective
function. The global auto-calibration terminates when the maximum allowable limit of 1000
model evaluations is reached. To eliminate influence of randomness in calibration and take
into account the computational burden, five trials are applied in the global calibration. The
best result out of the five trials is reported.

S.1.10 VIC-GRU

VIC-GRU is a vector-based implementation of the VIC model using the concept of
Grouped Response Units (GRUs). Traditionally, the VIC model is set up at grid scale while
sub-grid variability and spatial extents are smeared. VIC-GRU instead is set up for the exact
spatial extent of units that are identified to have similar soil type or vegetation cover.

For the Lake Erie basin and given the soil and land cover classes, eight GRUs are
identified that can be classified with four soil types on two general land cover of forested
and non-forested areas. When the GRUs are forced at the resolution of the RDRS data set it
results in 2380 computational units. The model then simulates the states and fluxes for each
computational unit. A full description of VIC-GRU implementation is provided by Gharari
et al. [2020]. VIC-GRU includes representation of subsurface preferential flow to further
enhance the model capabilities to reproduce flashier hydrographs [Gharari et al., 2019]. For
the routing model, the mizuRoute stand-alone routing model is used [Mizukami et al., 2016].
The computational units output have been passed to the sub-basins and are then routed.

The model is calibrated to maximize the sum of NSE values for all the available gauges
for calibration (Sec. S.2). The ten parameters representing the variable infiltration capacity,
saturated hydraulic conductivity, slope of water retention curve, depth of the soil layer (first
and second layers), fraction of subsurface macropore water movement, baseflow coefficient,
LAI and stomatal resistance scaling factor, depth scaling factor for the vegetated areas which
are none-forested in comparison to the forested area are calibrated. For the routing model,
velocity and diffusivity are also calibrated as they are often sensitive parameters in large scale
modeling [Haghnegahdar and Razavi, 2017]. The calibration is perform with total budget of
1000 simulations using the genetic algorithm by Yoon and Shoemaker [2001] provided in the
Ostrich framework [Matott, 2017].

S.1.11 GEM-Hydro, MESH-SVS, and MESH-CLASS

GEM-Hydro is a physically-based, distributed hydrologic model developed at Environ-
ment and Climate Change Canada (ECCC). It relies on GEM-Surf [Bernier et al., 2011] to
represent five different surface tiles (glaciers, water, ice over water, urban, land). The land tile
is represented with the SVS (Soil, Vegetation and Snow) Hydrologic Land Surface Scheme
(HLSS). See Alavi et al. [2016] and Husain et al. [2016] for more information on SVS. GEM-
Hydro also relies onWatroute [Kouwen, 2010], a 1-DHydraulic model, to perform 2-D channel
and reservoir routing. See Gaborit et al. [2017] for more information on GEM-Hydro.

MESH (Modélisation Environnementale communautaire - Surface and Hydrology) is a
complimentary community hydrologic modelling platform maintained by ECCC [Pietroniro
et al., 2007]. The MESH framework includes SVS among its HLSSs, as well as the Canadian
LAnd Surface Scheme (CLASS) [Verseghy, 2000]. CLASS is another model developed at
ECCC and used in the Canadian Global Climate Model (GCM). Within MESH and GEM-
Hydro, the HLSS is responsible for coupled energy andwater balance in the vertical dimension,
while Watroute is used for routing the runoff, lateral flow and drainage generated by the HLSS
from one grid cell to the next through a 2-D horizontal grid. MESH can operate in distributed
and semi-distributed modes.
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One significant difference between CLASS and SVS is that CLASS discretizes the soil
in vertical layers for both soil moisture and temperature whereas the version of SVS used here
relies on a Force-Restore method for predicting soil and snow temperature, relying on a vertical
discretization of the soil only for representing the soil moisture profile and fluxes. Because of
this, the soil layer discretization used for the energy balance is the same as used for the water
balance in CLASS, while it is simplified to two layers, representing a thin near-surface soil
and thick deep soil, for the energy balance in SVS. The version of SVS used in this study does
not represent soil freezing and thawing processes, while CLASS does. The implementation
of CLASS in MESH includes sloped hydrology, which is not included in the CLASS version
of the Canadian GCM. Both CLASS and SVS use the same multi-layer soil discretization and
algorithms for sloped interflow calculations but additionally sloped CLASS includes overland
runoff routing to an assumed river within each grid cell [Soulis et al., 2011]. When computing
the energy balance, both CLASS and SVS partition a grid cell into four subareas, based on the
presence or absence of snow and of tall vegetation. However, CLASS includes more detailed
physics for the energy and water budget in the presence of vegetation, as it computes a separate
energy budget for the canopy and accounts for interception of rain and snow by the vegetation.
While SVS has more vegetation classes to choose from with parameters stored in look-up
tables, CLASS has only four vegetation sub-types (in addition to urban and barren land) and
different parameters have to be assigned if sub-classes of these are to be distinguished (e.g.
SVS has different classes for crops such as rice, cotton, etc. while CLASS has one cropland
canopy type and to differentiate by crop type, one needs to create separate GRUs with different
parameters for each).

In this work, two MESH configurations are used, one emulating GEM-Hydro with SVS
as the HLSS (called “MESH-SVS"), and one using CLASS as the HLSS (called “MESH-
CLASS"). MESH is distinguished from GEM-Hydro as it can be run outside of ECCC’s
computational infrastructure (i.e. in stand-alone mode), which however means that MESH
cannot be run in a fully-coupled mode with the GEM 3-D atmospheric model. Therefore,
MESH-SVS requires less computation time than GEM-Hydro to run hydrologic experiments
over small to medium-sized basins, because GEM-Hydro is a component of a much larger
modelling infrastructure and system. Moreover, when usingSVS,MESHcan only represent one
(the land) out of the five surface tiles represented in GEM-Surf. Because of these differences,
GEM-Hydro and MESH-SVS are treated here as two different hydrological models.

MESH-SVS was used to calibrate SVS and Watroute parameters, some of which were
then transferred into GEM-Hydro (see further). Despite the above differences betweenMESH-
SVS and GEM-Hydro, simulation differences in terms of total Lake Erie daily inflow (see
further down) were judged to be within an acceptable margin between the two platforms, thus
justifying the methodology employed here.

The geophysical databases used for the HLSS in GEM-Hydro and MESH-SVS consist
of the Gridded Soil Dataset for Earth System modelling (GSDE, 1 km resolution, eight layers
reaching a total depth of 2.3m, see [Shangguan et al., 2014] for soil texture, the ESA CCI LC
2015 Global Map (European Space Agency Climate Change Initiative Land Cover) for land
cover (300 m resolution), and the USGS 1 km GTOPO30 Digital Elevation Model to derive
surface and soil slopes. The 30 arcsec (1 km) HydroSHEDS dataset [Lehner et al., 2008] was
used to derive 1 km flow directions, drainage areas, and channel properties for Watroute in
both models. The same databases were used for MESH-CLASS except that the eight GSDE
soil layers were aggregated to four to avoid too thin layers (< 10 cm thick) that can cause
numerical instabilities and then another fifth layer was added to reach a depth of 5.5 m by
repeating the properties of the last GSDE layer. Additionally, the depth to bedrock (or depth
of permeable layer - (��%) was derived for MESH-CLASS from the spatially distributed
dataset by Shangguan et al. [2017]. For most grid cells, the (��% was below the modelled
soil column. The threemodels employed here (MESH-SVS,MESH-CLASS, andGEM-Hydro)
use a 5 arcmin resolution (≈ 10 km) for the surface part, and a 30 arcsec resolution (≈ 1 km)
for the routing. For MESH-SVS, the routing was run using two different resolutions: a 10 km
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resolution was used during calibration, while a 1 km resolution was used to perform the final
run, in order to obtain more realistic hydrology at streamflow gauge locations. Running the
routing at a 10 km resolution resulted in some significant inaccuracies in terms of river network
delineation but allowed to save a significant amount of computation time and led to similar
streamflow simulations in terms of total daily inflows to Lake Erie. In total, 14 SVS parameters
were calibrated usingMESH-SVS following themethodology employed inGaborit et al. [2017]
using a maximum of 300 simulations. Four Watroute parameters were also calibrated: two
baseflow parameters, and two types of Manning coefficients. This methodology consists of a
global calibration strategy (see Gaborit et al. [2015]), since the same calibrated parameter set
is then used for all subbasins of the Lake Erie watershed. These calibrated parameters were
then transferred to GEM-Hydro, except the Manning coefficients. Indeed, MESH can only
use fixed values for Manning coefficients and a given river class, while GEM-Hydro can use
temporally and spatially-varying Manning coefficients which vary for each grid cell according
to slope, vegetation, and month of the year to account for vegetation growth and potential ice
effects. Since these default variable Manning coefficients led to better performances than the
fixed, calibrated values, the former were preserved in the final GEM-Hydro setup. The total
daily Lake Erie inflows were used as the objective function to calibrate MESH-SVS, which
consists of the Nash-Sutcliffe efficiency criterion. The time-series of observed daily inflows to
Lake Erie were estimated based on the total observed streamflow entering the lake, which were
then extrapolated using the Area-Ratio-Method (ARM, see Fry et al. [2014]) to account for
ungauged areas of the Lake Erie watershed. Inflows from Saint-Claire River were disregarded
to ignore the influence of the other upstream Great Lakes.

For MESH-CLASS, the routing was run at the 1 km resolution. Some manual editing
of drainage directions was necessary to bring the drainage areas of most sub-basins inline
with reported areas (by WSC and USGS). The model was calibrated to the time-series of
observed daily streamflow at 35 stations designated to be the most downstream ones. The
basin was masked for the watersheds corresponding to those gauges to reduce the calibration
run time. Calibrations of HLSS and routing parameters were done independently in two
stages. First, selected HLSS parameters for dominant GRUs (broadleaf forest, short grass,
long grass, crops and urban) were calibrated (70 in total) to minimize the sum of absolute
percent bias (

∑ |%���( | → "8=) across all stations to ensure the water balance is closed to
within acceptable limits. The calibration started with 49 stations (all most downstream) but the
number of stations was later reduced because the aggregation led to sub-optimal performance
for most stations as the optimizer kept trying to improve the least performing ones similar
to what is reported above for VIC-GRU. The calibration budget was initially assigned 5000
iterations but was later increased to 12 000 because some of the parameter combinations
crashed and convergence was slow due to the large number of parameters. For this second
calibration attempt with 35 stations, the best performing parameter sets from the 49 one were
used to speed up the process further.

Then, routing parameters were calibrated using the Nash-Sutcliffe and Kling-Gupta
efficiency (KGE) criteria (as alternatives) with a budget of 5000 model evaluation for each.
The KGE calibration resulted in slightly better NSE values for most gauges. A total of 25
routing parameters were calibrated. These are roughness coefficients for overland flow for the
five dominant GRUs in additional to roughness and baseflow parameters for five river classes.
River classes were introduced in the MESH-CLASS setup to improve the representation of
spatial variability of channel roughness as small rivers are generally different from large ones,
especially with the lack of temporal variability. The classes were assigned based on visual
analysis of the histogram of the “bankfull” capacity of river channels (log-transformed to
reduce the range) which is direct function of the cumulative drainage area (DA) at each grid
cell. The larger the value of DA, the larger the value of bankfull and thus the larger the river.
Arbitrary thresholds were applied to the histogram to differentiate the river classes but this can
be done more objectively using quantiles as done for the Yukon river basin by Elshamy et al.
[2020]. Routing parameters could interact with HLSS parameters but the impact was assessed
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by comparing the PBIAS values before and after calibrating the routing and differences are
negligible.

To perform the calibrations of both MESH configurations, the Ostrich toolkit was used
[Matott, 2017], using the Dynamically Dimensioned Search algorithm (DDS) [Tolson and
Shoemaker, 2007]. More information on application of MESH-CLASS for the entire Great
Lakes can be found in Haghnegahdar et al. [2014] and Xu et al. [2015].

S.1.12 WATFLOOD

The WATFLOOD model was first created in 1973 and is a partially physically-based,
distributed hydrological model which has been used for not only long flood forecasting, but also
for long-term hydrological simulation of watersheds for such applications as climate change
[Kouwen, 1988]. The model was designed to run using the easily available input variables of
temperature and precipitation. These input variables can be derived from station data, weather
radar, numerical weather models, or climate change scenarios.

The hydrological processes modelled in WATFLOOD include, but are not limited to,
interception, infiltration, evaporation, snow accumulation and ablation, interflow, recharge,
baseflow, and overland and channel routing. The most important concept of WATFLOOD is
the grouped response unit (GRU) approach which is a conceptual grouping of land surface
areas with similar land use that are expected to have similar hydrological response. The runoff
response from each unit with an individual GRU is calculated and routed downstream [Cranmer
et al., 2001]. River channels are classified allowing for different flow characteristics depending
on the nature of the river channel. WATFLOOD computes infiltration using the Philip formula,
which represents physical aspects of the infiltration process.

WATFLOOD has been employed by over the Great Lakes basin [Pietroniro et al., 2007]
and other basins across Canada [Bomhof et al., 2019; Unduche et al., 2018]. The format of
the land surface characteristics database for WATFLOOD was designed to be the same as
for the GEM-Hydro model described in the previous section. Thus for this study the same
geophysical databases were used for soil texture, land cover, slope, flow direction, drainage
area, and channel properties.

The version of the WATFLOOD model used for this study was 9.8 and it was calibrated
at a 10 km resolution using all the stations in the calibration list (Section S.2) at the same
time. This resolution was chosen to reduce the computation needed for the calibration.
The parameters that were calibrated were coefficients related to flow between the different
storages (i.e., surface to upper zone to lower zone), snowmelt, evaporation, and river channel
roughness. The Nash-Sutcliffe efficiency criterion was used as the objective function for
the calibration. The Ostrich toolkit was used for all calibrations [Matott, 2017], using the
Dynamically Dimensioned Search algorithm (DDS) [Tolson and Shoemaker, 2007] with a
maximum of 500 iterations. Final streamflow was then calculated using the 1 km version of
the geophysical database.

S.2 Information on Gauge Stations for Calibration and Validation

Table S1 lists all gauge stations in the Lake Erie watershed used for this study. The
spatial distribution can be found in Fig. 1A and 1B in the main manuscript.
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Table S1. Gauges used for calibration and spatial validation in this study. The location, drainage
area, country, regulation, gauge name, and ID are given as well as if the station is used for objec-
tive 1 (low-human impact) and/or objective 2 (most-downstream gauges). In total 46 stations are
used for calibration (28 for objective 1 and 31 for objective 2; 13 gauges in both objectives) and 7
stations are used for validation (all stations used for both objectives).

Gauge ID Gauge Name Ctry Lat Lon Area Regu- Obj. Cal. Val.
[deg] [deg] [km2] lation 1 2

02GA010 NITH RIVER NEAR CANNING CA 43.1897 -80.4550 1030.0 Natural x x
02GA018 NITH RIVER AT NEW HAM-

BURG
CA 43.3772 -80.7108 544.0 Natural x x

02GA038 NITH RIVER ABOVE NITH-
BURG

CA 43.4839 -80.8350 326.0 Natural x x

02GA047 SPEED RIVER AT CAMBRIDGE CA 43.4219 -80.3327 762.0 Natural x x
02GC010 BIG OTTER CREEK AT TILL-

SONBURG
CA 42.8573 -80.7236 354.0 Natural x x

02GD004 MIDDLE THAMES RIVER AT
THAMESFORD

CA 43.0591 -80.9949 306.0 Natural x x

02GG002 SYDENHAM RIVER NEAR
ALVINSTON

CA 42.8308 -81.8517 701.0 Natural x x

02GG006 BEAR CREEK NEAR PETROLIA CA 42.9058 -82.1191 249.0 Natural x x
04159492 BLACK RIVER NEAR JEDDO

MI
US 43.1525 -82.6241 1197.8 Natural x x

04161820 CLINTON RIVER AT STERLING
HEIGHTS MI

US 42.6145 -83.0266 802.8 Natural x x

04164000 CLINTON RIVER NEAR
FRASER MI

US 42.5773 -82.9513 1143.0 Natural x x

04166100 RIVER ROUGE AT SOUTH-
FIELD MI

US 42.4478 -83.2977 224.3 Natural x x

04196800 TYMOCHTEE CREEK AT
CRAWFORD OH

US 40.9228 -83.3488 608.1 Natural x x

04197100 HONEY CREEK AT MELMORE
OH

US 41.0223 -83.1096 388.2 Natural x x

04207200 TINKERS CREEK AT BEDFORD
OH

US 41.3845 -81.5273 222.1 Natural x x

02GB007 FAIRCHILD CREEK NEAR
BRANTFORD

CA 43.1474 -80.1546 389.0 Natural x x x

02GC002 KETTLE CREEK AT ST.
THOMAS

CA 42.7777 -81.2140 331.0 Natural x x x

02GC018 CATFISH CREEK NEAR
SPARTA

CA 42.7461 -81.0569 295.0 Natural x x x

02GE007 MCGREGOR CREEK NEAR
CHATHAM

CA 42.3835 -82.0951 204.0 Natural x x x

02GG003 SYDENHAM RIVER AT FLO-
RENCE

CA 42.6506 -82.0084 1150.0 Natural x x x

02GG009 BEAR CREEK BELOW BRIG-
DEN

CA 42.8120 -82.2984 536.0 Natural x x x

02GG013 BLACK CREEK NEAR BRAD-
SHAW

CA 42.7624 -82.2592 213.0 Natural x x x

04159900 MILL CREEK NEAR AVOCA MI US 43.0545 -82.7346 438.7 Natural x x x
04160600 BELLE RIVER AT MEMPHIS MI US 42.9009 -82.7691 390.9 Natural x x x
04165500 CLINTON RIVER AT MORA-

VIAN DRIVE AT MT. CLEMENS
MI

US 42.5959 -82.9088 1892.6 Natural x x x

Continued on next page
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Table S1 – Continued from previous page
Gauge ID Gauge Name Ctry Lat Lon Area Regu- Obj. Cal. Val.

[deg] [deg] [km2] lation 1 2
04177000 OTTAWA RIVER AT UNIVER-

SITY OF TOLEDO TOLEDO
OH

US 41.6597 -83.6125 343.8 Natural x x x

04208504 CUYAHOGA RIVER NEAR
NEWBURGH HEIGHTS OH

US 41.4626 -81.6810 2043.6 Natural x x x

04213000 CONNEAUT CREEK AT CON-
NEAUT OH

US 41.9270 -80.6040 455.3 Natural x x x

02GB001 GRAND RIVER AT BRANT-
FORD

CA 43.1327 -80.2673 5200.0 Regulated x x

02GC007 BIG CREEK NEAR WALSING-
HAM

CA 42.6856 -80.5385 567.0 Regulated x x

02GC026 BIG OTTER CREEK NEAR
CALTON

CA 42.7107 -80.8408 665.0 Regulated x x

04166500 RIVER ROUGE AT DETROIT MI US 42.3723 -83.2555 476.0 Regulated x x
04174500 HURON RIVER AT ANN AR-

BOR MI
US 42.2861 -83.7333 1928.2 Regulated x x

04176500 RIVER RAISIN NEAR MONROE
MI

US 41.9606 -83.5310 2686.0 Regulated x x

04193500 MAUMEE RIVER AT WATER-
VILLE OH

US 41.5001 -83.7127 16409.4 Regulated x x

04195820 PORTAGE RIVER NEAR EL-
MORE OH

US 41.4912 -83.2246 1266.2 Regulated x x

04198000 SANDUSKY RIVER NEAR
FREMONT OH

US 41.3078 -83.1588 3243.8 Regulated x x

04199000 HURON RIVER AT MILAN OH US 41.3017 -82.6068 947.4 Regulated x x
04199500 VERMILION R NR VERMILION

OH
US 41.3820 -82.3168 672.4 Regulated x x

04200500 BLACK RIVER AT ELYRIA OH US 41.3803 -82.1046 1026.9 Regulated x x
04209000 CHAGRIN RIVER AT

WILLOUGHBY OH
US 41.6309 -81.4034 637.4 Regulated x x

04212100 GRAND RIVER NEAR
PAINESVILLE OH

US 41.7189 -81.2279 1784.9 Regulated x x

04213500 CATTARAUGUS CR AT
GOWANDA NY

US 42.4640 -78.9350 1128.8 Regulated x x

04214500 BUFFALO CREEK AT GAR-
DENVILLE NY

US 42.8548 -78.7550 368.4 Regulated x x

04215000 CAYUGA CREEK NR LAN-
CASTER NY

US 42.8901 -78.6450 248.0 Regulated x x

04215500 CAZENOVIA CREEK AT
EBENEZER NY

US 42.8298 -78.7750 350.7 Regulated x x

02GE003 THAMES RIVER AT
THAMESVILLE

CA 42.5449 -81.9673 4370.0 Regulated x x x

04167000 MIDDLE RIVER ROUGE NEAR
GARDEN CITY MI

US 42.3481 -83.3116 229.5 Regulated x x x

04168000 LOWER RIVER ROUGE AT
INKSTER MI

US 42.3006 -83.3002 219.2 Regulated x x x

04185000 Tiffin River at Stryker OH US 41.5045 -84.4297 1061.9 Natural x x x
04195500 PORTAGE R AT WOODVILLE

OH
US 41.4495 -83.3613 1108.5 Regulated x x x

04201500 ROCKY R NR BEREA OH US 41.4075 -81.8826 691.5 Regulated x x x
04208000 CUYAHOGA R AT INDEPEN-

DENCE OH
US 41.3953 -81.6298 1831.1 Regulated x x x
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S.3 Model Performance per Model and Objective

Table S2 summarizes the model performances as median Nash-Sutcliffe Efficiency over
all gauges for each model. The results are shown for both objectives and for a default model
setup and the final model setup after calibration. The calibration results are shown as a barchart
in Fig. 3A in the main manuscript. The results per gauge station are shown in Fig.s 2A and
2B of the main manuscript. The validation results are shown as a barchart in Fig. 3B in the
main manuscript. The results per gauge station are shown in Fig.s 2C and 2D of the main
manuscript.

S.4 Model Performance regarding other metrics

All models are primarily analysed regarding the Nash-Sutcliffe efficiency. However,
other metrics were tested but are not presented in the main manuscript as they did not yield any
further insight. The auxiliary metrics tested are percent bias (PBIAS; Figure S1), Kling-Gupta
Efficiency (KGE; Figure S2), and the three components of the Kling-Gupta Efficiency, i.e.
relative variability (KGE_a; Figure S3), bias (KGE_b; Figure S4), and Pearson Correlation
Coefficient (KGE_r; Figure S5).
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Fig. S1. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the percent
bias (PBIAS) per gauge and model while the median PBIAS over all gauging stations is displayed
to the right. The black horizontal lines separate i) Machine Learning models from ii) models that
are calibrated at each individual streamflow gauge from iii) models that are calibrated over the
entire domain calibrating all streamflow gauges simultaneously. The hatched tiles (validation only)
mark gauging stations that have informed the calibration of the corresponding models.
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Table S2. Model performance as median Nash-Sutcliffe efficiency (NSE) over all gauges for each
model in either pre-calibration (Def.) mode or after calibration (Cal.) or spatial validation (Val.)
for both objectives considered in this study. Major improvements of all models were achieved
by the automatic calibration. All models calibrated at individual gauges (local calibration; e.g.,
GR4J, LBRM, mHM-Waterloo) outperform the models that are calibrated at all N gauging stations
together (global calibration; e.g., mHM-UFZ, GEM-Hydro). The latter leads to one final model
setup (one parameter set) while the individual calibrations lead to N model setups (N parameter
sets) and are hence more difficult to be transferred to other domains. Best performing models in
each of the three groups are highlighted with bold font. LBRM and MESH-CLASS used some of
the validation stations already in calibration. These results can therefore not be considered proper
validation results and are indicated with an asterisk (∗).

Objective Objective 1: Objective 2:
low-human impact most downstream

Model Modeller Phase Def. Cal. Val. Def. Cal. Val.

ML-LSTM Gauch & Lin Global calib. n/a 0.73 0.41 n/a 0.54 0.41
ML-XGBoost Gauch & Lin Global calib. n/a 0.37 0.17 n/a 0.22 0.17

LBRM Fry & Bradley Local calib. 0.41 0.66 0.70∗ 0.57 0.72 0.70∗

GR4J-Raven-lp Shen & Tolson Local calib. 0.08 0.63 0.50 0.07 0.67 0.50
GR4J-Raven-sd Shen & Tolson Local calib. 0.07 0.64 0.44 0.06 0.67 0.44
HYMOD2-DS Roy & Wi Local calib. -1.52 0.74 0.59 -0.19 0.73 0.59
SWAT-EPA Ni & Yuan Local calib. -0.17 0.19 n/a -0.22 n/a n/a
SWAT-Guelph Shrestha & Daggu-

pati
Local calib. -0.19 0.55 0.26 -0.39 0.59 0.23

mHM-Waterloo McLeod, Kumar &
Basu

Local calib. 0.35 0.76 0.68 0.37 0.78 0.68

mHM-UFZ Rakovec,
Samaniego &
Attinger

Global calib. 0.24 0.66 0.64 0.27 0.67 0.60

HYPE Awoye & Stadnyk Global calib. 0.08 0.52 0.41 0.08 0.48 0.41
VIC Shen & Tolson Global calib. 0.22 0.41 0.53 0.37 0.43 0.51
VIC-GRU Gharari Global calib. -0.11 0.42 0.51 0.10 0.43 0.51
GEM-Hydro Gaborit Global calib. 0.38 0.51 0.54 0.36 0.44 0.54
MESH-SVS Gaborit & Princz Global calib. 0.33 0.44 0.58 0.33 0.45 0.58
MESH-CLASS Haghn., Elshamy &

Princz
Global calib. -0.05 0.34 0.51∗ 0.16 0.40 0.51∗

WATFLOOD Seglenieks &
Temgoua

Global calib. -1.09 0.33 0.05 -0.50 0.32 0.05
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Fig. S2. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the Kling-
Gupta Efficiency (KGE) per gauge and model while the median KGE over all gauging stations
is displayed to the right. The black horizontal lines separate i) Machine Learning models from
ii) models that are calibrated at each individual streamflow gauge from iii) models that are cali-
brated over the entire domain calibrating all streamflow gauges simultaneously. The hatched tiles
(validation only) mark gauging stations that have informed the calibration of the corresponding
models.
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Fig. S3. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the relative
variability (KGE_a) per gauge and model while the median KGE_a over all gauging stations is
displayed to the right. The black horizontal lines separate i) Machine Learning models from ii)
models that are calibrated at each individual streamflow gauge from iii) models that are calibrated
over the entire domain calibrating all streamflow gauges simultaneously. The hatched tiles (valida-
tion only) mark gauging stations that have informed the calibration of the corresponding models.

–15–



0
4
1
6
6
1
0
0

0
4
1
5
9
9
0
0

0
2
G

G
0
1
3

0
4
1
5
9
4
9
2

0
4
1
6
0
6
0
0

0
2
G

E
0
0
7

0
4
1
6
1
8
2
0

0
4
1
6
4
0
0
0

0
4
1
6
5
5
0
0

0
2
G

C
0
1
8

0
2
G

A
0
1
0

0
2
G

A
0
1
8

0
2
G

G
0
0
3

0
2
G

G
0
0
9

0
2
G

B
0
0
7

0
2
G

G
0
0
6

0
4
2
1
3
0
0
0

0
2
G

A
0
4
7

0
2
G

D
0
0
4

0
2
G

C
0
0
2

0
2
G

C
0
1
0

0
2
G

A
0
3
8

0
2
G

G
0
0
2

0
4
2
0
7
2
0
0

0
4
2
0
8
5
0
4

0
4
1
7
7
0
0
0

0
4
1
9
6
8
0
0

0
4
1
9
7
1
0
0

watflood
mesh-class

mesh-svs
gem-hydro

vic-gru
vic

hype
mhm-ufz

mhm-waterloo
swat-guelph

swat-epa
hymod2-ds

gr4j-raven-sd
gr4j-raven-lp

lbrm
ml-xgboost

ml-lstm

m
e
d
ia

n
K

G
E

b

1.03
0.90
1.11
0.94
1.11
0.96
0.96
1.09
1.01
0.98
0.72
1.02
1.06
1.03
1.01
0.90
0.98

C
al

ib
ra

ti
on

Objective 1

A

0
4
1
6
6
5
0
0

0
4
1
5
9
9
0
0

0
2
G

G
0
1
3

0
2
G

E
0
0
7

0
4
2
1
4
5
0
0

0
4
1
7
7
0
0
0

0
4
1
9
5
8
2
0

0
4
1
9
8
0
0
0

0
4
1
9
3
5
0
0

0
4
1
9
9
0
0
0

0
2
G

G
0
0
9

0
4
1
6
0
6
0
0

0
4
1
6
5
5
0
0

0
4
1
7
4
5
0
0

0
4
2
1
5
0
0
0

0
4
2
1
5
5
0
0

0
4
2
1
2
1
0
0

0
4
2
1
3
0
0
0

0
4
2
1
3
5
0
0

0
2
G

B
0
0
7

0
2
G

C
0
1
8

0
4
2
0
9
0
0
0

0
2
G

G
0
0
3

0
2
G

C
0
0
7

0
4
1
7
6
5
0
0

0
2
G

B
0
0
1

0
2
G

C
0
0
2

0
2
G

C
0
2
6

0
4
1
9
9
5
0
0

0
4
2
0
0
5
0
0

0
4
2
0
8
5
0
4

watflood
mesh-class

mesh-svs
gem-hydro

vic-gru
vic

hype
mhm-ufz

mhm-waterloo
swat-guelph
hymod2-ds

gr4j-raven-sd
gr4j-raven-lp

lbrm
ml-xgboost

ml-lstm

m
e
d
ia

n
K

G
E

b

0.98
0.85
1.08
0.92
0.99
0.82
1.04
0.98
1.00
0.93
1.03
1.02
1.03
1.03
0.87
0.97

Objective 2

B

0
2
G

E
0
0
3

0
4
1
6
7
0
0
0

0
4
1
6
8
0
0
0

0
4
1
8
5
0
0
0

0
4
1
9
5
5
0
0

0
4
2
0
1
5
0
0

0
4
2
0
8
0
0
0

watflood
mesh-class

mesh-svs
gem-hydro

vic-gru
vic

hype
mhm-ufz

mhm-waterloo
swat-guelph
hymod2-ds

gr4j-raven-sd
gr4j-raven-lp

lbrm
ml-xgboost

ml-lstm

m
e
d
ia

n
K

G
E

b

1.11
0.65
0.98
0.82
0.88
0.94
0.51
0.84
0.93
0.94
0.95
0.96
0.93
0.99
0.80
1.15

V
al

id
at

io
n

C
0
2
G

E
0
0
3

0
4
1
6
7
0
0
0

0
4
1
6
8
0
0
0

0
4
1
8
5
0
0
0

0
4
1
9
5
5
0
0

0
4
2
0
1
5
0
0

0
4
2
0
8
0
0
0

watflood
mesh-class

mesh-svs
gem-hydro

vic-gru
vic

hype
mhm-ufz

mhm-waterloo
swat-guelph
hymod2-ds

gr4j-raven-sd
gr4j-raven-lp

lbrm
ml-xgboost

ml-lstm

m
e
d
ia

n
K

G
E

b

1.11
0.65
0.98
0.82
0.88
0.75
0.51
0.85
0.93
0.90
0.95
0.96
0.93
0.99
0.80
1.15

D

0.50 0.75 1.00 1.25 1.50

Bias Qsim / Qobs (KGE b) [-]

Fig. S4. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the bias
(KGE_b) per gauge and model while the median KGE_b over all gauging stations is displayed to
the right. The black horizontal lines separate i) Machine Learning models from ii) models that are
calibrated at each individual streamflow gauge from iii) models that are calibrated over the entire
domain calibrating all streamflow gauges simultaneously. The hatched tiles (validation only) mark
gauging stations that have informed the calibration of the corresponding models.

–16–



0
2
G

A
0
3
8

0
4
1
6
6
1
0
0

0
4
2
1
3
0
0
0

0
2
G

A
0
4
7

0
2
G

E
0
0
7

0
2
G

A
0
1
0

0
2
G

A
0
1
8

0
2
G

G
0
1
3

0
2
G

B
0
0
7

0
2
G

G
0
0
6

0
2
G

G
0
0
9

0
2
G

D
0
0
4

0
4
2
0
7
2
0
0

0
4
1
9
6
8
0
0

0
4
1
6
5
5
0
0

0
4
1
9
7
1
0
0

0
4
1
5
9
9
0
0

0
4
1
5
9
4
9
2

0
4
1
6
0
6
0
0

0
4
1
7
7
0
0
0

0
4
2
0
8
5
0
4

0
2
G

C
0
1
0

0
2
G

G
0
0
3

0
2
G

G
0
0
2

0
2
G

C
0
0
2

0
2
G

C
0
1
8

0
4
1
6
1
8
2
0

0
4
1
6
4
0
0
0

watflood
mesh-class

mesh-svs
gem-hydro

vic-gru
vic

hype
mhm-ufz

mhm-waterloo
swat-guelph

swat-epa
hymod2-ds

gr4j-raven-sd
gr4j-raven-lp

lbrm
ml-xgboost

ml-lstm

m
e
d
ia

n
K

G
E

r

0.68
0.72
0.75
0.77
0.69
0.71
0.79
0.83
0.87
0.76
0.58
0.87
0.80
0.80
0.83
0.70
0.90

C
al

ib
ra

ti
on

Objective 1

A

0
2
G

E
0
0
7

0
2
G

B
0
0
7

0
2
G

G
0
0
9

0
2
G

G
0
1
3

0
4
2
1
3
0
0
0

0
4
2
1
3
5
0
0

0
4
2
1
5
5
0
0

0
4
2
1
4
5
0
0

0
4
2
1
5
0
0
0

0
2
G

C
0
0
7

0
4
2
0
9
0
0
0

0
4
1
9
3
5
0
0

0
2
G

B
0
0
1

0
4
1
7
6
5
0
0

0
4
1
7
4
5
0
0

0
4
1
6
6
5
0
0

0
4
1
6
5
5
0
0

0
4
1
9
9
5
0
0

0
4
1
6
0
6
0
0

0
4
1
5
9
9
0
0

0
4
2
1
2
1
0
0

0
4
1
7
7
0
0
0

0
2
G

C
0
0
2

0
2
G

C
0
1
8

0
4
2
0
0
5
0
0

0
4
2
0
8
5
0
4

0
4
1
9
8
0
0
0

0
2
G

C
0
2
6

0
2
G

G
0
0
3

0
4
1
9
5
8
2
0

0
4
1
9
9
0
0
0

watflood
mesh-class

mesh-svs
gem-hydro

vic-gru
vic

hype
mhm-ufz

mhm-waterloo
swat-guelph
hymod2-ds

gr4j-raven-sd
gr4j-raven-lp

lbrm
ml-xgboost

ml-lstm

m
e
d
ia

n
K

G
E

r

0.66
0.70
0.76
0.77
0.71
0.73
0.79
0.82
0.88
0.78
0.86
0.82
0.82
0.85
0.68
0.90

Objective 2

B

0
2
G

E
0
0
3

0
4
1
6
7
0
0
0

0
4
1
6
8
0
0
0

0
4
1
8
5
0
0
0

0
4
1
9
5
5
0
0

0
4
2
0
1
5
0
0

0
4
2
0
8
0
0
0

watflood
mesh-class

mesh-svs
gem-hydro

vic-gru
vic

hype
mhm-ufz

mhm-waterloo
swat-guelph
hymod2-ds

gr4j-raven-sd
gr4j-raven-lp

lbrm
ml-xgboost

ml-lstm

m
e
d
ia

n
K

G
E

r

0.55
0.79
0.79
0.79
0.72
0.81
0.80
0.83
0.84
0.63
0.80
0.78
0.79
0.84
0.67
0.85

V
al

id
at

io
n

C
0
2
G

E
0
0
3

0
4
1
6
7
0
0
0

0
4
1
6
8
0
0
0

0
4
1
8
5
0
0
0

0
4
1
9
5
5
0
0

0
4
2
0
1
5
0
0

0
4
2
0
8
0
0
0

watflood
mesh-class

mesh-svs
gem-hydro

vic-gru
vic

hype
mhm-ufz

mhm-waterloo
swat-guelph
hymod2-ds

gr4j-raven-sd
gr4j-raven-lp

lbrm
ml-xgboost

ml-lstm

m
e
d
ia

n
K

G
E

r

0.55
0.79
0.79
0.79
0.72
0.81
0.80
0.82
0.84
0.62
0.80
0.78
0.79
0.84
0.67
0.85

D

0.50 0.60 0.70 0.80 0.90

Pearson Correlation Coefficient (KGE r) [-]

Fig. S5. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the Pearson
Correlation Coefficient (KGE_r) per gauge and model while the median KGE_r over all gauging
stations is displayed to the right. The black horizontal lines separate i) Machine Learning models
from ii) models that are calibrated at each individual streamflow gauge from iii) models that are
calibrated over the entire domain calibrating all streamflow gauges simultaneously. The hatched
tiles (validation only) mark gauging stations that have informed the calibration of the correspond-
ing models.
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