SUPPLEMENTAL DATA

ASCE Journal of Environmental Engineering

Viral Surrogates in Potable Reuse Applications: Evaluation of a Membrane Bioreactor and Full Advanced Treatment

Katerina Pappa, Duane Moser, and Daniel Gerrity

DOI: 10.1061/(ASCE)EE.1943-7870.0001617

© ASCE 2019

www.ascelibrary.org

Submitted to the Journal of Environmental Engineering

Viral surrogates in potable reuse applications: Evaluation of a membrane bioreactor and full advanced treatment

Running title: Viral surrogates in potable reuse applications

Katerina Papp^{a,b,c}, Duane Moser^b, Daniel Gerrity^{a,c*}

^aDepartment of Civil and Environmental Engineering and Construction, University of Nevada,

Las Vegas, Las Vegas, NV, USA

^bDivision of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, USA

^cApplied Research and Development Center, Southern Nevada Water Authority, Las Vegas, NV, USA

*Corresponding author: 4505 S. Maryland Parkway, Box 454015, Las Vegas, NV, 89154; Telephone: (702) 895-3955; Email: daniel.gerrity@unlv.edu **or** P.O. Box 99954, Las Vegas, NV 89193; Telephone: (702) 856-3518; Email: daniel.gerrity@snwa.com. **Figure S1.** Flow diagram of the full-scale membrane bioreactor (MBR) facility in Nevada. As denoted by the red stars, samples were collected after (1) fine screening (i.e., MBR feed) and (2) membrane filtration (i.e., MBR filtrate).

Figure S2. Flow diagram of the full-scale water reclamation facility and associated demonstration-scale potable reuse facility in California. As denoted by the red stars, samples were collected after (1) tertiary treatment at the full-scale water reclamation facility (i.e., demo feed), (2) ozonation, (3) biological activated carbon, (4) ultrafiltration, (5) reverse osmosis (as permeate), (6) reverse osmosis (as concentrate), and (7) the UV advanced oxidation process.

Figure S3. (Top) Gene block fragment serial dilutions used to develop the (bottom) standard curves for each assay. Data were omitted from the standard curves for inconsistent amplification, lack of amplification, or loss of linearity (i.e., plateauing). These standard curves were used to determine the limits of quantification (LoQs) for each qPCR assay (Table S4), as described in the main text. Similar standard curves were generated for independent qPCR runs.

Figure S4. Correlation between the concentrations of (red) ϕ B124-14 and (black) ϕ crAssphage with host *Bacteroides* in the MBR feed collected in (top) April of 2018, (middle) June of 2018, and (bottom) all samples combined. One outlier was omitted from the ϕ crAssphage dataset for April.

Table S1. List of manufacturer specifications and operational parameters for each treatment process at the MBR and FAT facilities.

Facility	Process	Specifications/Operational Parameters	
		Solids retention time = 8-10 days	
		Nurification/partial denurification	
MBB	MBR	Model – Zee weed 500D Material – Balywinylidena difluorida (BVDE)	
WIDK		Pore size = 0.04 um^{1}	
		Module surface area = 34 m^2	
		Flow configuration = $Outside-in$	
		Manufacturer = Wedeco	
	Ozone	$O_{\rm c}/TOC = 0.93$	
	OZOIIC	CT = 1.5 mg-min/I	
		GAC = Calgon Carbon F300	
	BAC	Condition = Exhausted toward TOC	
		Bed depth = 2 m	
		EBCT = 15 min	
	UF	Model = Toray HFU-2020	
		Material = Polyvinylidene difluoride (PVDF)	
		Pore size = $0.015 \mu m / MWCO = 150 kDa$	
		Module surface area = 72 m^2	
		Flow configuration = Outside-in	
FAT		$Flux > 85 L/m^2-h$	
		Recovery > 95%	
	RO UV AOP	Two-stage configuration:	
		Membrane Model = Hydranautics ESPA2 LD	
		Salt rejection = 99.6%	
		Three-stage configuration:	
		Membrane Model = Toray TML20-400	
		Salt rejection = 99.7%	
		$\frac{\text{Recovery} = 75-80\%}{1000}$	
		Model = Irojan UVPhox (Iow pressure UV)	
		System power = 18.0 kW	
		Electrical energy $= 0.079 \text{ KW} \text{m/m}$	
		mydrogen peroxide dose = 3 mg/L	

¹No molecular weight cutoff (MWCO) listed

Sample Location ^a	Collection Date	Collection Time	Number of Replicates	Procedure
MBR feed	April 24, 2018	~9:30 am	2	Each sample was
MBR filtrate	April 24, 2018	~9:50 am	2	collected directly into a
MBR feed	June 05, 2018	~8:15 am	2	the facility's designated
MBR filtrate	June 05, 2018	~8:35 am	2	collection ports.

 Table S2. Summary of sample collection details for the full-scale MBR facility.

^aSee Figure S1 for depiction of sample locations

Table S3. Summary of sample collection details for the demonstration-scale FAT facility.

Sample Location ^a	Collection Date	Collection Time	Number of Replicates	Procedure
Demo Feed			2	
Ozone Effluent			2	Each sample was
BAC Effluent			2	collected directly into a
UF Filtrate	July 10, 2018	9 am – 12 pm	2	10-L Nalgene carboy at
RO Permeate			2	the facility's designated
RO Concentrate			2	collection ports.
UV AOP Effluent			2	

^aSee Figure S2 for depiction of sample locations

Table S4. Summary of limits of quantification (LoQs; $gc/\mu L$ of template) for the qPCR assays in the current study. LoQs were calculated using two different approaches: (1) the U.S. Environmental Protection Agency approach with 99% confidence or (2) a standard t test approach with 95% confidence. Bold font indicates the LoQs that were actually selected for the current study.

qPCR Assay	LoQ ^a (gc/µL)	LoQ ^b (gc/µL)
16S rRNA gene	643	157
AllBac	719	175
B124-14	305	75
crAssphage	11	3
PMMoV	30	7

^aMDL = ts (99% confidence)

^bMDL = ts/ \sqrt{N} (95% confidence)

Virus in MBR Feed	Units	Normal	Normal	Cleaning w/	Cleaning w/	Increased
		Condition 1	Condition 2	Hypochlorite	Citric Acid	Flux
Adenovirus	gc/mL	6.7E+02	5.9E-01	3.8E+04	2.0E+00	3.4E+02
Norovirus GI	gc/mL	8.1E+00	<1.0e-03	1.0E+03	<1.0e-03	1.3E+04
Norovirus GII	gc/mL	2.6E+01	<1.0e-03	2.0E+02	<1.0e-03	1.3E+01
MS2 Coliphage	PFU/mL	1.9E+01	4.4E+01	2.4E+01	1.8E+01	2.1E+01
Somatic Coliphage	PFU/mL	1.6E+01	6.2E+01	1.9E+01	1.5E+01	2.3E+01
Virus in Filtrate	Units	Normal	Normal	Cleaning w/	Cleaning w/	Increased
		Condition	Condition	Hypochlorite	Citric Acid	Flux
Adenovirus	gc/mL	<5.0e-03	<1.0e-03	1.0e-03	<1.0e-03	<1.0e-03
Norovirus GI	gc/mL	<5.0e-03	<1.0e-03	<1.0e-03	<1.0e-03	<1.0e-03
Norovirus GII	gc/mL	<5.0e-03	<1.0e-03	<1.0e-03	<1.0e-03	<1.0e-03
MS2 Coliphage	PFU/mL	<1.0e-02	<1.0e-02	5.0e-02	2.1e-01	4.0e-02
Somatic Coliphage	PFU/mL	<1.0e-02	<1.0e-02	3.0e-02	7.0e-02	<1.0e-02
Log Removal Values	Units	Normal	Normal	Cleaning w/	Cleaning w/	Increased
		Condition	Condition	Hypochlorite	Citric Acid	Flux
Adenovirus	Log ₁₀	>5.1	>2.8	7.6	>3.3	>5.5
Norovirus GI	Log ₁₀	>3.2	N/A	>6.0	N/A	>7.1
Norovirus GII	Log ₁₀	>3.7	N/A	>5.3	N/A	>4.1
MS2 Coliphage	Log ₁₀	>3.3	>3.6	2.7	1.9	2.7
Somatic Coliphage	Log ₁₀	>3.2	>3.8	2.8	2.3	>3.4

Table S5. Human pathogen and coliphage occurrence at the MBR study site as part of a previous virus monitoring study. Adapted from Erdal and Vorheis (2015).