SUPPLEMENTAL DATA ASCE Journal of Environmental Engineering ## Arsenic Removal from Drinking Water: Experiences with Technologies and Constraints in Practice Janet G. Hering, Ioannis A. Katsoyiannis, Gerardo Ahumada Theoduloz, Michael Berg, and Stephan J. Hug **DOI:** 10.1061/(ASCE)EE.1943-7870.0001225 © ASCE 2017 www.ascelibrary.org | | | | system siz | ze | | | removal system | | | | source v | water quality | | | | | | | | | | | | | | comment | performance | | | | |----------------------|--------------------------------------|------------------------------------|------------|-------|--------------|---|---|----------------------------------|-------------|--|------------------|------------------------------|-------|------------|------|--------|----------|-------------------|---------|---------------|---------------|--------------|---------------|------------|---------|--|--------------------------|----------------------------|--|---| | Location | Site name | study period | pop. serve | | vol. treated | comment | type | vendor | design flow | comment | As total soluble | As(V) As(| | | | SiO2 | P [mg/L] | Nitrate
(as N) | Sulfate | Fe
soluble | Mn
soluble | U
soluble | Sb
soluble | V
solub | le Ammo | n | run length [gal] / | backwash
(regeneration) | comment | Generation and handling of residuals | | | | | | [gpm] | [gal.] | | | | rate [gpm] | | [μg/L] | μg/LJ [μg
aw Water Data | | U.) oxygen | | [mg/L] | as P | [mg/L] | [mg/L] | l [μg/L] | [µg/L] | [µg/L] | [µg/L] | | | | [BV]
run length for i | frequency [d] | The As-MCL was not exceeded | | | | | | | | | | coagulation/filtratio | | | | | | | | - | | as PO4 | | | | | | | | | | | | cation (without media change) | | | Felton, DE | Town of
Felton | 2006/09/14
2007/11/03 | 428 | 263 | 43,446,110 | | n: FM-348-AS,
Macrolite media;
FeCl3 addition &
pre-existing NaOCl
injection system
(pre- & post-
chlorination) | Kinetico | 375 | 14 sampling events with As
levels > MCL due to
insufficient iron addition or
particulate breakthrough
from the filters | 30.4 | 5.2 25 | 2 8.2 | 2.8 | 0.8 | 9.6 | <0.06 | <0.04 | 9 | <25 | 1.5 | <0.1 | NA | 0.16 | 0.32 | | NA | 1.4 | | Backwash wastewater
supernatant was recycled back
to the head of the treatment
system after settling, sludge
was pumped to the sewer. | | Okanogan,
WA | City of
Okanogan | 2008/08/14
2009/08/14 | | 527 | 139,435,000 | only one out of 4
wells (650gpm /
2055gpm) used
in study | coagulation/filtratio
n: FH13
Electromedia-1;
prior NaOCl and
FeCl3 addition | Filtronics | 750 | | 18.6 | 15.6 3 | 8 | 1.8 | <0.7 | 24.1 | <0.06 | <0.04 | 110 | 45 | 70.3 | 0.5 | NA | 0.3 | 0.05 | Contrary to the Battelle data, As(III) was the predominant species during most of the study period (13.4µg/l on average; As(V) 4.7µg/l). Other water quality data consistent with Battelle data. | NA | 0.4 | | Backwash wastewater was
reclaimed in a tank. Sludge of
backwash solids was
discharged to the sewer. | | Three Forks
MT | City of Three
Forks | 2006/11/27
2008/02/08 | 2000 | 206 | 30,499,000 | only Well 2,
which was used
for the study,
had elevated As
levels, Wells 5, 6,
8 and 9 did not. | coagulation/filtratio
n: FM-248-AS,
Macrolite media;
NaOCl and FeCl3
addition | Kinetico | 250 | As levels > MCL (soluble & particulate) can break through the filters within 2 hr of service time; iron > secondary MCL. Filter performance can not be improved by increasing Fe dosages, the use of an organic polymer nor by smaller media size fraction. Only blending with water from other wells reduces As concentrations < MCL levels | | 62.4 1.3 | 7.5 | 5.2 | 0.8 | 48.7 | <0.06 | 0.4 | 18 | <25 | <0.1 | 3.8 | NA | 8.4 | <0.05 | | NA | 1.1 | Backwash should have been
much more frequent to avoid
As & Fe breakthrough. | Residuals: backwash
wastewater and filter-to-waste
rinse water. 10% discharged via
sewer to a lagoon used for
irrigation, 90% reclaimed after
being passed through a bag
filter | | Arnaudville,
LA | Town of
Arnaudville | 2006/07/17
2010/09/16 | 1200 | 335 | 363,096,450 | | iron removal: FM-
284-AS with
Macrolite media;
KMnO4 addition | Kinetico | 770 | The system did not work we overall: several system stop: filter fouling due to unintentional aeration, erratic iron addition 2007/1: -2009/07. Effluent with elevated As & Fe concentrations. | 34 5 | 0.8 33. | 7 7 | 0.6 | 1.8 | 41.7 | <0.06 | <0.04 | <1.0 | 2072 | 129 | <0.1 | NA | 0.7 | 1.9 | | NA | 0.5 | unintentional aeration in contact tank: extensive biofouling leading to backwashing >8x/d; backwashing up to 16x/d after iron addition | wastewater: 5.5% of water production, discharged to building sump, emptied by gravity to a pond | | Delavan, Wi | Vintage on t
Ponds | he 2005/07/12
2006/06/03 | . 52 | 20* | 2,500,200 | nursing home
facility. *maximal
flowrate. An
average flow is
not given
because accurate
flowrate data
were not
attainable | Filtration System with Macrolite media: prior NaOCl | Vinatica | 45 | On-demand system operation made it difficult to adjust chlorine dosing rates > erratic chlorine residuals. As(III) and Fe(II) were only partially or not oxidized when the chlorine injection system did not work properly and/or due to the presence of chloramines formed by chlorination due to elevated ammonia levels. Additional contact time in the pressure filters enhance as & Fe oxidation. | 20.5 | 1.4 19 | 1 7.5 | 1.2 | 1.8 | 14.3 | <0.06 | <0.04 | <1 | 1400 | 18.3 | <0.1 | NA | 0.1 | 2.8 | | NA | 4 | 102 backwash cycles during
study period | Backwash wastewater
discharged to sanitary sewer
line. | | Fountain
City, IN | Northeaster
Elementary
School | n
2008/09/22
2009/10/29 | | 48 | 941,500 | school | iron removal: G2
media; prior NaOCI
injection | US Water
Systems | 60 | | 18.1 | 5.5 12.0 | 6 7.5 | 2.9 | 1.6 | 13.9 | <0.03 | <0.05 | 2 | 855 | 53.1 | NA | NA | <0.1 | 0.7 | | NA | 50 | 8 backwash events during study period | Backwash wastewater
discharged to the sewer. No G2
media replacement required
during study period. | | Sabin, MN | Sabin | 2006/01/30
2007/04/29 | | 231 | 14,884,800 | 175 service connections | iron removal: FM-
248-AS, Macrolite
media; pre-existing
NaOCI injection
system (pre- & post-
chlorination) | | 250 | Low rated of manganese removal and accumulation in the distrubution system. Increased chlorine dosages for prechlorination enhance soluble Mn oxidation and removal, but reduced filter run length | | 15.9 12.4 | 4 7.3 | 5.9 | 1.8 | 29.7 | <0.1 | <0.04 | 410 | 990 | 305 | 5.3 | <0.1 | 0.11 | 0.19 | | NA | 2.3 | 1 - 4 backwashes / week | Backwash wastewater
discharged to building sump,
which emptied by gravity to
sanitary sewer. | | Sandusky,
MI | City of
Sandusky | 2006/06/14
2007/06/22 | | 163 | 61,883,000 | one well out of
four was used in
the study (main
supply well) | iron removal:
AERALATER Type II,
prechlorination/oxi
dation (NaOCI) | Siemens
Water
Technologies | | 2.5mg/L chlorine dosage (as Cl2) was not able to achieve breakpoint chlorination due to ammonia presence. As(III oxidation partially inhibited (by chloramines). Occasiona particulate iron breakthrough. |) 22 | 9.7 12. | 3 7.1 | . 0.5 | 1.5 | 13.9 | <0.1 | <0.01 | 89 | 1244 | 34.5 | 0.6 | NA | 1.1 | 0.3 | | NA | 3 | backwash frequency 3
times/week until February
2007, then 2 times/week | Backwash wastewater
discharged to building sump,
which emptied to sanitary
sewer. | | Sauk Centre
MN | Big Sauk Lak
' Mobile Hom
Park | e
e
2005/07/13
2006/10/01 | | 4 | 2,017,000 | mobile homes | iron removal: CP-
213f, Macrolite
media; KMnO4
addition | Kinetico | 20 | Particulate As & Fe
breakthrough -> more
frequent backwashing. Mn
passed through the filter
(high TOC inhibited
formation of filterable Mn
solids) -> increase KMnO4
dosage -> elevated Mn
concentrations in treated
water | 20.7 | 7.1 13.0 | 6 7.1 | . 1.48 | 3.9 | 25 | <0.1 | <0.04 | <5.0 | 3149 | 154 | <0.1 | NA | <0.1 | 1.2 | | NA | 0.4 | backwash cycles were increased to as many as 11 per day throughout the study | Backwash wastewater and
associated solids were
discharged to a septic system,
then to a sanitary sewer | | Waynesville
IL | , Village of
Waynesville | 2009/07/15
2010/09/19 | | 84.4 | 12,603,800 | | iron removal:
GreensandPlus
media; NaMnO4
addition | Peerless | 96 | incomplete iron oxidation in 3 of 13 sampling events (147µg/l) and presence of "soluble" manganese (756µg/l on av.) in NaMnO4 treated water. | 31.5 | 3.3 22.0 | 6 7.1 | 1.3 | 9 | 20.1 | 0.17 | <0.05
| <1 | 1456 | 19 | NA | <0.1 | 0.2 | 3.6 | | NA | 3 | | backwash and rinse
wastewater, discharged to a
sump emptying into two septic
tanks in series, then to the
sanitary sewer system. Sludge
was disposed. | | | | system size | | | removal system | | | | source wa | ater qual | lity | | | | | | | | | | | | | comment | performance | | | | |----------------------|---|---------------------------------|------------------------------------|--|--|---------------------------------------|---------------------------|--|-------------------------|-----------|---------------------------|-------------------------|---------------|----------------|----------|-------|-------------------|---------|-------------------------|------------------------|-------------------------|------|-------|--|--|---|--|---| | Location | Site name | study period pop. served | av. flow vol. treated [gpm] [gal.] | comment | type | | design flow
rate [gpm] | comment | As total soluble [μg/L] | | As(III) pH
[μg/L] (S.U | dissolved
J.) oxygen | TOC
[mg/L] | SiO2
[mg/L] | P [mg/L] | | Sulfate
[mg/L] | soluble | Mn
soluble
[μg/L] | U
soluble
[μg/L] | Sb
soluble
[µg/L] | | Ammon | | run length [gal] ,
[BV] | backwash
(regeneration)
frequency [d] | comment | Generation and handling of residuals | | Climax, MN | Climax | 2004/08/11 - 2005/08/12 | 122 / 142 13,829,000 | | iron removal with
e iron addition: FM-
g 236-AS, Macrolite
media; NaOCI
addition. FeCI3
addition starting in
January 2005 | Kinetico 1 | 140 | As levels in treated water 14.1µg/L -> supplemental iron addition from January 2005 on -> As levels below MCL | 34.6 | <0.1 | 34.8 7.4 | NA | <1.0 | 27.3 | <0.10 | NA | 120 | 540 | 130 | NA | <0.1 | 0.4 | 0.7 | | NA | 1.9 | backwash settings were
slightly modified after 5
months leading to water
savings. Media was not
replaced. | Backwash wastewater was
discharged to an underground
sump and pumped to a sanitary
sewer line for disposal | | Conneaut
Lake, PA | Conneaut
Lake Park | 2009/12/03 -
2010/12/17 250 | 153 20,114,000 | Seasonal resort | iron removal with
iron addition: AD-
GS+ (Greensand
Plus) media; NaOCI
injection and FeCI3
addition before
filtration | AdEdge
Technologies ² | 250 | Due to high pressure by the
pump, the anticipated
flowrate was reduced to
190gpm. Good As removal,
but Fe leaking (64µg/L in
average effluent) | 28 | 2.2 | 25.8 8 | 3.1 | <1.0 | 12.7 | <0.03 | <0.05 | 21 | 151 | 66.3 | NA | <0.1 | 0.2 | 0.14 | | 83,000 / NA | 1.08 | Run length per vessel. Backwash frequency of the filter 26hrs; less frequent washing due to daily system run time <12hrs (backwash every 2-3d) | Backwash wastewater
discharged into holding tanks.
Supernatant was recycled to
the header of the filtration skid
after >Ahrs settling, the sludge
was discharged to a sewer. | | Pentwater,
MI | Village of
Pentwater | 2005/11/22 -
2006/12/08 | 350 39,185,000 | the summer
months; one out | iron removal with
grinn addition: FM-
260-AS, Macrolite
media; pre-existing
NaOCI addition;
FeCI3 addition after
June 2006. | | 400 | incomplete As(III) oxidation
(due to chloramines).
Consistent As removal to
<10g µg/l only achieved with
supplemental iron addition. | 13.2
h | 2.1 | 11.1 6.9 | 1.3 | 2.5 | 11.1 | <0.1 | <0.04 | 1 | 465 | 32.6 | <0.1 | NA | 1 | 0.3 | | NA | 2.3 | backwash 3 times a week. | Backwash wastewater
discharged to building sump,
which emptied by gravity to
sanitary sewer. | | Goshen, IN | Clinton
Christian
School | 2008/06/06 - 2009/06/19 142 | 16.2 517,174 | school | iron removal &
adsorptive media:
ADZ6 (oxidation /
filtration) & E33
(adsorption); prior
NaOCl injection | AdEdge
Technologies | 25 | The majority of (particulate)
As was filtered out by AD26
media. Operational issue:
maintaining target level of
free chlorine residuals
difficult | 26.3 | 11.6 | 14.7 7.4 | NA | <1.0 | 18.1 | <0.03 | <0.05 | 2 | 758 | 97.4 | NA | NA | <0.1 | 0.2 | | NA / 123,763
(AD26); NA /
81,055 (E33) | 3 (AD26) / 39 -
44 (AD33) | run lengths projected based
on throughput | Backwash wastewater
discharged to Rock Run Creek,
spent bag filters went into
municipal trash. E33 media
would be disposed at a
sanitagy landfill (no
replacement required during
study perdiod) | | Springfield,
OH | Chateau
Estates Mobile
Home Park | 2005/09/21 - 600 | 37 16,873,000 | 226 connections
for a population
of 600. average
flows: AD-33:
37gpm; AD-26:
90 - 130gpm (tw
alternating wells | iron removal &
adsorptive media:
AD26 (oxidation /
filtration; Fe & Mn
removal) & AD33
(adsorption);
preexisting NaOCl &
polyphosphate
addition (prior to
AD26) | Technologies | 250 | Operational issue: chlorine injection system failed to control chlorine residuals (4mg/L) instead of 1mg/L). Ar inline filter placed before the chlorine monitor seemed to resolve the problem. | | 1.4 | 15.4 7.3 | 2.1 | <1.0 | 18.5 | <0.10 | <0.04 | 21 | 1010 | 37.4 | 1.2 | 0.3 | 0.24 | 0.21 | | NA | NA / 2.5 | AD-33 system: 4 backwash cycles during study period (not required, as the pressur loss was insignificant). AD-26 system: backwashed every 2 to 3 days. Media was not replaced. | | | Stewart, MN | Stewart | 2006/02/02 -
2007/02/28 600 | 188; 166 20,441,000 | av. flow
AERALATER:
188pm, APU-300
176gpm | iron removal & adsorptive media: Type II AERALATER for iron removal pretreatment; APU-300 system with AD33 adsorptive media; post-chlorination (NaMnO4), fluoridation and polyphosphate addition | Siemens &
AdEdge 2
Technologies | 250 | First week of operation: NaMnO4 addition to oxidize As(III) to As(V). NaMnO4 addition (inadvertently) discontinued due to elevated manganese leves and microbial-mediated As(III) oxidation (As removal efficiency of gravity filter reduced from 60% to 34%). Short AD-33 media run lengths due to competition from elevated P and biofouling in adsorption vessels | 32.9 | 1 | 31.9 7.7 | 2.2 | 7.2 | 26.6 | <0.1 | <0.04 | <5 | 1359 | 28 | <0.1 | NA | <0.1 | 1.7 | Source Water data
from Well No. 3 (one of
the two wells) | f NA / 25,300 | 90 | | Wastewater discharged to building sump, which emptied by gravity to two holding tanks before being pumped to the sanitary sewer | | Willard, UT | Hot Springs
Mobile Home
Park (HSMHP) | 2008/12/11 -
2010/10/18 117 | 7.3 5,629,000 | 110 to 125
residents | iron removal &
adsorptive media:
Adsorbia GTO;
Birm/Filox oxidizing
media. | | 30 | | 13.6 | 7.6 | 6 7.5 | 2.3 | <1 | 13.3 | NA | 0.2 | 6 | 129 | 165 | NA | <0.1 | 4.3 | 0.05 | | NA | NA / 1 | pre-oxidation vessel
backwashed daily. Adsorbia
GTO adsorptive media did
not require backwash | Backwash wastewater discharged to a septic tank | | Alvin, TX | Oak Manor
Municipal
Utility District | 2006/04/25 -
2008/04/08 189 | 129 35,358,250 | | adsorptive media:
APU-30S system,
Sorb 33 media; pre-
existing chlorination
system | Severn Trent
Services (STS) | 150 | | 19 | 1.4 | 17.6 7.8 | 1.7 | 0.7 | 16 | <0.05 | <0.05 | 1 | 37 | 61.7 | 1.5 | NA | 1.9 | 0.2 | | 26,638,090 /
28,736 | 30 | Run length of the lag vessel
(lead vessel: 9,527,220 gal /
10,227 BV). Progressively less
effective backwash observed
after 1 year. | | | Anthony,
NM | Desert Sands
Mutual
Domestic
Water
Consumers
Association | 2004/01/16 -
2005/07/14 1886 | 271 52,645,000 | | adsorptive media:
SORB 33-S (granulai
form); APU-300
system. pre-
chlorination | | | 45% media loss
(disintegration of the
granular media during the
run). Throughput between
backwash events decreased
from 3680 BV to 630 BV for
each of the two vessels | 22.3 | 0.7 | 21.6 7.7 | NA | 1.6 | 35.1 | 0.1 | NA | 190 | <30 | 9 | NA | <0.1 | 0.5 | NA | | NA / 40,600 | 7 | | | | Anthony,
NM | Desert Sands
Mutual
Domestic
Water
Consumers
Association | 2005/07/29 -
2006/08/16 1886 | 251 46,553,000 | | adsorptive media:
SORB 33-p
(pelletized form);
APU-300 system.
pre-chlorination
(NaOCI) | Severn Trent
Services (STS) | 320 | 12% media loss | 22.3 | 0.7 | 21.6 7.7 | NA | 1.6 | 35.1 | 0.1 | NA | 190 | <30 | 9 | NA | <0.1 | 0.5 | NA | | NA / 49,500 | 7 | | Backwash wastewater
discharged to an evaporation
pond, spent media could be
disposed of in a sanitary
landfill. | | Bow, NH | White Rock
Water
Company
(WRWC) | 2004/10/13 -
2006/09/26 96 | 40 13,115,925 | 96 homes served
Study period
divided into 3
runs
with similar
outcomes | adsorptive media:
G2: pre-existing | ADI
International 4
Inc. | 40 | G2 media not effective in removing As < 10µg/L. As, Mn, and silica can be leached from the media. Changing pH conditions can cause changes in lead & copper concentrations in the distribution system. | d
44.1 | 43.6 | 0.5 6.8 | NA | <0.7 | 19.7 | <0.10 | NA | 12 | <25 | 1.5 | NA | 0.7 | 0.6 | NA | | NA / 3000 | NA | No backwash required
(system backwashed only 3
times during the
demonstration study) | Spent media was disposed of in
a non-hazardous waste landfill.
Backwash wastewater was
discharged to a rip-rap lined
surface drainage and allowed
to infiltrate into the ground. | | | | system size | ! | | | removal system | | | | source wa | iter qualit | ty | | | | | | | | | | | | | comment perf | formance | | | | |----------------------|---|---------------------------------|-------------------|-----------------------|---|--|--|---------------------------|---|-------------------------|---------------------|--------|-----------|-------------------|----------------|---------|-----------------------------|-------------------|-------------------------|------|-------|-------------------------|------------------------|-------------|--------------|------------------|---|---|--| | Location | Site name | study period pop. served | av. flov
[gpm] | v vol. treated [gal.] | comment | type | | design flow
rate [gpm] | comment | As total soluble [µg/L] | As(V) Α
[μg/L] [| | H dissolv | red TOC
[mg/L] | SiO2
[mg/L] | P [mg/L | Nitrate
(as N)
[mg/L] | Sulfate
[mg/L] | Fe
soluble
[µg/L] | | | Sb
soluble
[µg/L] | V
soluble
[μg/L] | Ammon
ia | run
[BV] | length [gal] / | backwash
(regeneration)
frequency [d] | comment | Generation and handling of residuals | | Brown City,
MI | Brown City | 2004/05/11 -
2007/05/02 1334 | 564 | 154,000,000 | 1334 community
members (664
service
connections) | post-chlorination,
pre-chlorination
(NaOCI)
implemented in
May 2005 | Severn Trent | 640 | Throughput between consecutive backwash events decreased with prechlorination (3000BV to 150BV). Prechlorination: As removal improved significantly | | 2.5 | 9.6 7 | .3 NA | <0.50 | 8.1 | <0.10 | NA NA | 74 | 133 | | NA NA | | | NA | NA , | / 20,800 | 10 | run length without pre-
chlorination (total As-
breakthrough). As-conc.
remained <10μg/l after the
implementation of pre-
chlorination. Backwash
frequency was lower without
pre-chlorination (every 41
days). Media was not
replaced. | Backwash wastewater
discharged to a drainage ditch. | | Bruni, TX | Webb
Consolidated
Independent
School Distric | 2005/12/08 -
2008/05/15 230 | 40.2 | 8,841,000 | school | adsorptive media:
AD-33; pre-existing
NaOCl addition
system & pH
adjustment /
control system
(CO2) upstream | AdEdge
Technologies | 40 | Operational issues with pH
adjustment system and
adsorption vessel flow
meters/totalizers | 55.2 | 19.6 | 35.6 8 | 1.5 | 0.9 | 42.3 | <0.06 | <0.04 | 98 | <25 | 4.3 | 10.2 | NA | 4.4 | <0.05 | NA | | NA | no As breakthrough during
the study | No backwash required during the study period | | Buckeye
Lake, OH | LEADS Head
Start Building | 2006/06/28 -
2010/02/24 60 | <2 | 303,200 | school | adsorptive media:
ARM 200; prior
NaOCl injection | Kinetico 1 | 10 | Elevated total trihalomethanes and aloacetic acids in effluent after system startup. Probable causes: chlorine and elevated TOC in AM influent. | 14.5 | 2.4 1 | 12.1 7 | .6 NA | 2 | NA | NA | <0.1 | 24 | 1241 | 80.3 | NA | NA | NA | 0.9 | NA | | 180 | only one backwash in study
period (after 6 months) | Backwash wastewater
discharged to the sewer. No
media replacement required
during study period. | | Dummersto
n, VT | Charette
Mobile Home
Park | 2005/06/24 -
2006/10/10 14 | 6.1 | 745,000 | mobile homes | adsorptive media:
A/I Complex 2000;
preexisting NaOCI
addition | Aquatic
Treatment
Systems (ATS) | 22 | aluminium leached from the
adsorptive media
(decreasing trend). As
breakthrough occured
sooner than expected
presumably due to high pH,
competing anions (silica),
and higher-than-expected As | 30.1 | 28.6 1 | 1.5 7 | .9 6.1 | <0.7 | 12.3 | <0.06 | 0.24 | 20 | <25 | 4.2 | 2 | NA | 0.6 | <0.05 | NA , | / 16750 | NA | run length per train following
the final columns (5600 BV if
considering the three
columns in each train as one
large column). No backwash
required for system
operation. | Only spent media as residual (not specified how it was | | Geneseo
Hills, IL | Geneseo Hills
Subdivision | 2008/05/08 -
2010/07/30 480 | 32 | 33,158,263 | | adsorptive media:
AD-33; pre-existing
chlorine addition
system upstream | AdEdge
Technologies | 200 | concentrations av. flow = on-demand flowrates; peak-flowrate: 156gpm. Average residence time: 11hr -> 8.2lb solids (incl. arsenic laden iron particles) settled in the hydropneumatic tanks in 3915gal ww | 19.6 | 2.1 1 | 17.5 7 | .1 1.5 | 1.8 | 20.3 | 0.1 | <0.05 | <1.0 | 227 | 8.3 | NA | <0.1 | <0.1 | 1.2 | NA | | 45 | operational issue: bag filter
assembly upstream of the
backwash holding tank ->
clogging during backwashing | transferred to sludge holding tank | | Goffstown,
NH | Orchard
Highlands
Subdivision | 2005/04/15 -
2006/08/06 42 | 13 | 2,085,000 | homes | adsorptive media:
AD-33; pre-existing
aeration for radon
removal | AdEdge
Technologies | 10 | Unexpectedly short run length for As probably due to shorter EBCT and competing anions (phosphorus). | 33.1 | 32.3 | 0.8 6 | .9 5.1 | <0.7 | 25.7 | 0.2 | <0.04 | 5.8 | 5.8 | 2.8 | 2.4 | NA | 0.4 | 0.05 | NA | . / 25,710 | NA | Run length of the lag vessel
(lead vessel: 19,500 BV). No
backwash required (system
backwasehd twice in total) | Spent media disposed of at a sanitary landfill, backwash wastewater was discharged to an on-site surface drainage field | | Goffstown,
NH | Orchard
Highlands
Subdivision | 2006/09/06 -
2007/08/06 42 | 13 | 1,374,000 | homes | adsorptive media:
AD-33; pre-existing
aeration for radon
removal | AdEdge
Technologies | 10 | Lead vessel rebedded and
switched to lag position.
short run length: see reason
for Run1 + the lead vessel
containing partially used
media. | s
33.1 | 32.3 | 0.8 6 | .9 5.1 | <0.7 | 25.7 | 0.2 | <0.04 | 5.8 | 5.8 | 2.8 | 2.4 | NA | 0.4 | 0.05 | 1,37
18,3 | 74,000 /
370 | NA | No backwash required
(system backwashed twice ir
total) | Spent media disposed of at a sanitary landfill, backwash wastewater was discharged to an on-site surface drainage field | | Queen
Anne's | , Grasonville,
Queen Anne's
County,
Prospect Bay | 2004/06/30 -
2007/04/02 300 | 207 | 71,533,000 | only one of two
wells (operation
alternating daily) | | Severn Trent
Services (STS) | 300 | First months: post-
chlorination. Prechlorination
As removal improved
significantly | 18.7 | 0.3 1 | 18.4 7 | .3 NA | NA | 14.1 | <0.1 | NA | 4.3 | 254 | 1.4 | NA | <0.1 | <0.1 | NA | NA , | / 7400 | 20 | run length with post-
chlorination (As(III)-
breakthrough). As-conc.
remained <10μg/l after the
implementation of pre-
chlorination. Media was not
replaced. | Backwash wastewater
discharged to a tanker truck
and transported to a WWTP for
disposal. | | Lead, SD | Terry Trojan
Water District | 2008/04/04 -
2009/11/29 | 71.5 | 27,978,780 | community wate | adsorptive media:
ArsenXnp; post-
r chlorination with
pre-existing system | SolmeteX 7 | 75 | | 23 | 22.5 | 0.5 7 | .3 NA | <1 | 15 | <0.01 | 0.5 | 2 | <25 | 0.8 | NA | 0.3 | 0.7 | <0.05 | 14,7
70,3 | 725,250 /
310 | NA | no backwash needed for the media | spent media given back to the vendor | | Lead, SD | Terry Trojan
Water District | 2009/11/30 -
2010/05/23 187 | 69.2 | 7,231,940 | commercial
service
connections | adsorptive media:
ArsenXnp &
LayneRT; post-
chlorination with
pre-existing system | SolmeteX 7 | 75 | System rebedded with
LayneRT medium in lag
position; lead vessel
containing partially
exhausted ArsenXnp | 23 | 22.5 | 0.5 7 | .3 NA | <1 | 15 | <0.01 | 0.5 | 2 | <25 | 0.8 | NA | 0.3 | 0.7 | <0.05 | NA | | NA | no backwash needed for the media | | | Nambe
Pueblo, NM | Nambe Puebl | 2007/05/15 - 2009/09/28 500 | 114 | 64,580,000 | 150 service connections | adsorptive media:
AD-33; pre-existing
chlorine addition
system & pH
adjustment /
control system
(CO2) upstream | AdEdge
Technologies | 160 | 3 - 4 incidences of elevated
As & U levels (higher than
source concentrations) due
to losses of pH control
(adsorbed As & U "flushed"
out of the media beds) | 31.4 | 31.2 | 0.2 8 | .5 NA | 2.1 | 14.1 | <0.10 | 0.6 | 28 | <30 | 1.3 | 32.9 | <0.1 | 8.6 | NA | NA | | NA | | Neither backwash nor
media replacement was required during the study period | | Pomfret, CT | Seely-Brown
Village | 2009/02/04 -
2009/12/02 48 | 9.8 | 581,200 | nursing home facility | adsorptive media:
ArsenXnp | SolmeteX
(acquired by
Layne
Christensen
Company) | 15 | instead of replacing spent
ArsenXnp media, the vendor
recommended replacing it b
a new medium, LayneRT | 25.2 | 23.2 | 2 7 | .3 2.3 | <1.0 | 13.4 | 0.49 | 0.06 | 18.5 | <25 | 7.2 | NA | <0.1 | 0.4 | <0.05 | NA , | / 15,000 | NA | No backwash required during
the performance evaluation
study | Spent filters disposed of with
landfill trash, spent media
regenerated with other spent
media and used in non-drinking
water applications. | | Pomfret, CT | Seely-Brown
Village | 2009/12/03 -
2010/09/24 48 | 10 | 606,600 | nursing home facility | adsorptive media:
LayneRT | SolmeteX
(acquired by | 15 | | 25.2 | 23.2 | 2 7 | .3 2.3 | <1.0 | 13.4 | 0.49 | 0.06 | 18.5 | <25 | 7.2 | NA | <0.1 | 0.4 | <0.05 | NA , | / 18,000 | NA | No backwash required during
the performance evaluation
study | Spent filters disposed of with | | | | | system size | | | | removal system | | | | source w | vater quality | | | | | | | | | | | | | | comment performance | | | | |---------------------------------|-------------------------------------|--|-------------|-------------------|------------------------|--|--|---------------------------------------|---------------------------|---|-------------------------|---------------|--------|-------------------------|------|----------------|----------|-----------------------------|-----------------|-----|-------------------------|------------------------|------|-----------------------|-------|-------------------------|---|---|--| | Location | Site name | study period | pop. served | av. flow
[gpm] | vol. treated
[gal.] | comment | type | vendor | design flow
rate [gpm] | comment | As total soluble [μg/L] | As(V) As(| | dissolved
U.) oxygen | | SiO2
[mg/L] | P [mg/L] | Nitrate
(as N)
[mg/L] | Sulfat
[mg/l | | Mn
soluble
[μg/L] | U
soluble
[μg/L] | | V
solubl
[μg/L] | | run length [gal
[BV] | backwash
(regeneration)
frequency [d] | comment | Generation and handling of residuals | | Rimrock, AZ | Arizona Wate
Company | 2004/06/24 -
er 2006/08/30;
2006/11/27 -
2007/03/28 | 2556 | 30 | 22,143,000 | only one well out
of six was used
for the study
(main supply
well: 315gpm) | adsorptive media:
AD-33; APU-100
system; prior NaOCl
addition | AdEdge
Technologies | 45 | Media changeout in
November 2006 after
reaching 10µg/I As
breakthrough in August
2006. Water in the
distribution system had
higher As levels (19.3µg/I)
due to blending with
untreated water from other
wells. | 64.8 | 64.8 <0. | 10 7.1 | I NA | 3.4 | 24.8 | <0.10 | NA | 9.5 | <25 | 8.1 | NA | NA | NA | NA | 17,164,000 /
52,150 | 60 | run length: As breakthrough
before media rebedding.
Backwash frequency: 30 days
in first year, prolonged to
quarterly later | Backwash wastewater recycled
by blending the recycle tank
supernatant with influent
water and removing solids by a
bag filter. Spent media could be
disposed of at a sanitary landfill
(non-hazardous) | | Rollinsford,
NH | Rollinsford | 2004/02/09 -
2004/10/27 | 450 | 95 | 11,926,000 | average flow
with both wells
operating. One
well operating:
60gpm | adsorptive media:
AD-33; APU-100
system; pre-existing
chlorine addition
system & pH
adjustment system
(CO2) upstream | AdEdge
Technologies | 100 | higher than normal system
Ap and inlet pressure ->
frequent backwashes -> high
media loss. pH control
system: mechanical
problems -> consistent
reduction of pH to target
value 7.0 failed | | 13.9 20. | 1 7.4 | 1 NA | <1.0 | 13.6 | <0.10 | NA | 36 | <30 | 68.6 | NA | <0.1 | <0.1 | NA | NA / 12,500 -
17,000 | 8 | Backwash frequency = average number of operating days between backwashes. Media replaced by end of this phase (39 - 53% media loss) | subsurface infiltration area;
spent media disposed of at a | | Rollinsford,
NH | Rollinsford | 2004/11/03 -
2005/01/15 | 450 | 112 | 3,921,000 | average flow
with both wells
operating. | adsorptive media:
AD-33; APU-100
system; pre-existing
chlorine addition
system & pH
adjustment system
(CO2) upstream | AdEdge
Technologies | 100 | higher than normal system
Ap and inlet pressure ->
frequent backwashes -> high
media loss. pH control
system: mechanical
problems -> consistent
reduction of pH to target
value 7.0 failed | n
33.9 | 13.9 20. | 1 7.4 | 1 NA | <1.0 | 13.6 | <0.10 | NA | 36 | <30 | 68.6 | NA | <0.1 | <0.1 | NA | NA / 12,500 -
17,000 | 4 | Backwash frequency = average number of operating days between backwashes. | backwash wastewater
discharged to on-site
subsurface infiltration area;
spent media disposed of at a
sanitary landfill | | Rollinsford,
NH | Rollinsford | 2005/06/13 -
2006/05/08 | 450 | 97 | 12,881,000 | average flow
with both wells
operating. One
well operating:
58gpm | adsorptive media:
AD-33; APU-RWS
system; pre-existing
chlorine addition
system | AdEdge
Technologies | 120 | valve tree instead of controller valves solved the elevated Δρ and inlet pressure problem. pH control system: mechanical problems -> consistent reduction of pH to target value 7.0 failed | 33.9 | 13.9 20. | 1 7.4 | 1 NA | <1.0 | 13.6 | <0.10 | NA | 36 | <30 | 68.6 | NA | <0.1 | <0.1 | NA | NA / 12,500 -
17,000 | 36 | Backwash frequency = average number of operating days between backwashes. | backwash wastewater
discharged to on-site
subsurface infiltration area;
spent media disposed of at a
sanitary landfill | | Susanville,
CA | Richmond
Elementary
School | 2005/09/07 -
2007/06/13 | 250 | 9.3 | 303,000 | school | adsorptive media:
A/I Complex 2000;
A/P Complex 2002
oxidative media | Aquatic
Treatment
Systems (ATS) | | lodine (IO4-) and aluminium
leached from the oxidizing
and adsorptive media
(iodine: decreasing trend; Al
leaching continously, but
below secondary drinking
water standard) | | 4.7 31. | 9 7.5 | 5 1 | 1 | 14.5 | <0.06 | 0.1 | 17 | <25 | 5.5 | 0.8 | NA | 0.2 | <0.05 | NA / 5200 | NA | Run length considering the
three adsorptive columns as
one large column. No
backwash required during
the study period. Adsorptive
media was replaced after 18
months of system operations | Spent media could have been disposed of in a sanitary landfil (non-hazardous), but was recycled by the vendor | | Taos, NM | Town of Taos | 2006/02/14 - 2007/10/23 | 5000 | 503 | 22,977,000 | 5000 residences
plus summer
tourists. the
treated supply
well contributed
only 10% to the
1,000,000 gal
water tower
capacity | adsorptive media:
SORB 33; CO2 pH
control system, post
chlorination | | | Frequent and prolonged system downtime caused by non-system related issues (power outages). | 13.9 | 11.8 2.1 | 9.5 | 5 0.7 | <0.7 | 30.4 | <0.06 | <0.04 | 41 | <25 | 0.3 | 0.4 | NA | 34.2 | <0.05 | NA | NA | Neither media replacement
no backwash required during
the study (system
backwashed five times for
the study purpose) | Backwash wastewater discharged to an evaporative pond. | | Tohono
O'odham
Nation, AZ | Covered Wel | 2008/02/13 -
2010/03/19 | 310 | 60 | 11,686,000 | | adsorptive media:
AD-33; pre-existing
chlorine addition
system & pH
adjustment /
control system
upstream | AdEdge
Technologies | 63 | Operational issues with CO2
pH adjustment / control
system | 32.5 | 31.4 1.1 | . 8.2 | 2 4.3 | 0.8 | 26.4 | <0.06 | 1.2 | 23 | <25 | 0.4 | 7.9 | NA | 32.7 | <0.05 | NA | NA | No backwash nor media
replacement required during
study period | | | Valley Vista,
AZ | Arizona Wate
Company,
Sedona | 2004/06/24 -
2004/10/25 | 1520 | 36 | 2,058,000 | Run 1. One out of
four wells was
used in the study | adsorptive media: | Kinetico | 37 | Effluent As concentrations
varied with influent pH
values. Relatively short run | | 37.8 0.3 | 7.7 | 7 NA | NA | 18.5 | <0.1 | NA | 8.7 | <30 | <0.1 | NA | <0.1 | 15.7 | NA | NA / 8240 | 20 | 6 backwash cycles during study period | Spent media was disposed of in
a non-hazardous waste landfill.
Backwash wastewater was
recycled. | | Valley Vista,
AZ | Arizona Wate
Company,
Sedona | 2004/10/25 -
2005/10/12 | 1520 | 36 | 7,580,000 | Run 2 & 2a. One
out of four wells
was used in the
study | adsorptive media:
FA-236-AS, AAFS50
media; pre-existing
NaOCI addition; pH
adjustment (H2SO4)
adsorptive media: | | 37 | length. pH adjustment
increased AAFS50's
adsorptive capacity, tripling
the media run length (Run
2).
Intermittent system
operation influenced media | 38.1 | 37.8 0.3 | 7.5 | 7 NA | NA | 18.5 | <0.1 | NA | 8.7 | <30 | <0.1 | NA | <0.1 | 15.7 | NA | NA / 23,030 | 35 | 10 backwash cycles during study period | Spent media was disposed of in
a non-hazardous waste landfill.
Backwash wastewater was
recycled. | | Valley Vista,
AZ | Arizona Wate
Company,
Sedona | er
2005/10/12 -
2006/03/07 | 1520 | 36 | 3,411,000 | Run 3. One out of
four wells was
used in the study | FA-236-AS, AAFS50
media; pre-existing
NaOCl addition.
intermittent run- | Kinetico | 37 | run length positively (Run 3) Distribution system: As concentrations partially higher than those of the treatment effluent (8 - 27 µg/L) due to blending with untreated water. | 38.1 | 37.8 0.3 | 7.5 | 7 NA | NA | 18.5 | <0.1 | NA | 8.7 | <30 | <0.1 | NA | <0.1 | 15.7 | NA | NA / 10,360 | 37 | 4 backwash cycles during study period | Spent media was disposed of in
a non-hazardous waste landfill.
Backwash wastewater was
recycled. | | Valley Vista,
AZ | Arizona Wate
Company,
Sedona | 2006/03/07 -
2006/09/18 | 1520 | 37 | 8,464,000 | Run 4. One out of
four wells was
used in the study | adsorptive media:
FA-236-AS, ARM200 | Kinetico | 37 | ARM200 media without pH
adjustment: run length
comparable to AAFS50
media with pH adjustment | 38.1 | 37.8 0.3 | 7.7 | 7 NA | NA | 18.5 | <0.1 | NA | 8.7 | <30 | <0.1 | NA | <0.1 | 15.7 | NA | NA / 25,720 | 23 | 8 backwash cycles during study period | Spent media was disposed of in
a non-hazardous waste landfill.
Backwash wastewater was
recycled. | | Wales, ME | Spring Brook
Mobile Home
Park | | 14 | 11.2 | 927,916 | 14 mobile homes
served | adsorptive media:
A/I Complex 2000;
A/P Complex 2002
oxidative media | Aquatic
Treatment
Systems (ATS) | 14 | As levels > MCL after 3
months until media change
after another 3 months. A/P
Complex 2002 oxidative
media showed a significant
adsorptive capacity for As | 38 | 4.6 33. | 4 8.6 | 5 NA | <0.7 | 10.7 | <0.06 | <0.04 | 18 | <25 | 9.6 | 0.9 | 0.4 | 0.1 | <0.05 | 171,000 / 5100 |) NA | run length per train (system
= 2 trains); considering the
three adsorption columns as
one large column. The media
were replaced after 5 to 6
months. | Spent media could have been
disposed of in a sanitary landfil
(non-hazardous), but was
recycled by the vendor | | | | | system size | | | | removal system | | | | source w | ater gua | lity | | | | | | | | | | | | | | comment | performance | , | | | |-----------------|---|-----------------------------|-------------|----------|-----------------------|--|--|--|---------------------------|--|-------------------------|----------|---------|--------------------|-------------------|---------------|----------------|----------|-----------------------------|---------|-------------------------|-------------------------|------|-------------------------|-----|-------------|--|-----------------------|-----------|---|--| | Location | Site name | study perio | | av. flov | w vol. treated [gal.] | comment | type | vendor | design flow
rate [gpm] | | As total soluble [µg/L] | As(V) | As(III) | pH di
(S.U.) oz | issolved
xygen | TOC
[mg/L] | SiO2
[mg/L] | P [mg/L] | Nitrate
(as N)
[mg/L] | Sulfate | Fe
soluble
[μg/L] | Mn
soluble
[μg/L] | | Sb
soluble
[µg/L] | | Ammon
ia | Comment | run length [g
[BV] | backwash | n) comment | Generation and handling of residuals | | Wales, ME | Spring Brook
Mobile Home
Park | | | 5.6 | 390,980 | 14 mobile home | adsorptive media:
Siemens GFH; Filo
R oxidative media | x- Treatment | 7 | Only 1 of 2 trains filled with
GFH media. Filox-R media
had no adsorptive capacity
for As, but GFH shows 5
times the adsorptive
capacity of A/I Complex
2000. | 38 | 4.6 | 33.4 | 8.6 N | Α | <0.7 | 10.7 | <0.06 | <0.04 | 18 | <25 | 9.6 | 0.9 | 0.4 | 0.1 | <0.05 | | 391,000 / 11 | ,600 NA | Considering the three adsorption columns as one large column. | | | Wales, ME | Spring Brook
Mobile Home
Park | | - 14 | 7.6 | 516,074 | 14 mobile home | adsorptive media:
es Kimera CFH-12;
Filox-R oxidative
media | Aquatic
Treatment
Systems (ATS) | 7 | Only 1 of 2 trains filled with
CFH-12 media. Filox-R media
had no adsorptive capacity
for As, but CFH-12 shows 4
times the adsorptive
capacity of A/I Complex
2000. | 38 | 4.6 | 33.4 | 8.6 N | A | <0.7 | 10.7 | <0.06 | <0.04 | 18 | <25 | 9.6 | 0.9 | 0.4 | 0.1 | <0.05 | | 516,000 / 15 | ,300 NA | Considering the three adsorption columns as one large column. | | | Reno, NV | South Trucke
Meadows
General
Improvemen
District
(STMGID) at
Washoe
County | 2005/09/27
2006/05/03 | | 275 | 15,567,000 | one out of five
supply wells
used for the
study; treated
water blended
with water fron
other wells | adsorptive media:
GFH; pre-existing
prechlorination
system | Siemens | 350 | Antimony breakthrough at 6µg/L at 3000 BV. Unexpectedly short run length for As probably due to competing anions (silica, phosphorus). Operational difficulties concerning backwash (involving SCADA & PLC). | 89.4 | 89.1 | 0.3 | 7.4 N | A | <1 | 68.6 | <0.10 | NA | 8 | <30 | <0.1 | NA | 15.8 | 3 | NA | | NA / 7200 | NA | Backwash was not required
by the system, but has been
done a few times for test
purpose. | Spent media disposed of at a sanitary landfill, backwash wastewater directly discharged to the sewer. | | Reno, NV | South Trucke
Meadows
General
Improvemen
District
(STMGID) at
Washoe
County | 2007/04/05
2007/07/03 | - 8300 | 276 | 18,848,000 | one out of five
supply wells
used for the
study; treated
water blended
with water fron
other wells | GFH (one vessel),
CFH-0818 (two
vessels); pre-
existing | Siemens &
Kemira Water
Solutions | 350 | Antimony breakthrough at 6µg/L at 1225 BV. Unexpectedly short run length for As probably due to competing anions (silica, phosphorus). Operational difficulties concerning backwash (involving SCADA & PLC). | 89.4 | 89.1 | 0.3 | 7.4 N | A | <1 | 68.6 | <0.10 | NA | 8 | <30 | <0.1 | NA | 15.8 | 3 | NA | | NA / 3700 | NA | Backwash was not required
by the system, but has been
done a few times for test
purpose. | Spent media disposed of at a sanitary landfill, backwash wastewater directly discharge to the sewer. | | Wellman, 1 | City of
Wellman | 2006/08/10
2008/04/17 | | 91 | 14,744,962 | 95 service connections | adsorptive media:
AD-33; pre-existin
NaOCl addition
system | | 100 | Av. flow: flow
metes/totalizers recorded
different results (118gpm on
average with
electromagnetic flow meter)
> master totalizer values
used | 50.2 | 38.4 | 2.8 | 8.2 6. | .6 | 5.2 | 45.5 | <0.06 | 0.6 | 240 | <25 | 0.4 | 10.1 | <0.1 | 151 | <0.05 | Source water quality only from Well 1 (of 5). Only the nitrate level is higher (5.4) for the five wells combined & chlorinated | | NA | no As breakthrough during
the study | Neither backwash nor media
replacement was required
during the study period | | Woodstock
CT | woodstock
Middle School | 2009/03/10
ol 2010/09/30 | | 16.4 | 544,600 | school | adsorptive media:
Adsorbia GTO | Dow Chemical
Company | 20 | | 20.9 | 18 | 3 | 7.7 0. | .6 | <1.0 | 14.3 | <0.02 | <0.05 | 19.5 | <25 | 17.1 | NA | <0.1 | 0.2 | <0.05 | | 395,000 / 76 | 00 7 - 77 | Random backwash frequence
(backwash timer not
functioning correctly). | Backwash wastewater
discharged to the sewer. No
AM nor bag filter replacement
required during study period. | **Table S2.** Examples of websites (listed alphabetically) hosted by non-governmental organizations that provide aggregated information on technologies for drinking water treatment | name | type | Comments | URL | |---|--|---|--| | aquaeXpert | Information platform hosted by the Swiss Gas and Water Industry Association | Competence center for questions on drinking water quality (French, German and Italian) | http://aquaexpert.svgw.ch/ | | Blue Tech Research | Subsidiary of the consultancy O ₂
Environmental | Global provider of water technology market intelligence | http://www.bluetechresearch.com/ | | Environmental XPRT | Subsidiary of the consultancy XPRT Media | Global marketplace, industry marketplace and information resource | http://www.environmental-
expert.com/ | | Leaders Innovation Forum for Technology | Platform hosted by the Water Environment
Research Foundation (WERF) and Water
Environment Federation (WEF) | Intended to help bring new water technology to the field quickly and efficiently |
http://www.werf.org/lift | | The Water Network | Moderated peer-to-peer platform | Online knowledge sharing platform and business exchange for global water professionals | https://thewaternetwork.com/ | | Water Online | Online newsletter | Source of technical information and thought leadership for the drinking water and wastewater treatment communities | http://www.wateronline.com/ | | Water Research
Foundation | Membership organization | Hosts knowledge Portals (extensive, topic-specific resource areas that provide access to synthesized information and other key resources on top industry issues) available to subscribers | http://www.waterrf.org/ | | Watershare® | Membership organization | Selected partner knowledge institutes from all over the world share in the use of expert water-related tools | https://www.watershare.eu/ | | WaterWorld | Online newsletter | Provides daily international business and industry-related news, current issue articles, and access to years of searchable editorial archives | http://www.waterworld.com/ |