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Supplemental Data 

 

Calculations of the effects of steel relaxation, concrete shrinkage and creep are presented, 

according to both Eurocode 2: Design of Concrete Structures CEN (2004) and the approach given 

by Collins and Mitchell (1997). Further details are also given in Webb (2010, 2014). 

 

S1 Eurocode approach 

S1.1 Prestressing Steel Calculations 

For class 2 low relaxation prestressing tendons, as used in this case, Eurocode 2  gives an 

expression for the loss of stress due to relaxation, Δσpr, at time t (measured in hours) (CEN, 2004, 

Eq. 3.29). 

𝛥𝜎𝑝𝑟

𝜎𝑝𝑖
= 0.66𝜌1000𝑒9.1𝜇 (

𝑡

1000
)

0.75(1−𝜇)

10−5 (S1) 

σpi is the initial stress in the steel after the short term losses discussed in the main paper. ρ1000 is 

the relaxation loss after 1,000 hrs, which is taken as 2.5% for class 2 prestressing steel (CEN, 2004, 

cl 3.3.2(6)) and µ is defined by the equation given in CEN (2004) cl 3.3.2(7), reproduced as Eq. 

S2:  

𝜇 =
𝜎𝑝𝑖

𝑓𝑝𝑘
 (S2) 
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where fpk is the characteristic value the tensile strength of the steel. Since the area of the steel 

tendons, As, is known, the loss in prestressing force due to relaxation can be calculated using 

Eq. S3: 

𝛥𝑃𝑟 = 𝐴𝑠𝛥𝜎𝑝𝑟 (S3) 

 

S1.2 Concrete Shrinkage Calculations 

Over time concrete loses moisture and hence decreases in volume, an effect known as shrinkage. 

This is normally assumed to produce a uniform compressive strain, εcs, throughout the concrete, 

the rate of which depends on the relative humidity and the surface area of the specimen. There are 

two components of shrinkage strain, the drying shrinkage strain, εcd, and the autogenous shrinkage 

strain, εca. given as Eq. S4 below (CEN, 2004, Eq. 3.8): 

𝜀𝑐𝑠 = 𝜀𝑐𝑑 + 𝜀𝑐𝑎 (S4) 

The final value of autogenous shrinkage strain, εca (∞), depends on concrete strength given as 

Eq. S5 below (CEN, 2004, Eq. 3.12): 

𝜀𝑐𝑎(∞) = 2.5(𝑓𝑐𝑘 − 10)10−6 (S5) 

The autogenous shrinkage strain develops rapidly during the hardening process (CEN, 2004, 

Eq. 3.11 and 3.13) (reproduced here as Eq. S6 and S7): 

𝜀𝑐𝑎(𝑡) = 𝛽𝑎𝑠(𝑡)𝜀𝑐𝑎(∞) (S6) 

Where: 

𝛽𝑎𝑠(𝑡) = 1 − 𝑒−0.2𝑡0.5
 (S7) 

with t, in this case, measured in days. 

Drying shrinkage strain develops more slowly as water gradually migrates through the hardened 

concrete and depends on a number of factors given as Eq. S8 (CEN, 2004, Eq. 3.9): 
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𝜀𝑐𝑑(𝑡) = 𝛽𝑑𝑠(𝑡, 𝑡𝑠)𝑘ℎ𝜀𝑐𝑑,0 (S8) 

The notional size of the cross section, h0, is given by Eq. S9 below (see the note below Eq. 3.10 in 

CEN (2004), p. 33): 

ℎ0 =
2𝐴𝑐

𝑢
 (S9) 

where Ac is the cross sectional area of the concrete and u is the length of the perimeter exposed to 

drying. Beam sections with a large perimeter will have a much greater area over which moisture 

loss can occur. The coefficient, kh, in Eq. S8 depends on the notional size of the cross section and 

according to CEN (2004, Table 3.3) when h0 = 100, kh = 1.00; when h0 = 200, kh = 0.85; when 

h0 = 300, kh = 0.75 and when h0 is greater than or equal to 500, kh = 0.70. βds(t,ts) is a coefficient 

which describes the development of drying shrinkage with time given as Eq. S10 (CEN, 2004, Eq. 

3.10): 

𝛽𝑑𝑠(𝑡, 𝑡𝑠) =
𝑡−𝑡𝑠

(𝑡−𝑡𝑠)+0.04√(ℎ0)3
 (S10) 

where ts is the age of the concrete in days at the end of curing, when drying shrinkage begins. The 

basic drying shrinkage strain, εcd,0, is given here as Eq. S11 (based on CEN, 2004, Eq. B.11): 

𝜀𝑐𝑑,0 = 0.85 [(220 + 110𝛼𝑑𝑠1)𝑒(−𝛼𝑑𝑠2
𝑓𝑐𝑚

10
)] 10−6𝛽𝑅𝐻 (S11) 

where fcm is the mean cylinder strength of the concrete (see Table 3.1 in CEN, 2004) and Eq. S12:  

𝑓𝑐𝑚 = 𝑓𝑐𝑘 + 8 (S12) 

and βRH is a coefficient which depends on the relative humidity, RH (see CEN, 2004, Eq. B.12 and 

Eq. S13): 

𝛽𝑅𝐻 = 1.55 [1 − (
𝑅𝐻

100
)

3

]  (S13) 

The constants αds1 and αds2 depend on the class of cement being used, and in this case have the 

values 6 and 0.11 respectively (see cl B.2(1) in CEN, 2004, p. 204). 
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The total uniform shrinkage strain, εcs, can then be used to calculate the loss in prestressing force 

due to shrinkage, given as Eq. S14: 

𝛥𝑃𝑠 = 𝜀𝑐𝑠𝐸𝑠𝐴𝑠  (S14) 

 

S1.3 Creep of Concrete 

The final effect to consider is creep of concrete, where the strains increase over time for concrete 

under a constant stress, primarily due to further losses of moisture. This is particularly noticeable 

in prestressed structures, since the concrete is under a large compressive stress due to the force in 

the tendons. Creep behavior is normally modelled by calculating an effective Young’s Modulus, 

Ec,eff for the concrete which decreases with time (given as Eq. S15): 

𝐸𝑐,𝑒𝑓𝑓 =
𝐸𝑐

𝜙(𝑡,𝑡0)
  (S15) 

The creep coefficient, (t,t0), is given by Eq. S16 (CEN, 2004, Eq. B.1): 

𝜙(𝑡, 𝑡0) = 𝜙0𝛽𝑐(𝑡, 𝑡0)  (S16) 

t0 is the age of the concrete at the point when the load was first applied, although this must first be 

modified to take into account the effect of different types of cement, as given by Eq. S17 (CEN, 

2004, Eq. B.9): 

𝑡0 = 𝑡0,𝑇 (
9

2+𝑡0,𝑇
1.2 + 1)

𝛼

≥ 0.5  (S17) 

where t0,T is the actual age of the concrete when the load was applied and α depends on the cement 

class used, in this case it has a value of 1. 

0 is the notional creep coefficient which is given by Eq. S18 (CEN, 2004, Eq. B.2): 

𝜙0 = 𝜙𝑅𝐻𝛽(𝑓𝑐𝑚)𝛽(𝑡0)  (S18) 

This comprises a number of factors which are described in Table S1. 
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Table S1: Factors affecting notional creep coefficient 

Factor Allows for effect of Reference (CEN, 2004) 

𝜙𝑅𝐻 = [1 +
1 −

𝑅𝐻
100

0.1√ℎ0
3

𝛼1] 𝛼2 

                         for fcm > 35MPa 

relative humidity Eq. B.3b, p. 202 

𝛽(𝑓𝑐𝑚) =
16.8

√𝑓𝑐𝑚

 
concrete strength Eq. B.4, p. 202 

𝛽(𝑡0) =
1

0.1 + 𝑡0
0.2 

concrete age at loading Eq. B.5, p. 202 

𝛼1 = (
35

𝑓𝑐𝑚
)

0.7

 
concrete strength Eq. B.8c, p. 203 

𝛼2 = (
35

𝑓𝑐𝑚
)

0.2

 
concrete strength Eq. B.8c, p. 203 

 
 
βc(t,t0) is then used to describe the development of creep with time after loading, given as Eq. S19 

(CEN, 2004, Eq. B.7): 

𝛽𝑐(𝑡, 𝑡0) = [
𝑡−𝑡0

𝛽𝐻+𝑡−𝑡0
]

0.3

  (S19) 

Where,  

𝛽𝐻 = 1.5[1 + (0.012𝑅𝐻)18]ℎ0 + 250𝛼3 ≤ 1500𝛼3 (S20) 

(CEN, 2004, Eq. B.8b) 

and 

𝛼3 = [
35

𝑓𝑐𝑚
]

0.5

  (S21) 

(CEN, 2004, Eq. B.8c). 
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There are now three components which must be added together to calculate the predicted strains 

in the beam section: strains due to the self-weight of the concrete can be calculated, using Ec,eff, to 

account for the effects of creep. Secondly, strains due to the now reduced prestressing force can 

be calculated as before, using equations 4, 5 and 6 in the main paper. Again the effective concrete 

modulus, Ec,eff, should be used to account for the effects of creep. Finally, the uniform shrinkage 

strain, εcs, needs to be added. 

 

S2 Collins and Mitchell (1997) approach 

In this section calculations are presented following the approach given by Collins and Mitchell 

(1997), however some alterations to the notation have been made to ensure consistency throughout 

this paper. 

 

S2.1 Prestressing steel calculations 

Collins and Mitchell (1997) give an expression for the stress, σp, in prestressing tendons at time t 

(measured in hours) given as Eq. S22 below (Collins and Mitchell, 1997, Eq. 3-28):  

𝜎𝑝

𝜎𝑝𝑖
= 1 −

𝑙𝑜𝑔 𝑡

10
(

𝜎𝑝𝑖

𝜎𝑦
− 0.55) (S22) 

where σpi is the initial stress in the steel, t is the time in hours, and σy is the yield strength of the 

steel, taken as 90% of the ultimate strength of the steel for low relaxation strands. The loss in 

prestressing force due to relaxation can then be calculated as in Eq. S3. 

 

S2.2 Concrete shrinkage calculations 



SUPPLEMENTAL DATA 

 

www.ascelibrary.org                                                                                                                       © ASCE 2016 / S7 

The rate at which moisture is lost is assumed to depend on the surface area of concrete exposed to 

the air and the humidity of the air. This loss of moisture produces a uniform compressive strain, 

εsh, in the concrete given as Eq. S23 below (Collins and Mitchell, 1997, Eq. 3-19):  

𝜀𝑠ℎ = 𝑘𝑠𝑘ℎ (
𝑡

35+𝑡
) ×0.00051×1.2 (S23) 

Where t is the age of the concrete in days, kh is a correction factor for relative humidity, and ks is 

a time dependent correction factor for size. kh and ks are obtained from Collins and Mitchell (1997) 

Fig. 3-18. The extra factor of 1.2 is to account for the increased shrinkage due to early exposure 

of the beam when the concrete was still moist (cf. Collins and Mitchell, 1997, p. 75). 

 

S2.3 Creep of concrete 

Creep behavior is modelled by calculating an effective Young’s Modulus for the concrete which 

decreases with time (Eq. S24) (Collins and Mitchell, 1997, Eq. 3-12): 

𝐸𝑐,𝑒𝑓𝑓 =
𝐸𝑐𝑖

1+𝜙(𝑡,𝑡𝑖)
 (S24) 

The creep coefficient, , is given by Eq. S25 (Collins and Mitchell, 1997, Eq. 3-10): 

𝜙(𝑡, 𝑡𝑖) = 3.5𝑘𝑐𝑘𝑓 (1.58 −
𝐻

120
) 𝑡𝑖

−0.118 (𝑡−𝑡𝑖)0.6

10+(𝑡−𝑡𝑖)0.6 (S25) 

where t is the time in days, ti is the age of the concrete at release, and H is the average relative 

humidity. kc is a time dependent correction factor for size from Collins and Mitchell (1997) Fig 3-

12, p. 69 and kf is a correction factor to account for concrete strength, given by Eq. S26 (Collins 

and Mitchell, 1997, Eq. 3-11): 

𝑘𝑓 =
1

0.67+(
𝑓𝑐

′

62
)
 (S26) 

where fc
' is the cylinder strength of the concrete. 

S3 Composite Section Analysis Calculations 
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For the in-situ concrete, the changes in strain, Δε (Eq. S28), and curvature, Δκ (Eq. S27), since the 

section became composite are only caused by new self equilibrating moments: 

𝛥𝜅 = −
𝑀𝑝

𝐸𝑖𝐼𝑖
+

𝑋𝑝𝑎

𝐸𝑖𝐼𝑖
  (S27) 

𝛥𝜀 =
𝑀𝑝𝑎

𝐸𝑖𝐼𝑖
−

𝑋𝑝𝑎2

𝐸𝑖𝐼𝑖
−

𝑋𝑝

𝐸𝑖𝐴𝑖
+ 𝜀𝑐𝑠,𝑖  (S28) 

where Ei is the effective modulus of the in-situ concrete, Ii, is the second moment of area of the in-

situ deck slab, Ai is the cross sectional area of the deck slab, and εcs,i is the shrinkage strain in the 

in-situ concrete slab, calculated as before, but with different values of t and t0 to take into account 

the different age of the in-situ concrete. The interaction between the precast and in-situ concrete 

can be analyzed by superimposing self equilibrating moments and longitudinal shear forces along 

the join between the two layers of concrete (Figure S1). 

 

Figure S1: Self equilibrating force system due to differential creep and shrinkage 
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Once the deck concrete has hardened the two layers are joined together and therefore the changes 

in strain and curvature along the joint must be the same in both layers. These two conditions of 

compatibility can be used to derive expressions to determine Mp and Xp. 

For the precast concrete, the additional curvature and strain since the section became composite is 

found as given in Eq. S29 and Eq. S30: 

𝛥𝜅 =
𝑀𝑝

𝐸𝑝𝐼𝑝
+

𝑋𝑝𝑌𝑡

𝐸𝑝𝐼𝑝
+

𝜀𝑡−𝜀𝑏

𝑑
−

𝜀𝑡𝑐−𝜀𝑏𝑐

𝑑
 (S29) 

𝛥𝜀 =
𝑀𝑝𝑌𝑡

𝐸𝑝𝐼𝑝
+

𝑋𝑝𝑌𝑡
2

𝐸𝑝𝐼𝑝
+

𝑋𝑝

𝐸𝑝𝐴𝑝
+ 𝜀𝑡 − 𝜀𝑡𝑐 (S30) 

where: Ep is the effective modulus of the precast concrete, Ip is the second moment of area of the 

precast beam and Ap is the cross sectional area of the precast beam. εt and εb are the strains at the 

top and bottom fibers of the precast beam which would be caused by the applied loads (including 

creep and shrinkage) if no composite action occurred. εtc and εbc are the top and bottom fiber strains 

at the time the section became composite, and d is the depth of the precast beam. 

To satisfy compatibility of curvature, Eq. S27 and Eq. S29 can be equilibrated: 

−
𝑀𝑝

𝐸𝑖𝐼𝑖
+

𝑋𝑝𝑎

𝐸𝑖𝐼𝑖
=

𝑀𝑝

𝐸𝑝𝐼𝑝
+

𝑋𝑝𝑌𝑡

𝐸𝑝𝐼𝑝
+

𝜀𝑡 − 𝜀𝑏

𝑑
−

𝜀𝑡𝑐 − 𝜀𝑏𝑐

𝑑
 

𝑀𝑝 (−
1

𝐸𝑖𝐼𝑖
−

1

𝐸𝑝𝐼𝑝
) + 𝑋𝑝 (

𝑎

𝐸𝑖𝐼𝑖
−

𝑌𝑡

𝐸𝑝𝐼𝑝
) =

𝜀𝑡−𝜀𝑏−𝜀𝑡𝑐+𝜀𝑏𝑐

𝑑
   (S31) 

Compatibility of strain can similarly be achieved, by equilibrating Eq. S28 and Eq. S30: 

𝑀𝑝𝑎

𝐸𝑖𝐼𝑖
−

𝑋𝑝𝑎2

𝐸𝑖𝐼𝑖
−

𝑋𝑝

𝐸𝑖𝐴𝑖
+ 𝜀𝑐𝑠,𝑖  =

𝑀𝑝𝑌𝑡

𝐸𝑝𝐼𝑝
+

𝑋𝑝𝑌𝑡
2

𝐸𝑝𝐼𝑝
+

𝑋𝑝

𝐸𝑝𝐴𝑝
+ 𝜀𝑡 − 𝜀𝑡𝑐 

𝑀𝑝 (
𝑎

𝐸𝑖𝐼𝑖
−

𝑌𝑡

𝐸𝑝𝐼𝑝
) + 𝑋𝑝 (−

𝑎2

𝐸𝑖𝐼𝑖
−

1

𝐸𝑖𝐴𝑖
−

𝑌𝑡
2

𝐸𝑝𝐼𝑝
−

1

𝐸𝑝𝐴𝑝
) = 𝜀𝑡 − 𝜀𝑡𝑐 − 𝜀𝑐𝑠,𝑖   (S32) 

These two equations can be written in matrix form and solved to determine the values of Mp and 

Xp (Eq. S33): 
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[
𝛼 𝛽
𝛽 𝛾

] [
𝑀𝑝

𝑋𝑝
] = [

𝜀𝑡−𝜀𝑏−𝜀𝑡𝑐+𝜀𝑏𝑐

𝑑
𝜀𝑡 − 𝜀𝑡𝑐 − 𝜀𝑐𝑠,𝑖

] (S33) 

where 

𝛼 = −
1

𝐸𝑖𝐼𝑖
−

1

𝐸𝑝𝐼𝑝
  ;  𝛽 =

𝑎

𝐸𝑖𝐼𝑖
−

𝑌𝑡

𝐸𝑝𝐼𝑝
  ;  𝛾 = −

𝑎2

𝐸𝑖𝐼𝑖
−

1

𝐸𝑖𝐴𝑖
−

𝑌𝑡
2

𝐸𝑝𝐼𝑝
−

1

𝐸𝑝𝐴𝑝
   (S34) 

To determine the total strains in the beam, this force and moment are applied to the precast section 

and the extra strains produced can then be added to the strains found previously, εt and εb. 

 

S4 Continuous Beam Analysis 

The analysis so far has considered each of the bridge’s spans as a simply supported beam. 

However, when the in-situ concrete deck was poured, concrete was also cast in the gaps between 

the beams at the tops of the internal piers. This means the bridge must now been treated as a 

continuous structure over all three spans. Extra moments are then induced at the intermediate 

supports which oppose any further creep and shrinkage strains. These extra moments are required 

to ensure compatibility of rotations along the length of the beam. 

Firstly, the rotations at the ends of each simply supported span are found by superimposing the 

effects of a uniform load and a constant moment (Figure S2). 

Figure S2: End rotations of beam 

 

The uniform load, wtot, consists of the self-weight of the beam and the in-situ concrete deck. Mtot 

comprises the moments generated by the prestressing force as well as the effects of Mp and Xp due 

to differential creep and shrinkage. The total end rotation, θ, is then given by Eq. S35: 
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𝜃 =
𝑀𝑡𝑜𝑡𝐿

2𝐸𝑝𝐼𝑝
−

𝑤𝑡𝑜𝑡𝐿3

24𝐸𝑝𝐼𝑝
 (S35) 

where Ep is the effective modulus of precast concrete. 

If it is assumed that the bridge became a continuous structure when the deck was added, then 

moments will be induced at the supports to ensure that any further rotations, Δθ, satisfy 

compatibility over the supports (Eq. S36): 

𝛥𝜃 = 𝜃 − 𝜃𝑐 (S36) 

where θc is the rotation at the time the beams became continuous. Figure S3 shows the three spans, 

the new induced moments, and the rotations they cause. 

 

Figure S3: Extra moments induced at supports 

 

Since the bridge is almost symmetrical the two induced moments are assumed to be equal. As these 

moments are applied to the entire composite cross section not just the precast beam, it is necessary 

to calculate the second moment of area of the composite cross section. Due to differences in 

stiffness between the precast and in-situ concrete, the area of the in-situ concrete must be 

multiplied by the modular ratio of the two concretes, Ei/Ep. 

The rotations θ1 and θ2 can then be calculated from standard results (Eq. S37 and S38): 

𝜃1 =
𝑀𝑠𝐿

3𝐸𝑝𝐼𝑐
 (S37) 
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𝜃2 = −
𝑀𝑠𝐿

3𝐸𝑝𝐼𝑐
−

𝑀𝑠𝐿

6𝐸𝑝𝐼𝑐
= −

𝑀𝑠𝐿

2𝐸𝑝𝐼𝑐
  (S38) 

where Ic is the second moment of area of the composite section about its centroid. 

Ms can then be determined by enforcing compatibility of rotations (Eq. S39, S40 and S41): 

𝛥𝜃 + 𝜃1 = −𝛥𝜃 + 𝜃2  (S39) 

𝛥𝜃 +
𝑀𝑆𝐿

3𝐸𝑝𝐼𝑐
= −𝛥𝜃 −

𝑀𝑆𝐿

2𝐸𝑝𝐼𝑐
 (S40) 

𝑀𝑆 = −
12

5

𝐸𝑝𝐼𝑐

𝐿
𝛥𝜃  (S41) 

This moment is applied to the entire composite cross section, so the extra strains that it causes can 

be calculated using the composite section’s properties. These strains can then be added to the 

previous results to give the total resulting strain state. 
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