PIPELINES 2023

Condition Assessment, Utility Engineering, Surveying, and Multidiscipline

PROCEEDINGS OF SESSIONS OF THE PIPELINES 2023 CONFERENCE

August 12–16, 2023 San Antonio, Texas

SPONSORED BY Utility Engineering and Surveying Institute of the American Society of Civil Engineers

> EDITED BY Christine S. Ellenberger, P.E. Jonathan D. Shirk, P.E.

Published by the American Society of Civil Engineers

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4382 www.asce.org/publications | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers-Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in ASCE's Civil Engineering Database (http://cedb.asce.org) or ASCE Library (http://ascelibrary.org) and using the "Permissions" link.

Errata: Errata, if any, can be found at https://doi.org/10.1061/9780784485033

Copyright © 2023 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-8503-3 (PDF) Manufactured in the United States of America.

Preface

The resiliency and sustainability of pipeline infrastructure is becoming more recognized as a major issue in maintaining the high level of service we are all accustomed too. These pipelines provide a vital role in our everyday life from supplying drinking water to collecting wastewater, conveyance of petroleum products and other fluids (or for some cases solids as well), we depend greatly on pipelines. This year the theme, "Advancing Solutions for Resilient and Sustainable Infrastructure and Asset Management," focuses on the need for engineers to be innovative in their designs while at the same time providing resilient and sustainable solutions to our aging pipeline infrastructure.

In coordination with the American Society of Civil Engineers, the technical program and this publication were planned, developed, and arranged by the Technical Program Committee, led by the Technical Program Co-Chairs. A call for abstracts was made from which 270 abstracts were submitted. These abstracts were reviewed and sorted into tracks based on the general topic areas of Planning and Design; Construction and Rehabilitation; Condition Assessment; and Utility Engineering, Surveying, and Multidiscipline. This resulted in a high-quality program containing 169 papers and an array of poster presentations.

The overall program was further enhanced by eight technical pre-conference workshops covering: Large Diameter Pipeline User's Forum; Large Equipment Owner's Forum; Field Investigation Techniques & Interpretation for the ASCE-38 Standard; Force Main Rehabilitation; 50 Years of Success – Steel Pipe Review of Standards and Design; Direct Steerable Pipe Thrusting Manual of Practice; A Comprehensive Look at Municipal Installations of PVC and HDPE: Updates on Best Practices for Designing, Handling, and Installing Trenchless; and Manhole Rehabilitation and Inspection – 3rd Edition of Manual of Practice. A Pipeline Research Symposium was also part of the pre-conference offerings.

In addition to the traditional technical paper presentations, poster submissions, and the preconference workshops, panel sessions were included covering a wide range of topics, such as the evolving technology used in geomatics and surveying, use of risk assessment in asset management, ethics, and diversity in engineering.

For publication purposes, technical papers from the seven presentation tracks were consolidated into the following three volumes:

- 1. Pipelines 2023: Planning and Design
- 2. Pipelines 2023: Construction and Rehabilitation
- 3. Pipelines 2023: Condition Assessment, Utility Engineering, Surveying, and Multidiscipline

On behalf of the Technical Program Committee, we are pleased to offer you the Proceedings of the ASCE/UESI Pipelines 2023 Conference, "Advancing Solutions for Resilient and Sustainable Infrastructure and Asset Management."

iii

Respectfully yours,

Christine S. Ellenberger, P.E., M.ASCE Technical Program Co-Chair

Jonathan D. Shirk, P.E., M.ASCE Technical Program Co-Chair

Acknowledgments

Technical Program Committee

Technical Program Co-Chairs

Christine S. Ellenberger, P.E., M.ASCE, Jacobs Engineering Group Inc. Jonathan D. Shirk, P.E., M.ASCE, Kennedy Jenks Consultants

Conference Co-Chairs

Mark Mihm, P.E., M.ASCE, P.E., CDT, ENV SP, Dallas Water Utilities Andrea L.H. Beymer, P.E., San Antonio Water System

Technical Program Track Chairs

Jennifer Baldwin, Ph.D., P.E., M.ASCE, Jacobs Engineering Group Inc., Condition Assessment Matt Gaughan, M.ASCE, Plus Six Engineering, LLC, Construction and Rehabilitation Alisa Gruber, P.E., M.ASCE, STV Inc., Planning and Design Khalid Kaddoura, Ph.D., P.Eng., M.ASCE, AECOM, Condition Assessment Josh Kercho, P.E., M.ASCE, Kimley-Horn, Planning and Design Richard Nichols, P.E., M.ASCE, Uni-Bell PVC Pipe Association, Utility Engineering, Surveying, and Multidiscipline Harshit Shukla, Ph.D., A.M.ASCE, Texas A&M University, Utility Engineering, Surveying, and Multidiscipline Rosser Standifer, P.E., Arcadis, Construction and Rehabilitation

Technical Program Advisors - Posters Leads and Pre-Conference Workshops Advisors

Shaoqing Ge, Ph.D., P.E., M.ASCE, American Water Jeffrey A. Shoaf, P.E., PMP, M.ASCE, San Diego County Water Authority

Pre-Conference Workshop Co-Chairs

Ophir Wainer, Aff.M.ASCE, 4M Analytics Jesse Cooper, P.L.S, M.ASCE, HDR Engineering Inc.

Pre-Conference Workshop Leads

Blaine Hunt, P.Eng., M.ASCE - Field Investigation Techniques & Interpretation for the ASCE-38 Standard

Graham E.C. Bell, Ph.D., P.E., M.ASCE; John Norton, Ph.D., P.E., M.ASCE - Large Diameter Pipeline User's Forum

V. Firat Sever, Ph.D., P.E., F.ASCE - Force Main Rehabilitation

Shelly Hattan, P.E., CCM, M.ASCE - Large Equipment Owner's Forum

Tim O'Toole - 50 Years of Success - Steel Pipe Review of Standards and Design

Jon Robison, P.E., M.ASCE - Direct Steerable Pipe Thrusting Manual of Practice

Alan Ambler, P.E., LEED AP; Robert Walker, P.E., Life M.ASCE - A Comprehensive Look at Municipal Installations of PVC and HDPE: Updates on Best Practices for Designing, Handling, and Installing Trenchless

v

Joanne Carroll, Aff.M.ASCE - Manhole Rehabilitation and Inspection - 3rd Edition of Manual of Practice 92

ASCE Staff

Lucy Kin
Aaron Ko
Erin Marl
Carolyn N
Nives Mc
Patrick M

ıg oepper ks Martin cLarty **AcGinn**

Andrew Moore Susan Reid Sean Scully **Diane Swecker Trevor Williams**

The Technical Program Co-Chairs and the Steering Committee would like to thank the over 100 professionals who volunteered their time and talents to serve as part of the 2023 Technical Committee. Everyone worked as a team to review abstracts, papers, and posters and continued to collaborate throughout the development and fine-tuning of this year's technical program, Advancing Solutions for Resilient and Sustainable Infrastructure and Asset Management. Many of the technical committee members also served as Track Chairs and Moderators for the conference.

Jeremiah Adebiyi	Brian Fiske
Ahmed Al-Bayati	Matt Gallagher
Jeffrey Allen	Hadi Ganjidoost
Mohammad Amini	Andre Garces
Dan Atambo	Alan Garri
Denis Atwood	Jim Geisbush
Ibukun Awolusi	Shima Ghoochani
John Bambei	Scott Gibson
Adam Braun	Brian Glynn
John Campbell	Ahmad Habibian
Urso Campos	Christopher Haeckler
Robert Card	Sharon Hamilton
Karem Carpio	Hunter Hanson
Joanne Carroll	Kristopher Harbin
Rajat Chakraborti	Shelly Hattan
Scott Christensen	Jeff Heidrick
Nathan Cobler	Charles Herckis
Kyle Couture	Asha Hockett
Matt Cullen	Celine Hyer
Mitch Dabling	Mike Jacobson
Mark Draper	Doug Jenkins
Monte Dwaynie	James Johnson
Charles Erwin	Shelbi Johnson
George Farah	Kim Keefer
Aric Farnsworth	Brent Keil

vi

Golnaz Khorsha
Joel Koenig
Zahra Kohankar Kouchesfehani
Casey Koniarski
Dan Koo
Donald Lange
Mike Larsen
Kyle LeBrasse Zhibin Lin
Susanne Lockhart
Jonathon Marshall
Ram Krishna Mazumder
Emma McGowan
Ron Mick
Richard Mielke
Ahmad Momeni
Adam Murdock
Sagarika Naik
Peter Nardini
Arne Nervik
Quoc Khanh Nguyen
Christopher Noe
Stephen Nuss
Chinedu Okonkwo
Bukola Oni
Jaime Ordonez
Kerilyn Paris
Natalie Parks

Scott Phillips Purnima Praturi Anna Pridmore Felipe Pulido Shah Rahman Sri Rajah Ehsan Rajaie Pubudu Ranasinghe Jason Roberts Joe Royer Camille Rubeiz Ashray Saxena David Schroeder Walt Schwarz V. Firat Sever **Doug Smith** Jerry Snead Alan Swartz Cynthia Syvarth Amir Tabesh Jenifer Tatum Amin Tehrani Jonathan Tran Jonathan Vorheis Patrick White Jacob Wilson Webb Winston

The Technical Program Co-Chairs also thank the authors and exhibitors for their dedication to the industry in presenting at this conference. Without your efforts and contributions, the UESI Pipelines Conference would not be possible.

And lastly, the Technical Program Co-Chairs express special thanks to Mark Mihm and Andrea Beymer, Conference Co-Chairs, and the Steering Committee for their efforts and leadership during the planning and execution of Pipelines 2023 Conference.

Contents

Asset Management

Increasing Confidence in Remaining Useful Life Estimation for Inspected Pipelines1
Greta Vladeanu, Sepideh Yazdekhasti, and Craig M. Daly
Wired for Success: The Evolution of a Utility's Large Diameter Force Main Asset Program
Jodi Litus, Anna F. Santino, and Alexandra F. Wells
Wastewater Pipe Probability and Consequence of Failure Rating Model for Decision Making21
Sai Nethra Betgeri, Shashank Reddy Vadyala, and John C. Matthews
Managing 700 mi of Transmission Mains
Concrete Bar Wrapped Pipe Management
Developing a Performance Curve for Bar-Wrapped Concrete Cylinder Pipe Based on Residual Factor of Safety Methodology
High-Resolution Inspection of AWWA C303 Bar-Wrapped Pipe with Detailed Field Verification45
Murat Engindeniz, Piyush Garg, Troy Bontrager, Kristopher Embry, and Shane O'Brien
Digital Twin
Marching towards a Digital Twin: How GLWA Built a 3D Model of Its WRRF Complex Underground Utilities56
Ahmad Habibian, Jim Broz, Mohsen Sadatiyan, Nicolas Nicolas, and Bryon Wood
A Digital Twin for Large Diameter Water Distribution Pipes
Evaluation of Pipeline Failure
Factors Influencing Watermain Break Rates78
Daniel Atambo, Shah Rahman, Madhuri Arjun, Vinayak Kaushal,

Amin Tehrani, and Mohammad Najafi

State-of-the-Art Overview of Plastic Pipe Deterioration Mechanisms
Structural Analysis of Large Diameter Cast Iron Pipes under Cyclic Loading and Fatigue Failure97
Masood Hajali, Ashan McNealy, and Ikram Efaz
Leak Detection
A Novel Acoustic Sensor for Condition Assessment and Early Leak Detection in Water Pipes107
Joanna B. Watts, Kirill Horoshenkov, Neil Carter, and Neil Edwards
Ruidoso Leak Detection Program, Year One115 Britt Klein
Model-Based Leakage Detection for Large-Scale Water Pipeline Networks120 Ahmad Momeni and Kalyan R. Piratla
Machine Learning
Prediction of Sewer Pipelines Using Machine Learning Techniques: A Case Study on the City of Hamilton Sewer Network128 Mohammad Amini and Khalid Kaddoura
Implementation of Machine Learning Techniques for Prediction of the Corrosion Depth for Water Pipelines
Taehyeon Kim, Kibum Kim, Jinwon Kim, Jinkeun Kim, and Jayong Koo
Why AI-Driven Analytics Are Essential for Next-Generation Pipeline Condition Assessments Marshall Kennedy, Boyu Liu, and Eric Toffin
Investigation of KNN and Decision Tree Methods' Efficiency in Developing Prediction Models for Sewer Pipes
Kawalpreet Kaur, and Ahmad Jibreen
Condition Prediction of Sanitary Sewer Pipe Data Set with Imbalanced Classification
Computer Vision for Pipeline Monitoring Using UAVs and Deep Learning

Roy Lan, Ibukun Awolusi, and Jiannan Cai

Harshit Shukla and Kalyan R. Piratla

•	J.	,
	r	i.

	ement ran, Gennaro Marino, and Abdolreza Osouli	201
	uture: Advancements in Trenchless Gas Pipeline Rehabilitation odd Danko, and Brian Brandstetter	212
	o Monitor River Scour Exposure of Oil and Gas Pipelines aratnam and Tyler Lich	221
Assessment N	wledge Gaps in Understanding Corrosion/Erosion Threats, Iethodologies, and Mitigation Strategies for Pipelines ngyu Wang, Imtiaj Nahin Ahmed, Nguyen Tam, Yan Zhang, Zhibin Lin	228
-	active Seismic Rehabilitation of Gas Pipeline Networks	240
Plow Pulling Justus Vogler	Installation of Steel Pipelines	251
	PCCP Condition Assessment	
Inspection Ex	od of Inspecting PCCP for a Utility with 15 Years of PCCP sperienceand Dustin Park	261
Condition As	ond Broken Wires: Baltimore's Approach to PCCP sessment ha, Rasko Ojdrovic, Anna Pridmore, David Caughlin, Brian Ball, Durai	268
-	ove Renewal and Re-Inspection Decision Timing for PCCP	278
Concrete Cyl	of Factors Affecting Remaining Useful Life of Prestressed inder Pipes n, Mohammad Najafi, Vinayak Kaushal, Kawalpreet Kaur,	286

Leakage Detection in Water Distribution Network Using Machine Learning192

Oil and Gas

Bowing of a Pipeline from Longitudinal Compressive Stress Induced by

Comparing Near Field Testing Technologies for PCCP Mains Michael S. Higgins and Jody Caldwell	296
PCCP Management	
Managing the Health of a 76-Year-Old PCCP: Successful Forever Pipe Management at Saginaw Midland Municipal Water Supply Corporation Dan Stickel and Dustin Park	303
Using Life-Cycle Cost Analyses (LCCA) to Evaluate Large Diameter Water Pipeline Maintenance Strategies Jim Geisbush, Guy Carpenter, Jason Foster, and Debra McGrew	312
Five More Years of Data: Predicting the Performance of Prestressed Concrete Cylinder Pipes; An Updated Case Study Billy Haklander, Mike Garaci, Heather Edwards, Craig Daly, Sepideh Yazdekhasti, and Clinton Loe	322
Correlation of Transient Pressures and Exacerbation of Wire Breaks on PCCP Water Transmission Mains—Case Study Karem M. Carpio and Kimberly Six	330
No More Failures: Charlotte Water Strengthens Its Commitment to a Comprehensive Management Strategy Targeting Large Diameter PCCPs Alan L. Bair, Evan Biedenbach, Chuck Bliss, and Mike Paluso	341
Balancing the High Wire: A Review of Prestressing Wire in Great Lakes Water Authority's Transmission System Scott Jauch, Robert J. Peterman, and John W. Norton Jr.	351
Route 1A—A Comprehensive Management Route of Large Diameter PCCP Mains Parvesh Dsingh and Lazaro Cabrera	361
Data-Based Management Strategies: A Case Study to Improve Performance of PCCP Sepideh Yazdekhasti, Greta Vladeanu, Golnaz Khorsha, Ethan Vidal, and Craig Daly	367
Sewer Condition Assessment	
Advanced Multi-Sensor Inspection Critical Condition Assessment on Wastewater Infrastructure	377

Csaba Ékes

Downloaded from ascelibrary.com by 3.129.39.163 on 06/02/24. Copyright ASCE. For personal use only; all rights reserved.

Advanced Condition Assessment Using Pipe Penetrating Radar in Los Angeles County, California
Inspection Prioritization Framework and Implementation for Combined, Sanitary, and Storm Sewers
Looking in Hard to Reach Places—San Jose-Santa Clara Regional Wastewater Facility Yard Piping Condition Assessments
Alternative Condition Score for Large-Diameter Pipe Rehabilitation and Inspection Prioritization
Subsurface Utility Engineering
Lessons Learned from the BAMI-I/UESI Utility Investigation School (UIS)
Subsurface Utility Engineering (SUE) Standard: To Whom SUE Is Created
3D Utility Models—What to Consider432 Michael Woods
Lessons Learned to Minimize Signal Coupling between Utilities When Utilizing Electromagnetic Locator
Utility Conflict Resolution for Transportation Project Delivery: Current Challenges and Potential Solutions in South Carolina447 Seyed M. Yadollahi and Kalyan R. Piratla
Protecting Our Water and Sewer Infrastructure: Developing Horizontal and Vertical Clearance Mitigation Tables454 Mark L. Reid, Susaye S. Douglas, Louis D. Arguello, and Shenica A. Knowles
What Else Is Down There?464 Joseph Murphy

Practical Application of Subsurface Utility Engineering: Best Practices Josh P. Cowan	.474
The Use of a Drone-Based Time-Domain Metal Detector to Locate Unknown Pipelines	.483
Kristopher Harbin, Gary Young, and Ronald S. Bell	100
Water Condition Assessment	
Findings and Lessons Learned from Condition Assessment Inspections of Metallic Mains Using Inline Ultrasonic Technology Jesi Lay and Parvesh Dsingh	.494
Condition Assessment, Rehabilitation, and Validation of Advanced Pipe Inspection Tool for Aging 30-in. Steel Pipeline Craig VanHorn, Rick Fell, and Doug Smith	.503
Indirect Assessment Leads to Better Planning for Condition Assessment Benjamin C. McCray	.513