INFRASTRUCTURE RESILIENCE PUBLICATION NO. 4

LIFELINES 2022

1971 SAN FERNANDO EARTHQUAKE AND LIFELINE INFRASTRUCTURE

SELECTED PAPERS FROM THE LIFELINES 2022 CONFERENCE

January 31–February 11, 2022

SPONSORED BY University of California Los Angeles

Infrastructure Resilience Division of the American Society of Civil Engineers

EDITED BY Craig A. Davis, Ph.D., P.E., G.E. Kent Yu, Ph.D., P.E., S.E. Ertugrul Taciroglu, Ph.D.

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4382 www.asce.org/publications | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers-Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in ASCE's Civil Engineering Database (http://cedb.asce.org) or ASCE Library (http://ascelibrary.org) and using the "Permissions" link.

Errata: Errata, if any, can be found at https://doi.org/10.1061/9780784484432

Copyright © 2022 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-8443-2 (PDF) Manufactured in the United States of America.

Front cover: Photograph courtesy of the United States Geologic Survey.

Preface

There has been a half a century of progress in lifeline earthquake engineering since its inception as a primary field of practice following the February 9, 1971 San Fernando Earthquake in Los Angeles, California. This was a devastating yet seminal event, which, for the first time, demonstrated the extent of seismic threats to lifeline systems, which critically support our modern communities. Knowledge gained from this event initiated the study of lifelines, including water, wastewater, electric power, gas and liquid fuels, communications, transportation, and solid waste management systems. The founding efforts of the ASCE Technical Council on Lifeline Earthquake Engineering, a predecessor unit to the current ASCE Infrastructure Resilience Division (IRD), by international leaders like the late Charles Martin Duke from the University of California, Los Angeles (UCLA) established lifelines engineering into a mainstream discipline, which over time, has been applied worldwide and extended to address additional hazards beyond earthquakes.

To celebrate the advances that lifelines engineering made since the landmark 1971 seismic event, the ASCE Infrastructure Resilience Division (IRD) and The University of California, Los Angeles (UCLA) entered into a partnership in 2018 to organize and host the San Fernando Earthquake Conference – 50 years of Lifeline Engineering (Lifelines2021) in February 2021, focusing on "Understanding, Improving & Operationalizing Hazard Resilience for Lifeline Systems." However, impacts from the COVID-19 pandemic required the conference to be delayed to February 2022 (Lifelines2021-22). Nevertheless, Lifelines2021-22 conference activities were still launched on February 9, 2021, with a webinar commemorating the 50th Anniversary of the San Fernando Earthquake. Prior to the in-person conference during February 1-3, 2022, at UCLA, the conference held several on-line activities throughout the 2021 calendar year related to the conference theme. Also, a book¹ of abstracts featuring more than 300 contributions, submitted and accepted to the conference was compiled.

The present volume features 155 technical articles and is published as the proceedings of the Lifelines 2021-2022 conference by ASCE. Each article appearing in the proceedings was reviewed by at least two experts and went through revisions, as needed, before acceptance. As further elaborated in what follows, they address the full spectrum of technical areas pertinent to lifelines engineering, ranging from hazard characterization to risk and resilience quantification, governance and management, and socioeconomic impacts of loss of functionality. The volume, as such, is a snapshot of state-of-the-art and practice lifelines engineering, as well as new research directions that are forming within the community due to recent advances along multiple fronts including sensor technologies, high-performance computing, and artificial intelligence.

¹Davis, C. A., K. Yu, and E. Taciroglu (2021). San Fernando Earthquake Conference - 50 years of Lifeline Engineering: Book of Abstracts, Lifelines2021-22, University of California Los Angeles Natural Hazards Risk and Resiliency Center Report No. GIRS-2021-05, Version 1, March 22, 2021, doi:10.34948/N3QP4X, https://doi.org/10.34948/N3QP4X.

Acknowledgments

Conference Co-Chairs

Craig A. Davis, Ph.D., P.E., G.E., M.ASCE, C A Davis Engineering Ertugrul Taciroglu, Ph.D., M.ASCE, F.EMI, University of California Los Angeles (UCLA)

Conference Executive Committee

Craig A. Davis, Ph.D., P.E., G.E., M.ASCE, C A Davis Engineering Ron Eguchi, M.ASCE, ImageCat Jianping Hu, Ph.D., P.E., G.E., M.ASCE, LA Department of Water and Power Jonathan Stewart, Ph.D., F.ASCE, University of California – Los Angeles (UCLA) Ertugrul Taciroglu, Ph.D., M.ASCE, F.EMI, University of California Los Angeles (UCLA)

Conference Steering Committee

Rachel Davidson, Ph.D, A.M. ASCE, University of Delaware Reginald DesRoches, Ph.D, F.SEI, F.ASCE, Rice University Anne Kiremidjian, Ph.D, Dist.M.ASCE, Stanford University Thomas O'Rourke, Ph.D, Hon.D.GE, Dist.M.ASCE, Cornell University John van de Lindt, Ph.D, F.SEI, F.ASCE, Colorado State University Yumei Wang, P.E., F.ASCE, Portland State University

Sponsorship and Exhibits Committee

Ron Eguchi, M.ASCE, ImageCat Yumei Wang, P.E., F.ASCE, Portland State University

Technical Program Committee

Technical Program Co-Chairs Craig A. Davis, Ph.D., P.E., G.E., M.ASCE, C A Davis Engineering Kent Yu, Ph.D., P.E., S.E., M.ASCE, SEFT Consulting Group Ertugrul Taciroglu, Ph.D., M.ASCE, F.EMI, University of California Los Angeles (UCLA)

Technical Committee

Scott J. Brandenberg, Ph.D., P.E., M.ASCE, UCLA Samueli School of Engineering (UCLA)
Henry Burton, Ph.D., M.ASCE, UCLA Samueli School of Engineering (UCLA)
Louise K. Comfort, Ph.D., Aff. M.ASCE, Fellow NAPA, University of Pittsburgh
Teresa Elliott, P.E., M.ASCE, Portland Water Bureau (Retired)
Matt Francis, P.E., M.ASCE, AECOM
Paolo Gardoni, Ph.D., M.ASCE, University of Illinois at Urbana-Champaign
Fred Grant, P.E., M.ASCE, Simpson Gumpertz & Heger
Thomas W. Haase, JD, Ph.D. Sam Houston State University, Huntsville, Texas
Doug Honegger, M.ASCE, D.G. Honegger Consulting
Xavier Irias, P.E., M.ASCE, Woodard & Curran
Jeremy Isenberg, P.E., PhD, NAE, Dist. M.ASCE, F.SEI, Stanford University
Edward Kavazanjian, Jr., Ph.D. P.E., G.E., D.GE, Dist.M.ASCE, NAE, Arizona State University
Leon Kempner Jr., Ph.D., P.E., M.ASCE, F.SEI, Bonneville Power Administration
Karl Gee-Yu Liu, Ph.D., Taiwan National Center for Research on Earthquake Engineering

Therese McAllister, PhD, PE, F.SEI, National Institute of Standards and Technology Ricardo A. Medina, Ph.D., P.E., M.ASCE, Simpson Gumpertz & Heger Masakatsu Miyajima, Dr. Eng., Kanazawa University, Japan Ali Mostafavi, Ph.D., A.M.ASCE, Texas A&M University Allison Pyrch P.E., G.E., M.ASCE, Texas A&M University Allison Pyrch P.E., G.E., M.ASCE, Hart Crowser Chris Rojahn, Engineer, C.E., Applied Technology Council (ATC), retired Kenichi Soga, Ph.D., M.ASCE, University of California, Berkeley Mahmoud Reda Taha, Ph.D., P.E., M.ASCE, University of New Mexico Alex K. Tang, P.E., F.ASCE, L&T Consulting Eren Uckan, Ph.D., Alanya University, Turkey Haizhong Wang, Ph.D., M.ASCE, Oregon State University Brad Wham, Ph.D., M.ASCE, University of Colorado Boulder Liam Wotherspoon, Ph.D., University of Auckland, New Zealand Farzin Zareian, Ph.D., M.ASCE, University of California, Irvine

Local Organizing Committee

Jianping Hu, Ph.D., P.E., G.E., M.ASCE, LA Department of Water and Power Martin Hudson, Ph.D., P.E., G.E., M.ASCE, Turner Construction Ruwanka Purasinghe, P.E., M.ASCE, LA Department of Water and Power Paul Lee, P.E., M.ASCE, LA Mayor's Office of Sustainability Amit Joshi, P.E., M. ASCE, California Department of Water Resources Chris Boswell, P.E., M. ASCE, Sherwood Design Engineers Linda Luu, P.E., M. ASCE, Psomas

UCLA Student Aids

Koray Mentesoglu Natalie Tsang Amy Zhou

Technical & Outreach Staff

ASCE Contact Staff, Catherine Tehan, Aff.M.ASCE UCLA Director, Evelyn Miwa, Senior Director of Development Operations Bill Sweeney, Assistant Director UCLA Events Office

Reviewers

The Technical Program Committee Co-Chairs thank the over 200 international volunteers who reviewed the technical papers printed in these proceedings, who are listed below.

Ali Alavi	Branko Glisic	Jamie Kruse	Shinji Sassa
Yousef Alostaz	Christine Goulet	Nicolas Kuehn	Charles Scawthorn
Ioannis Antonopoulos	Fred Grant	Yasuko Kuwata	Scott Schleshter
Christina Argyrou	Alex Grant	Wolfe Lang	Christopher Segura
Jack Baker	Michael Greenfield	Christian Ledezma	Anastasios Sextos
Jes Barron	Rick Guthrie	Cheng-Chun Lee	Neetesh Sharma
Asa Bassam	Juan Guzman	Dawn Lehman	Rayeedul Siam
Mostafa Batouli	Tom Haase	Shong Wai Lew	Erik Soderberg
Geoffrey Bee	Mahmoud Hachem	Kun Li	Kenichi Soga

Michael Beer	Junyan Han	Jichao Li	Nafiseh Soleimani
Mohsen Beikae	William Hansmire	Liyun Li	Jonathan Stewart
Graham Bell	Jim Hart	Geeyu Liu	Armin Stuedlein
Nicholas Berty	Youssef Hashash	Joseph Louis	Christian Sundberg
Antonio Bobet	Jennifer Helgeson	Jorge Macedo	Takanobu Suzuki
	Glenn Hermanson	Hoodean Malekzadeh	Armin Tabandeh
Megan Boston	William Heubach		Mahmoud Taha
Ross Boulanger		Silvia Mazzoni	
Scott Brandenberg	Katie Higgins		Jenny Taing
Jon Bray	Nagahisa Hirayama		Mohamed Talaat
Thomas Brindle	Christopher Hitchcock	Ricardo Medina	Alex Tang
Mike Britch	Douglas Honegger	Mike Mehrain	Pingbo Tang
Charlotte Brown	Benwei Hou	Dylan Merlo	Fariborz Tehrani
Martin Bureau	Honglan Huang	Fusanori Miura	Vesna Terzic
Henry Burton	Peter Hubbard		Stephen Thompson
Vladimir Calugaru	Kenneth Hudson	Jack Montgomery	Iris Tien
Riccardo Cappa	Christoper Hunt	Saeed Moradi	Selcuk Toprak
Stephanie Chang	Cory Ihnotic	Robb Moss	Akihiro Toyooka
Cathy Chau	Asif Iqbal	Diane Moug	Clemente
ZhiQiang Chen	Elysha Irish	Engin Nacaroglu	Valdovinos
Khaled Chowdhury	Jeremy Isenberg	Farzad Naeim	John van de Lindt
Louise Comfort	Denis Istrati	Ahmed Nisar	Leon van Paassen
Chris Conkle	Kishor Jaiswal	Arash Noshadravan	Adam Wade
Rodrigo Costa	Zhaoshuo Jiang		Haizhong Wang
Gareth Cowles	Chris Jones	Keita Oda	Maria Watson
Shideh Dashti	Sabarethinam Kameshwar	Katherine O'Dell	Dan Wei
Craig Davis	Andreas Kammereck	Sean O'Donnell	Anne Wein
Travis Deane	Shogo Kaneko	Michael Olsen	Brad Wham
Gregory Deierlein	Spyros Karamanos	Yusuke Ono	Cuck Wolf
Jeremy Dong	Ed Kavazanjian	Abdolreza Osouli	Renjie Wu
Elena Dudek	Jeff Keaton	Osman Ozbulut	Zhao Yan-gang
Leonardo Duenas-Osorio	Brent Keil	Kingsley Ozegbe	Taner Yilmaz
Jazalyn Dukes	Leon Kempner Jr	Tao Peng	Kent Yu
Ronald Eguchi	Babak Kheradmand	20	Faxi Yuan
Negar Elhami-Khorasani	Arash Khosravifar	Keith Porter	Zia Zafir
Teresa Elliott	Junji Kiyono	Allison Pyrch	Farzin Zareian
Amir Esmalian	Jacob Klingaman	Sri Rajah	Cheng Zhang
Chao Fan	Zahra Kohankar	Kambiz Rasoulkhani	Lu Zhang
Conrad Felice	Kouchesfehani	Ellen Rathje	Bingyu Zhao
Chris Ford	Monica Kohler	Chris Rojahn	Zilan Zhong
Mathew Francis	James Kohne	Anousheh Rouzbehani	Jin Zhu
Laura Ghorbi	Maria Koliou	Cameron Sanford	Paolo Zimmaro
Sonia Giovinazzi	Kazuo Konagai		Katerina
			Ziotopoulou

The volunteers who reviewed the abstracts are listed in the San Fernando Earthquake Conference Book of Abstracts (https://doi.org/10.34948/N3QP4X-09).

Introduction

The ASCE Lifelines Conference 2021-2022 was initially scheduled to be held in Los Angeles, California, in 2021 on the 50th anniversary year of the February 9, 1971, San Fernando Earthquake. Due to the COVID pandemic. The conference was delayed to 2022 but did have a kick-off event on February 9, 2021. The San Fernando Earthquake was a moderate earthquake event, but it caused significant damage to transportation and utility systems. In 1972, the late Professor Charles Martin Duke of the University of California, Los Angeles (who also served as the President of the Earthquake Engineering Research Institute) introduced "lifelines" as a new term to replace "support systems" that had commonly been used to describe transportation and utility systems by earthquake professionals at that time. "Lifelines" was intended to properly capture and elevate the criticality of transportation and utility systems to a modern society. He envisioned integrating both professional and government solutions to address the then-low state-of-the-art of lifeline earthquake engineering, hoping to leverage the San Fernando Earthquake to spur improvement for seismic performance of lifelines, just like how the 1933 Long Beach, California Earthquake transformed the seismic design provisions for buildings. Professor Duke envisioned how professional solutions would be developed leveraging the collective efforts of professional societies, universities, industry associations, and individual operating agencies. These professional solutions would serve as the foundation for a variety of potential governmental solutions (or regulations). Inspired by how the Structural Engineers Association of California (SEAOC) improved seismic performance of buildings in the time since the 1933 Long Beach, California earthquake, he initiated a vision of creating a professional organization that would play a leading role for lifelines at a national level in the U.S. After much planning and preparation work by a core group of professionals who shared the same vision as Professor Duke, the ASCE Technical Council on Lifeline Earthquake Engineering (TCLEE) was officially established in 1974 to carry out the responsibility for the professional solutions to elevate the state-of-the-art of lifeline earthquake engineering and sustain progress in the field over generations. The notion of "lifeline earthquake engineering" (as a subset of Earthquake Engineering) also resonated broadly with international researchers, initiating research and technical development for lifelines worldwide. This has also resulted in much fruitful international collaboration with many earthquake-prone countries, including Japan, New Zealand, China, and Italy, in the decades following the establishment of ASCE TCLEE and leading up to this conference.

In 1975, Professor Duke envisioned a reasonably ambitious long-term goal for lifeline earthquake engineering – development of a comprehensive set of seismic design standards and criteria of lifelines and institutionalization of lifeline earthquake engineering within 20 years after the San Fernando Earthquake. As part of his government solution, he called for establishing a national lifeline/earthquake research and development laboratory and enacting special state and/or federal legislation to provide funds for supporting lifeline research. In 1977, U.S. Congress passed the Earthquake Hazards Reduction Act, establishing the National Earthquake Hazards Reduction Program in 1978. This set the stage for the subsequent creation of key institutions, including a national earthquake engineering research center, to help move forward the field of lifeline earthquake engineering. In addition to advancing the state-of-the-art practice of lifeline engineering through its members, ASCE TCLEE became a major participant in government solutions. In 1985, FEMA commissioned the Building Seismic Safety Council of the National Institute of Building Sciences to develop a plan for abating seismic hazards to lifelines. ASCE

TCLEE members made significant contributions to the plan and helped FEMA conclude that abating the risks to lifelines from earthquakes and other hazards is best approached by a nationally coordinated and structured program. The NEHRP Re-authorization Act of 1990 required FEMAwith the support of NIST-to establish a detailed plan for developing and adopting seismic design standards for lifelines. Leveraging the knowledge and practice of lifeline earthquake engineering developed over the two decades after the 1971 San Fernando Earthquake, ASCE TCLEE members, especially Ronald T. Eguchi, then Chair of ASCE TCLEE, played instrumental roles in assisting FEMA and NIST to develop the plan, focusing on improving system-level functionality of lifelines. Following some of the recommendations in the plan, FEMA funded the American Lifelines Alliance (ALA) in 1998, a public-private partnership first managed by ASCE (1998-2001) and later by the Multi-hazard Mitigation Council of the National Institute of Building Sciences (2002-2005), to facilitate development, adoption, and implementation of design and retrofit guidelines to improve the performance of lifeline systems in the event of natural hazards. Following the terrorist attacks on September 11, 2001, the scope of ALA was expanded to include man-made threats. ALA successfully created more than a dozen design and/or assessment guidelines related to electric power, oil, natural gas, water, and wastewater systems before it dissolved in 2005 due to shifts in hazard priorities and funding cuts in the NEHRP budget.

There have been several significant developments during the past two decades. ASCE TCLEE used to focus on the response of lifelines to only earthquakes. Over time, it has slowly moved into the multi-hazard space, as evidenced by its investigation of transportation systems during the 2005 Hurricane Katrina and its investigation of lifeline system performance during the 2007 Pacific Northwest Storm. Another major development is related to community resilience. In 2008, the San Francisco Planning and Urban Research Association (SPUR) started a multi-year initiative called the Resilient City to ensure San Francisco can recover rapidly following earthquakes to meet the social and economic needs of community members. From 2010 to 2012, the State of Oregon and the State of Washington used the methodology of the Resilient City initiative to develop statewide 50-year resilience plans to prepare for a future CSZ earthquake and tsunami. Numerous ASCE TCLEE members assisted both states in estimating expected seismic performance and recovery time for each lifeline system and developing recommendations to close resilience gaps. During the same time, NEHRP agencies, the National Research Council, and Presidential Policy Directive 21 were calling for the improvement of buildings and lifeline systems to achieve community resilience. In 2012, NIST, with the assistance and participation of many ASCE TCLEE members, started to develop a 10-year research, development, and implementation roadmap for producing new model earthquake-resilient design and construction standards for key lifeline systems and components. To respond to this call for resilience at local, state, and national levels, the ASCE Committee on Technical Advancement (CTA) formed a Working Group in March 2014 to develop a new technical division concentrating on infrastructure resilience. From this Working Group, the Infrastructure Resilience Division (IRD) was formed through the merging of three existing ASCE units: the Committee on Critical Infrastructure (CCI), Council on Disaster Risk Management (CDRM), and Technical Council on Lifeline Earthquake Engineering (TCLEE). The IRD charter was formally approved by the ASCE Board of Direction at its January 2015 meeting. In 2018, Congress re-authorized NEHRP, with a new emphasis on functional recovery of the built environment to support community resilience. As part of the re-authorization, Congress asked FEMA and NIST to develop options to improve the built environment for post-earthquake functional recovery times. Several ASCE IRD members contributed to the development of recommendations that were included in a report titled Recommended Options for Improving the Built Environment for Post-Earthquake Reoccupancy and Functional Recovery Time. In January 2021, one month before the 50th Anniversary of the 1971 San Fernando Earthquake, FEMA and NIST submitted the report to Congress.

Over the past fifty years, we have made significant progress in improving the seismic performance of the lifeline infrastructure systems. However, there remains a lot of work to do to realize the long-term goal set by the late Professor Duke in 1975. The 50th Anniversary of the San Fernando Earthquake is an opportunity to reflect on the need to increase the resilience of our critical infrastructure systems to earthquakes and other hazards. As a result, the theme for the Lifelines 2021-2022 is **Understanding, Improving, and Operationalizing Hazard Resilience for Lifelines**. The conference goals are to:

- provide a retrospective of where we are today and how we got here
- help define a global vision for where we are going to create resilient infrastructure systems within interdisciplinary and multi-hazard environments which support community and regional resilience.

As such, the technical program of the conference was organized with seven topics, including (1) The 1971 San Fernando Earthquake, (2) Hazards, (3) Lifeline Infrastructure Systems, (4) Postevent Investigations and Longitudinal Studies, (5) Community Resilience, (6) Emerging and Advanced Technologies, and (7) Policy and Governance.

Proceedings Editors

Craig A. Davis, Ph.D., P.E., G.E., M.ASCE, C A Davis Engineering Kent Yu, Ph.D., P.E., S.E., M.ASCE, SEFT Consulting Group Ertugrul Taciroglu, Ph.D., F.EMI, M.ASCE, UCLA Dept. of Civil and Environmental Engineering

Contents

The 1971 San Fernando Earthquake

Research Review Summary of the San Fernando Earthquake1 Murathan Saygılı, Doğukan Yıkılmaz, and Onur Behzat Tokdemir
Van Norman Complex Retrospective Risk Evaluation: Assessing the San Fernando Dam Performance during the San Fernando Earthquake
Upper San Fernando Dam Construction Methods and Implications on the Modeling of Its Seismic Performance
Lessons Learned from the Observed Seismic Settlement at the Jensen Filtration Plant in the San Fernando Earthquake
Caltrans Seismic Retrofit Program after the 1971 San Fernando Earthquake48 Mark Yashinsky, Tom Ostrom, Fadel Alameddine, and Toorak Zokaie
Plenary Keynote Presentation
Measures for Enhancement of Earthquake Resilience of Waterfront Energy Industries
Communication and Electric Power
Experimental and Numerical Investigation of Submarine Telecommunication Cable Responses to Earthquake-Induced Seabed Movements71 Xiaogang Qin, Cuiwei Fu, and Yu Wang
Seismic Analysis and Design of Offshore High-Voltage Cable in Young Bay Mud for M7.8 Earthquake on the San Andreas Fault
A Key to Community Earthquake Resilience Is Neglected

Gas and Liquid Fuels

Preliminary National-Scale Seismic Risk Assessment of Natural Gas Pipelines in the United States
Evaluation of Flooding Potential on Gas Pipelines in Tulare County, California111 Milad Ketabdar, Mehrshad Ketabdar, Karineh Gregorian, and Soheil Oruji
Seismic Design of Pipeline Considering Pressure and Tensile Properties121 Nobuhisa Suzuki and Takekazu Arakawa
Transportation: Roads and Railroads
An Integrative Framework to Measure the Impacts of Earthquake-Induced Landslides on Transportation Network Mobility and Accessibility
Evaluation of Equivalent SDOF Method for Nonlinear Dynamic Response Analysis of Railway or Highway Embankments143 K. Sakai and Y. Murono
Functional Damage and Recovery of Highway Networks in Major Earthquake Disasters in Japan154 Nobuoto Nojima and Hiroki Kato
Risk Management System for Road Networks Exposed to Natural Hazards166 Alondra Chamorro, Tomás Echaveguren, Eduardo Allen, Marta Contreras, Pablo Cartes, Manuel Contreras, Gustavo Jimenez, Carlos Pattillo, Hernán De Solminihac, José Vargas, Joaquín Dagá, and Felipe Baratta
Transportation: Bridges
Development of the Passive Damper System Realizing the Negative Stiffness Control
Deployment of Sustainable Practices Using Lightweight Aggregates for Bridge Infrastructure
Seismic Fragility Assessment of Seismic Isolated Bridges in Cold Climates198 A. H. M. Muntasir Billah and Asif Iqbal

Study on Self-Centering Seismic Isolation at the Bottom of Fixed Pier in Continuous Bridge	210
Continuous Bridge Fang Rong	210
Assessing Direct and Indirect Long-Term Economic Impacts from Earthquakes to the US National Bridge Inventory	223
Kishor S. Jaiswal, N. Simon Kwong, Doug Bausch, David J. Wald, Kuo-Wan Lin, Sharon Yen, Jerry (Jia-Dzwan) Shen, and Jeffrey Ger	
Assessing Cost Efficacy of the Caltrans Phase I and Phase II Bridge Retrofit Program	235
Charles Huyck and ZhengHui Hu	
Transportation: Ports	
Seismic Response of Container Cranes and Effects on Wharf	• • •
Response and Crane Structure Performance Erik Soderberg, Derrick Lind, and Di Liu	246
Numerical Assessment of the Contribution of Liquefaction and Directivity on the Seismic Displacement of a Quay	
Wall during the 2014 Cephalonia, Greece, Earthquakes George Zalachoris, Dimitrios Zekkos, Adda Athanasopoulos-Zekkos, Nikos Gerolymos, and Yiannis Tsiapas	256
Transportation: Subways	
Nonlinear Seismic Response and Damage Analysis of a Prefabricated	
Subway Station Structure Lianjin Tao, Cheng Shi, Peng Ding, Shang Wu, Sicheng Li, and Linkun Huang	267
Historical Progression of Los Angeles Metro Seismic Design Criteria Martin B. Hudson, Geoffrey R. Martin, and Androush Danielians	281
Seismic Design of Los Angeles Underground Transit Stations Martin B. Hudson, S. H. Jason Choi, William H. Hansmire, and Kenneth S. Hudson	297
Seismic Design Approach for Underground Structures of Los Angeles Metro Regional Connector Transit Corridor Project	
S. H. Jason Choi, William H. Hansmire, Zsolt Horvath, and Carlos Herranz	
Water and Wastewater	
Functional Damage of Water Supply Systems due to Power Outages during	
Recent Natural Disasters in Japan	322

Yoshihisa Maruyama and Shigeru Nagata

Risk Mitigation for Water Di	Model for Budget Allocation to Seismic istribution System	
Elnaz Peyghaleh and Tarek All	khrdaji	
0	er to Cross the San Andreas Fault in the	344
Water Conveyance Tunnels i	erability Assessment, and Rehabilitation of In High Seismic Hazard No. 2 Seismic Resilience Study	
Seismic Resilience of the Colo	orado River Aqueduct Casa Loma ion	
Loma Siphon Barrel No. 1 Pr Darren Baune, Justin Davidson	er District's Replacement of Casa roject, San Jacinto, California n, Tim Taylor, Mike Dadik, Mahmoud Hachem, oss Hartleb, Cathy Chau, and Tao Peng	
Disaster Resilience Framewor	of New Water Supply Systems: A Natural rk Informed by Lessons ku Earthquake and Tsunami Crisis	
A Seismic Fragility Framewo Ellen M. Rathje and Jingwen H	ork for Earth Dams Ie	405
	ic Performance Analysis Methods of Li, and Can Ren	416
Scale with a Study of the Los	zards to Lifeline Systems at a Regional Angeles Water System Pipeline Network Hudson, Jianping Hu, Alek Harounian,	428
Water and Wastewater Syste	erability Assessment of Medium-Sized ems ristopher S. Hitchcock, Matthew Bates,	440

Vulnerability Assessment of Portland Water System in an M9 Cascadia Subduction Zone Earthquake
Seismic Resilience: Orange County Sanitation District Is Planning for 2030 and beyond through a Risk-Based Evaluation of Their Process Facilities
Assessment of the Seismic Vulnerability, Risk, and Resilience of Water Systems of Four Municipalities in Mexico City467 A. Gustavo Ayala and Marco A. Escamilla
Hetch-Hetchy Water Supply Reliability across Sunol Valley478 Nikolay Doumbalsi, Annie Li, and Ahmed Nisar
Water and Wastwater Pipelines
Effects of Ground Strain and Pipeline Orientation on Pipeline Damage during Earthquakes
Seismic-Resistant Pipeline Design: Parametric Study of Axial Connection Force Capacity
Multistep Pipe-Soil Interaction Analysis That Accounts for Liquefied Residual Soil Strength
Seismic Vulnerability Assessment of Wastewater Pipelines
Seismic Resiliency Evaluation of a Structural Cured-in-Place Pipe Liner for Water Mains
Three-Dimensional Numerical Modeling and Full-Scale Tests of Cured-in-Place Pipe
Fault Rupture of Pipeline with Cured-in-Place Pipe559 T. D. O'Rourke, M. N. Bureau, B. Berger, B. Wham, and J. Strait

Seismic Performance Assessment of Water Pipes Retrofit with Corrosion–Protection–Liner Technology569
Zilan Zhong, Jinqiang Li, Yabo Zhang, and Benwei Hou
Seismic Resilience of Carbon Fiber Reinforced Polymer Renewed Riveted Steel Pipe Using Finite Element Modeling
A Novel Steel Pipe Joint for Enhancing Pipeline Seismic Resilience I: Development and Validation
Verification of the Applicable Range of Large Diameters in the Design Formula of Buried Pipelines Undergoing Fault Displacement
Study on SPF Application for Ground Settlement
Study of Analysis Method on Behavior of Seismic Type Ductile Iron Pipes Considering Decrease of Ground Stiffness in Embankment Failure
Damage Mechanism of Large-Diameter Ductile Iron Pipes Used to Supply Water during the 2018 Earthquake in Osaka, Japan
Effectiveness of Water Supply Pipeline Systems Using Ductile Iron Pipes and Seismic Resistant Joints against Heavy Rain and Typhoon Disasters in Japan
Lifeline Infrastructure Systems for Your Water Supply, Transmission, and Distribution Systems: A Step-Wise Approach to the Design and Construction of Seismic-Resistant Pipe, Fittings, Valves, and Fire Hydrants
Contaminant Migration from Polymer Pipes to Drinking Water under High Temperature Wildfire Exposure

Downloaded from ascelibrary.com by 3.16.166.113 on 06/02/24. Copyright ASCE. For personal use only; all rights reserved.

Utility-Academic Collaborative Partnership to Test, Evaluate, and Install an Innovative Seismic Pipeline Replacement Solution
Design Method of Pipeline in Shield Tunnel against Fault Displacement688 Keita Oda, Shogo Kaneko, and Shozo Kishi
The Design Approach to the Cross-Harbour Pipeline, Wellington, New Zealand
Geotechnical Challenges in the Cross-Harbour Pipeline, Wellington, New Zealand
Seismic Reliability Assessment of Buried Pipelines Subjected to Significant Permanent Ground Deformations in an M9 Cascadia Subduction Zone Earthquake
Seismic Response of Pipelines from Multi-Point Shaking Table Tests
Nonlinear 3D Dynamic SSI Analyses of a Caisson Wall to Protect Filter Outlet Conduit at Diemer Plant in Yorba Linda, California
Critical Facilities
Reducing Extreme Flooding Loads on Essential Facilities via Elevated
Structures
Multi-Hazard Seismic Risk Assessment of a Cooling Water Delivery System
Infrastructure System Resilience and Interdependencies
Assessing Lifeline Interdependencies and Restoration Performance in San Francisco Using Qualitative Methods
Using Global Variance-Based Sensitivity Analysis to Prioritize Bridge Retrofits for Low-Probability, High-Cost Earthquakes

Building Seismic Resilience into a Regional Water System Albert J. Rodriguez	809
Probabilistic Seismic Risk Evaluation of the City of Los Angeles Water System Pipeline Network Yajie Lee, Zhenghui Hu, Jianping Hu, Alek Harounian, Martin B. Hudson, Kenneth S. Hudson, and Ronald T. Eguchi	819
Seismic Maintenance of Water Pipe Networks Using Stochastic Combinatorial Optimization B. Pudasaini and S. M. Shahandashti	833
Agents of Change for Resilient Infrastructure T. D. O'Rourke	844
Next Generation Hazard Resilient Infrastructure T. D. O'Rourke, B. Wham, B. Berger, C. Argyrou, and J. E. Strait	854
Impact of CyberShake on Risk Assessments for Distributed Infrastructure Systems	869
Resilience of Water Distribution Network: Enhanced Recovery Assisted by Artificial Intelligence (AI) Considering Dynamic Water Demand Change Xudong Fan and Xiong (Bill) Yu	880
Probabilistic Resilience Distance Measures and Application to Rural Power Distribution System Prativa Sharma and ZhiQiang Chen	892
Overview of a Framework to Engineer Infrastructure Resilience through Assessment, Management, and Governance Craig A. Davis, Bilal Ayyub, Sue McNeil, Kiyoshi Kobayashi, Hirokazu Tatano, Masamitsu Onishi, Yoshikazu Takahashi, Riki Honda, John van de Lindt, and Toshio Koike	901
Systemic Seismic Vulnerability and Risk Assessment of Urban Infrastructure and Utility Systems A. Poudel, S. Argyroudis, D. Pitilakis, and K. Pitilakis	914
Evaluating the Importance of Interdependent Civil Infrastructure System Components for Disaster Resilience of Community Housing Nikola Blagojević, Nathalie Lauber, Max Didier, and Božidar Stojadinović	927

Debris Removal

Evaluating the Impact of Equipment Selection on Debris	
Removal and Dependent Lifeline Infrastructure Recovery	
Joseph Louis, Akash Vijay, Haizhong Wang, and Daniel Cox	
Managing Debris Clearance from Road Transportation	
Networks after Earthquakes	
Alessandro Cardoni, Sebastiano Marasco, Marco Domaneschi,	
and Gian Paolo Cimellaro	

Downloaded from ascelibrary.com by 3.16.166.113 on 06/02/24. Copyright ASCE. For personal use only; all rights reserved.