WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2017

HYDRAULICS AND WATERWAYS AND WATER DISTRIBUTION SYSTEMS ANALYSIS

SELECTED PAPERS FROM THE WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2017

May 21–25, 2017 Sacramento, California

SPONSORED BY
Environmental and Water Resources Institute (EWRI)
of the American Society of Civil Engineers

EDITED BY Christopher N. Dunn, P.E., D.WRE Brian Van Weele, P.E., D.WRE

Published by the American Society of Civil Engineers

Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia, 20191-4382 www.asce.org/publications | ascelibrary.org

Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by ASCE. The materials are for general information only and do not represent a standard of ASCE, nor are they intended as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document. ASCE makes no representation or warranty of any kind, whether express or implied, concerning the accuracy, completeness, suitability, or utility of any information, apparatus, product, or process discussed in this publication, and assumes no liability therefor. The information contained in these materials should not be used without first securing competent advice with respect to its suitability for any general or specific application. Anyone utilizing such information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

ASCE and American Society of Civil Engineers—Registered in U.S. Patent and Trademark Office.

Photocopies and permissions. Permission to photocopy or reproduce material from ASCE publications can be requested by sending an e-mail to permissions@asce.org or by locating a title in ASCE's Civil Engineering Database (http://cedb.asce.org) or ASCE Library (http://ascelibrary.org) and using the "Permissions" link.

Errata: Errata, if any, can be found at https://doi.org/10.1061/9780784480625

Copyright © 2017 by the American Society of Civil Engineers. All Rights Reserved. ISBN 978-0-7844-8062-5 (PDF)
Manufactured in the United States of America.

Front cover: Carson Jeffres

Preface

We are excited to offer an engaging and challenging array of technical sessions, posters, and accompanying published papers at our Environmental and Water Resources Institute's (EWRI) 17th annual Congress in Sacramento, California. This meeting is a leading venue for professional interaction among engineers and scientists, covering disciplines relating to the needs of critical infrastructure in water and environment. As is pointed out in the American Society of Civil Engineers' Report Card for America's Infrastructure, an investment of over \$3.6 trillion is needed to return the nation's infrastructure to a state of good repair. This Congress contributes in many ways to innovative solutions to this critical problem. We proudly host the meeting under the auspices of the American Society of Civil Engineers (ASCE).

Within the five (5) volumes of the proceedings of the Congress you will find nearly 300 written technical papers from more than 700 oral and poster presentations dealing with the subject areas of the EWRI Councils; a list of subject area tracks is included in the acknowledgements below. Our profession advances through presentations in special state-of-knowledge tracks represented at the Congress. We hope these proceedings serve to enhance your knowledge in these areas and encourage you to follow up with more detailed publications by the same authors, typically found in ASCE technical journals.

World Environmental and Water Resources Congress 2017: Hydraulics and Waterways and Water Distribution Systems Analysis contains papers organized by the following EWRI Councils, Committees and conference Symposium:

- Hydraulics and Waterways Council whose purpose is to represent EWRI in technical matters
 pertaining to all aspects of hydraulic engineering of natural and man-made environmental
 systems. The Council promotes responsible water resources management and protection to foster
 sustainability and enhancement of the environment through the development, collection and
 dissemination of information and technology regarding the advancements and application of
 hydraulic engineering.
- Symposium: WDSA (Committee): Water distribution systems analysis (WDSA) involves the
 quantitative planning, design, operations, management, modeling, and monitoring of hydraulics
 and water quality of water distribution systems. The purpose of the committee is to provide
 coordination for all activities within EWRI related to the field of water distribution systems
 analysis.

Acknowledgments

Preparation and planning for this Congress strongly depends on the dedication of those who plan track subjects, solicit abstracts and papers, oversee reviews of all this material and then "encourage" all authors to provide their material in a timely manner! We are deeply grateful to all who have provided this considerable effort, especially the track chairs listed below:

Track	Chairs
Hydro-Climate/Climate Change Symposium	Dr. M. Levent Kavvas – Volume 3
14th Urban Watersheds Management	Shirley Clark – Volume 5
Symposium	
Groundwater Symposium	Dr. Amy Chan Hilton – Volume 3
Water Distribution Systems Analysis Symposium	Juan Saldarriaga – Volume 4
Education	Colleen Bronner – Volume 1
Emerging Technologies	David Hill – Volume 1
Environmental	Wendy Cohen, Lisa Hayes – Volume 3
History and Heritage	Lawrence Magura, J. David Rogers –
	Volume 1
Hydraulics and Waterways	Christina Tsai – Volume 4
International	Ali Mirchi, Dr. Erfan Goharian –
	Volume 1
Irrigation and Drainage	Thomas W. Ley – Volume 2
Municipal Water Infrastructure Symposium	Ruth Hocker – Volume 5
Planning and Management	Kaveh Madani, Mashor Housh –
	Volume 2
New Professionals/Professional Development	Cidney Jones – Volume 1
Standards	Dr. Kathlie Jeng-Bulloch – Volume 1
Students	Monica Palomo, Curt Elmore – Volume
	1
Sustainability	Joseph Threadcraft – Volume 3
Smart Water Symposium	Sudhir Kshirsagar
Water, Wastewater, and Stormwater	Sri Kamojjala, Bridget Wadzuk –
	Volume 5
Watersheds	Dr. M. Levent Kavvas, Don Frevert –
	Volume 2

We also acknowledge the Congress Organizing Committee members, without whose time and efforts the event would not be possible. We also thank others not mentioned here.

General Chair
David Curtis, Aff. M.ASACE
Wet Consultants

Technical Program Co-Chair
Christopher N. Dunn, P.E., D.WRE, M.ASCE,
US Army Corps of Engineers, Hydrologic Engineering Center

Technical Program Co-Chair Brian Van Weele, P.E., F. ASCE

Technical Program Assistant
Penni Baker
US Army Corps of Engineers, Hydrologic Engineering Center

Sponsorship/Exhibits Chair David Ford, PhD. Ford Consulting

Short Course/Technical Workshops Chair
Michael Anderson, P.E., D.WRE
State of California, Department of Water Resources

ASCE Chapter Coordinator Om Prakash, P.E., CFM

Committee Members

Pal Hegadus

Walter Grayman

Sri Kamojjala

Rob Roscoe

Denis Ruttenberg

Kumar Sivakumaran

Kristen White

University Coordination

Colleen Bronner

Kara Carr

Brian Currier

Ramzi Mahood

Kevin Murphy

Stewart Styles

Local Arrangements
Rich Juricich
Keith Lichten

Finally, we acknowledge and thank the staff of the EWRI of ASCE who, in the end, makes it all happen. Most particularly, we thank Gabrielle Dunkley, EWRI's Manager, whose patience, perseverance, good humor, and great organizational talent ensure yet another successful EWRI Congress!

Director, EWRI Brian K. Parsons, M.ASCE

Manager, EWRI
Gabrielle Dunkley

Technical Manager, EWRI Barbara Whitten

Manager of Member Services, EWRI Jennifer Jacyna

ASCE Conference Staff

Senior Manager
Mark Gable

Coordinator Shingai Marandure

Sponsorship and Exhibit Sales Manager Drew Caracciolo

Sponsorship and Exhibit Sales Assistant Trevor Williams

Contents

Hydraulics and Waterways

Impacts and Functioning of In-Stream Structures	1
Kurt M. Smithgall, P. A. Johnson, and Chaopeng Shen	
Complex Unsteady Flow Patterns at a River Junction and Their Relation with Fish Movement Behavior	S
Yong G. Lai, R. Andy Goodwin, David L. Smith, and Ryan L. Reeves	••••••
Three Dimensional Computational Modeling of Flows through an Engineered Log Jam	16
Yong G. Lai, David L. Smith, David J. Bandrowski, Xiaofeng Liu, and Kuowei Wu	
Probabilistic Shoreline Change Modeling Using Monte Carlo Method Yan Ding, Sung-Chan Kim, and Ashley E. Frey	2 4
Effect of Soil Mix on Overtopping Erosion	35
G. S. Ellithy, G. Savant, and J. L. Wibowo	
A Mass-Conservative Finite-Element Numerical Code for Three	
Dimensional FlowsG. Savant, Charlie Berger, Corey J. Trahan, and Tate O. McAlpin	50
Model Development and Application to Manage Inflow and Deposited Sediment in Paonia Reservoir	64
Jianchun Huang, Blair Greimann, and Sean Kimbrel	
Application of the Generalized Flow Equation to All Flow Conditions at	
SpillwaysZhiming Chen, Matahel Ansar, and Menjiang Chen	73
Two-Dimensional Sediment Transport Modeling under Extreme Flood at Lower Cache Creek, California	83
Tongbi Tu, Kara J. Carr, Ali Ercan, Toan Trinh, M. Levent Kavvas, Kevin Brown, and John Nosacka	
Comparison of Solutions of Coupled and Uncoupled Models for the Henry	or
ProblemWissam Al-Taliby and Ashok Pandit	89
···	

Modeling Sediment Transport in the Lower American River,
Sacramento, California103 Andrey B. Shvidchenko, Brad R. Hall, and Todd Rivas
North Fork Matilija Creek: A Model for Environmentally Nuanced Restoration Projects114
Ben Willardson, Tsou Jaw, and Peter Champion
Using Numerical and Physical Models to Manage Risk and Uncertainty129 Donald W. Baker and Jerry R. Richardson
Bubble-Water Surface and Turbulent Diffusion Mass Transfer in Fine Bubble Diffused Aeration Systems138
Xiangju Cheng, Yuning Xie, Dantong Zhu, Xixi Wang, and Jun Xie
Field Assessment of the Flow Field in a Lateral Canal-Marsh Junction153 S. M. Hajimirzaie and J. A. González-Castro
Towards Efficient Modeling164 Yaoxin Zhang and Yafei Jia
Calibrating a Sediment Transport Model through a Gravel-Sand Transition: Avoiding Equifinality Errors in HEC-RAS Models of the Puyallup and White Rivers
S. Gibson, B. Comport, and Z. Corum
New One-Dimensional Sediment Features in HEC-RAS 5.0 and 5.1192 S. Gibson, A. Sánchez, S. Piper, and G. Brunner
The Use of Ensemble Modeling of Suspended Sediment to Characterize Uncertainty
Hybrid Physical/Analytical/CFD Modeling Approach to Design of Detroit's Wastewater Effluent Disinfection System219 Carrie L. Knatz, Mark E. Allen, Philip Kora, Sanjeev Mungarwadi,
Mark J. TenBroek, Steven M. Fehniger, and Dave Werth
Preliminary Assessment of a Retrofit Strategy in Dropshafts Impacted by Geysering Using CFD230
Jue Wang and Jose G. Vasconcelos
Coupling HEC-RAS and HEC-HMS in Precipitation Runoff Modelling and Evaluating Flood Plain Inundation Map240
Balbhadra Thakur, Ranjan Parajuli, Ajay Kalra, Sajjad Ahmad, and Ritu Gupta

Towards an Automated Floodway Optimizer for HEC-RAS252 Tien M. Yee and Huidae Cho
Resolving the Paradox of the Jones Formula for Flood Discharge Estimation
Muthiah Perumal
Ice-Cover and Jamming Effects on Inline Structures and Upstream Water Levels270
Addison Jobe, Swastik Bhandari, Ajay Kalra, and Sajjad Ahmad
Flood Risk Assessment Using the Updated FEMA Floodplain Standard in the Ellicott City, Maryland, United States280
Ranjeet Thakali, Ranjit Bhandari, Gilles-Arnaud Arif-Deen Kandissounon, Ajay Kalra, and Sajjad Ahmad
2D Unsteady Flow Routing and Flood Inundation Mapping for Lower Region of Brazos River Watershed292
Manahari Bhandari, Narayan Nyaupane, Shekhar Raj Mote, Ajay Kalra, and Sajjad Ahmad
Perennial Secondary Channel Design on Dry Creek near Healdsburg, California
Jason Q. White, Aaron A. Fulton, Jorgen A. Blomberg, and Ann E. Borgonovo
Embankment Erosion and Retreat by Wave Action: Laboratory Experiments
Yavuz Ozeren and Daniel Wren
Frequency Analysis of Monthly Runoff in Intermittent Rivers
Simulating Watershed Erosion in BMGR Using AGWA Model335 Jennifer G. Duan, Michael Poteuck, Abigail Rosenberg, and Kang Zhou
On Discharge Computations in Non-Symmetrical Trapezoidal Compound Channel
Effect of Rheology on Flood Wave Propagation Due to Ash Dyke Failure359 Pranab Kumar Mohapatra
Two-Dimensional Dam-Breach Flood Modeling and Inundation Mapping with Cascading Failures
Mustafa S. Altinakar, Marcus Z. McGrath, Turgay Dabak, Wilbert Thomas, Chad Scroggins, Trey Gauntt, Hubbard Harvey, and James Kelly

Dynamic Ice Formation within Culverts in Cold Regions
Scour Hole Characteristics around Abutment in Compound Channel389 A. A. Abdelaziz and S. Y. Lim
Generation of 2D Riverbed Topography for Digital Elevation Models Using 1D Cross-Section Data40 Marcus Z. McGrath, Yavuz Ozeren, and Mustafa S. Altinakar
Two-Dimensional Analysis of the SR 107 Bridge Hydraulics and Scour Potential
Characteristic Spatiotemporal Scales of Runoff and Sediment at the Plot Scale: Implications to Sediment Transport Modeling429 Christos P. Giannopoulos, A. N. (Thanos) Papanicolaou, and B. K. Abban
Estimations of Horizontal Dispersion in the Green Bay of Lake Michigan Using a Lagrangian Drifter Experiment and a Hydrodynamic Particle-Tracking Model439 Hector Bravo, Sajad Ahmad Hamidi, J. Val Klump, and Eric Anderson
Water Distribution Systems Analysis Symposium
Water Distribution Systems Analysis Symposium Pressure Dependent Demand Accounting for Customer Properties449 Thomas M. Walski
Pressure Dependent Demand Accounting for Customer Properties44
Pressure Dependent Demand Accounting for Customer Properties449 Thomas M. Walski Quantification of Marginal Time in Valves Operation Optimization for the Minimization of Transient Flow Effects in Water Distribution Systems45
Pressure Dependent Demand Accounting for Customer Properties
Pressure Dependent Demand Accounting for Customer Properties

k-Nearest Neighbor for Short Term Water Demand Forecasting501 Paulo José A. Oliveira and Dominic L. Boccelli
Dynamic Approach for Water Distribution Network Clustering and Aggregation511 R. Lifshitz and A. Ostfeld
A Clustering Model for Contamination Spreading Control in Water Distribution Systems
R. Lifshitz and A. Ostfeld A Spatio-Temporal Water Mains Integrity Management Program for
California
Sensor Placement Guidance for Small Utilities
Performance Assessment of a California Water Utility by Data Envelopment Analysis
Air Valves Characterization Using Hydrodynamic Similarity
Segment Based Reliability Assessment for Water Distribution Systems under Multiple Failure States
On-Line Cyber Attack Detection in Water Networks through State Forecasting and Control by Pattern Recognition
Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results
Impacts of Measurement Location and Spatial Aggregation on Demand Estimation in Water Distribution Systems

Detection of Cyber-Attacks to Water Systems through Machine-Learning-Based Anomaly Detection in SCADA Data611 Sarin E. Chandy, Amin Rasekh, Zachary A. Barker, Bruce Campbell, and M. Ehsan Shafiee
Inclusion of Variable Disinfection Levels in Slug Feed Optimal Disinfection of Water Distribution Systems
Contamination Event Detection Method Based on the Longest Common Subsequence Analysis Using Multiple Water Quality Parameters
Experimental Analysis of Proportional Pressure Reducing Valves for
Water Distribution Systems
Evolution of Complex Network Topologies in Urban Water Infrastructure
Identification of Cyber Attacks on Water Distribution Systems by Unveiling Low-Dimensionality in the Sensory Data
Detection of Cyber Physical Attacks on Water Distribution Systems via Principal Component Analysis and Artificial Neural Networks676 Ahmed A. Abokifa, Kelsey Haddad, Cynthia S. Lo, and Pratim Biswas
Effects of Implementing Decentralized Water Supply Systems in
Existing Centralized Systems
An Approach to Detect the Cyber-Physical Attack on Water Distribution
System
Representing Check Valves in a Force Main Water Hammer Model712 Wissam Al-Taliby and Howell Heck
Model Based Approach for Cyber-Physical Attacks Detection in Water Distribution Systems