APPENDIX III

Symbols

The following symbols are used in this manual:

- A =cross-sectional area of channel;
 - = land surface area;
 - = coefficient or factor;
- A' = portion of A deriving its resistance from bed skin friction;
- A'' = portion of A deriving its resistance from bed form drag;
- A_b = area of water prism deriving its resistance from bed (determined by sidewall correction procedure);
- A_w = portion of water prism deriving its resistance from walls or banks;
 - a = characteristic length;
 - = length of longest axis of particle;
 - distance from stream bed at which characteristic concentration, C_a occurs;
 factor of proportionality;
- a_r = dimensionless factor in logarithmic
 - velocity equation;
- B = constant in von Karman velocity equationused by Hunt;
- B_s = constant in Hunt equation for distribution of suspended sediment;
- b = channel width or water surface width;
 - = length of intermediate axis of particle;
 - = characteristic length;
 - = coefficient;
- C, C' = Chezy coefficient;
 - \overline{C} = mean value of suspended-sediment concentration in vertical;
 - C_a = suspended-sediment concentration at distance *a* above bed;
 - $C_D = \text{drag coefficient};$
 - C_{hm} = Chezy coefficient for water flows with suspended sediment;
 - C_{hw} = Chezy coefficient for clear water flows;
 - C_m = coefficient in Mostafa-McDermid velocity relation;

- $C_m, C_w = G_s/Q$ = sediment discharge concentration;
 - C_o = maximum sediment concentration in vertical in fraction by volume;
 - $C_v, c_v =$ sediment concentration, fraction by volume;
 - c = instantaneous suspended-sediment concentration at a point;
 - = length of shortest axis of particle;
 - $\overline{c}, C =$ mean suspended-sediment concentration at a point;
 - c' = fluctuating portion of suspended-sediment concentration at a point;
 - $c_1, c_2 =$ dimensionless constants;
 - D = diameter of cylinder or pipe;

$$D_1, D_2 =$$
 depths of sediment deposit;

- d = diameter of sphere;
 - = flow depth;
- d' = depth of stream in Engelund's velocity equation (analogous to r')
- d_g = geometric mean size of sediment;
- d_n = nominal diameter of particle;
- d_s = size of particle;
- d_s^* = equivalent or characteristic size of sediment;
- d_{si} = mean size of *i*th size fraction of sediment;
- d_{50} = median size of sediment (letter *d* with numerical subscript denotes particle size in sediment for which percentage by weight corresponding to subscript is finer, e.g., $d_{84.1}$ is size for which 84.1% by weight of sediment is finer);
- F = force, submerged weight of particle or sphere;
- $F = V/\sqrt{gd}$ = Froude number; = densimetric Froude number;
- F_1 = factor in Rubey equation for fall velocity of particle;

- f = Darcy-Weisbach friction factor;
- = constant factor;
- f' = bed friction factor for sand grain roughness or skin friction;
- f'' = bed friction factor for form drag;
- f_b = friction factor for bed determined by sidewall correction procedure;
- f_e = friction factor used by Engelund;
- f_f = friction factor for flat beds (Lovera-Kennedy);
- f_m = friction factor for pipes carrying sediment;
- $f_w =$ friction factor for walls or banks;
- G_s = discharge of bed sediment;
- G_{sb} = bed load discharge of bed sediment;
- G_{ss} = suspended load discharge of bed sediment;
 - g = acceleration of gravity;
- g_s = sediment discharge per unit width of channel;
- g_{sb} = bed load discharge of bed sediment per unit width of channel;
- g_{sbi} = portion of g_{sb} in *i*th size fraction of bed sediment;
- g_{ss} = suspended load discharge of bed sediment per unit width of channel;
- g_{ssi} = portion of g_{ss} in the *i*th size fraction of bed sediment;
 - \overline{H} = mean height of ripples or dunes;
 - h = height of ripple or dune;
- $h_L =$ head loss;
- hp = horsepower;
- I_p = plasticity index for cohesive sediment;
- I_w = soil erodibility index;
 - i = energy gradient for pipe flow;
- i_m = energy gradient for pipe flow with suspended particles;
- J = dimensionless parameter;
- K = resistance factor;
- K' =factor;
- K_L = bend loss coefficient for flow in curved channels;
 - k = von Karman universal constant;
 - $= 2\pi/L =$ wave number;
- k_s = roughness length; = constant in Hunt's equation for
 - distribution suspended sediment;
- $k_{1-5} =$ exponents;
 - L = wave length of ripple or dune;
 - = length of pipe;
- $l, l_1, l_2 =$ mixing lengths;
 - $N_1 =$ dimensionless number;
 - n = Manning friction factor;
 - = exponent;
 - n_s = exponent in power relation between Q and G_s ;

- n_v = exponent in power law relation for velocity profile;
- p = pressure;
- = wetted perimeter of channel;
- p_b = wetted perimeter of bed;
- p_i = fraction by weight of the *i*th size fraction of sediment;
- p_w = wetted perimeter of walls or banks;
- Q = water discharge;
- Q_s = sediment discharge by volume;
- q = flow rate or discharge of fluid per unit width of channel;
- q_c = critical discharge per unit width;
- q_{ci} = critical discharge per unit width for *i*th size fraction of bed sediment;
- q_s = sediment discharge in volume per unit width;
- $q_{s^*} = q_s / U_* d_s$ = dimensionless sediment discharge;
- R = Reynolds number of flow;
- R = dimensionless soil-cover factor;
- $R_* = U_* d_s / \nu$ = bed Reynolds number;
- r = hydraulic radius;
- r' = portion of r_b due to grain roughness or skin friction;
- r'' = portion of r_b due to form drag;
- r_b = hydraulic radius of bed (determined by sidewall correction procedure);
- r_w = hydraulic radius of walls or banks;
- S = channel slope;
- S' = portion of channel slope due to grain roughness;
- S'' = portion of channel stop due to form drag;
- SF = shape factor;
- S_f = slope of energy gradient;
- S_v = vane shear-strength of soil;

$$s = \rho_s / \rho = \gamma_s / \gamma$$
 = specific gravity sediment;

- T =temperature;
- $t, \underline{T} =$ time;
 - $\overline{U} =$ mean velocity at vertical;
 - $U_* = \sqrt{\tau_o/\rho} =$ shear velocity;
 - $U'_* = \sqrt{\tau'_o/\rho}$ = grain-roughness shear velocity;

$$U_*'' = \sqrt{\tau_o''/\rho}$$
 = form drag shear velocity;

 $U_{*c}, U_{*t} =$ critical shear velocity;

- $U_{\text{max}} =$ maximum velocity at vertical;
- U_{oc} = critical mean velocity near bed;
- $u = \overline{u} + u'$ = instantaneous fluid velocity at a point;
- \overline{u} , U = mean fluid velocity at a point;
 - u' = instantaneous turbulence fluctuation of u at a point;
 - $u_o =$ mean velocity near bed;
 - V = Q/A =mean velocity;
 - = volume of sediment;

- V_B = mean velocity of sediment laden pipe flow separating flow with moving bed from heterogeneous flow;
- V_c = critical velocity for entraining sediment;
- V_H = critical velocity of sediment laden pipe flow dividing homogeneous and heterogeneous flow;
- V_L = limiting deposit-velocity in pipe;
- V_o = characteristic velocity;
- $v = \overline{v} + v'$ = instantaneous component of velocity in *y* direction;
- \overline{v} = mean value of y component of velocity;
- v' = instantaneous turbulence fluctuation of v at a point;
- W = specific weight of sediment deposit;
- w = fall velocity of particle;
 - $= \overline{w} + w'$
 - = instantaneous component of velocity in *z* direction;
- \overline{w} = mean value of velocity in *z* direction;
- w' = instantaneous turbulence fluctuation of w at a point;
- X = variable length or distance;
- x = dimensionless factor in Einstein velocity relation; coordinate, usually in flow direction;
- y = coordinate, usually normal to water surface (vertical);
- z = coordinate, usually transverse to flow (horizontal);
- dimensionless exponent in Rouse
 equation for distribution of suspended
 sediment;
- z_i = dimensionless exponent in Rouse equation based on sediment size d_{si} ;
- z_1 = dimensionless exponent in Ippen equation for distribution of suspended sediment;
- α = angle or dimensionless factor;
- $\beta = \text{ratio}, \epsilon_s/\epsilon_m;$
- $\beta_1\beta_2 =$ correlation coefficient;
 - γ = specific weight of fluid;
 - γ_m = specific weight of water-sediment mixture;
 - γ_s = specific weight of sediment grains;
 - δ = Kennedy lag distance;
 - = lower limit of integration;
 - = factor in Wilson equation for velocity;
 - δ' = thickness of laminar sublayer;
 - $\epsilon_m =$ diffusion coefficient for momentum (eddy viscosity);
 - ϵ_s = diffusion coefficient for sediment;
 - $\epsilon_w =$ diffusion coefficient for water;

- $\epsilon_x = \text{coefficient for diffusing sediment in } x$ direction;
- $\epsilon_y = \text{coefficient for diffusing sediment in y}$ direction;
 - $\eta =$ elevation of bed;
 - = efficiency of pump;
 - θ = angle of repose of sediment;
 - = dimensionless number or exponent;
 - $\lambda =$ wave length of dune;
- $\mu =$ dynamic viscosity of fluid;
- $\mu_m = \text{dynamic viscosity of particle-fluid}$ mixture;
 - v = kinematic viscosity of fluid;
- v_m = kinematic viscosity of particle-fluid mixture;
- $\rho = \text{density of fluid};$
- ρ_m = density of particle-fluid mixture;
- ρ_s = density of sediment grain;
- σ = standard deviation of particle sizes;
- σ_g = geometric standard deviation of particles sizes;
- τ = shear stress;
- $\tau_* = [\tau_o/(\gamma_s \gamma)d_s] =$ dimensionless shear stress or Shields parameter;

$$\tau'_* = [\tau'_o/(\gamma_s - \gamma)d_s] = \text{portion of } \tau_* \text{ due to grain roughness;}$$

$$\tau_*'' = [\tau_o''/(\gamma_s - \gamma)d_s] = \text{portion of } \tau_* \text{ due to form drag};$$

- τ_b = shear stress on bed of channel;
- τ_c = critical value of τ_o ;
- τ_{ci} = critical value of τ_o for sediment of size d_{si} ;
- τ_i = shear stress at interface between two stratified fluids;
- $\tau_o =$ bed shear stress;
- τ'_o = portion of τ_b due to grain roughness;
- $\tau_o'' =$ portion of τ_b due to form drag;
- τ_w = shear stress on walls or banks of channel;
- ϕ = slope angle;
 - = indicates, "function of";
 - Einstein's dimensionless sediment discharge;
- $\phi_D = (i_m i)/iC_v;$
- ϕ_e = Engelund's dimensionless sediment discharge;
- $\psi = 1/\tau_*$ dimensionless variable in Einstein $\psi - \phi$ relation;

$$\psi' = 1/\tau'_*;$$

= particle form coefficient;

$$\psi'' = 1/\tau''_{*}$$
; and

 ψ_d = factor in DuBoys' sediment discharge relation.