Appendix 1

A event label, as in "event A consists of all outcomes ω such that $X(\omega) \leq x "$
$a \quad$ a real number constant, as the degree-day snowmelt constant in Equations (5-2) and the probability limit in Equations (8-21)

B event label, as in "event A is contained in event B"
BIAS $_{X Z}$ bias, the expected value of the difference between the random variables X and $Z,(X-Z)$, used to measure the difference between the centers of their distributions; see Equation (2-17c)
$\widehat{\operatorname{BIAS}}_{X Z} \quad$ sample bias, the sample average of the difference between the random variable values x and $z,(x-z)$, used as an estimate of $\operatorname{BIAS}_{X Z}$; see Equation (2-20c)
$b_{g} \quad$ Climate Outlook probability setting for average air temperature for period g in the upper third of its 1961-90 range; see Equation (4-2b)
Climate Outlook probability setting for average precipitation for period g in the lower third of its 1961-90 range; see Equation (4-2d)
$D_{i} \quad$ snow water equivalent at the end of day i
d
d_{g} the derivative operator; see Equation (2-13a) for an example
Climate Outlook probability setting for average precipitation for period g in the upper third of its 1961-90 range; see Equation (4-2e)
$E[\cdot] \quad$ the "expected value" operator, defined as the integral of the operand over the probability distribution function; see Equations (2-15)
$e_{k} \quad$ selected weights sum limit in k th equation in Equations (6-7), (6-10), and ($6-11$), corresponding to a climate outlook probability setting, as, for example, in Equations (6-8)
$F(x) \quad$ cumulative distribution function, the probability that $X \leq x$, as in Equation (2-19)
$f_{X}(x)$ the probability density function, the derivative of the cumulative distribution function, as in Equation (2-13a)
$f(x) \quad$ penalty function, for use in optimization objective functions of Equations (8-22) and (8-23), for negative or zero arguments; see Equations (8-24)
$f_{i} \quad$ forecast average lake level for month i; see Equations (11-1) (11-11)

\begin{tabular}{|c|c|}
\hline p

Q_{g} \& an integer constant, as the number of strictly-less-than probability constraint inequalities selected from probabilistic meteorology outlooks for use in making an operational hydrology outlook; see Equations (8-9) and (8-10) total precipitation over period g

\hline $Q_{h, g}$ \& total precipitation in application area h over period g, as $Q_{\text {Sup, SON98 }}$ rep-

\hline q \& November 1998 period an integer constant, as the number of less-than-or-equal-to probability constraint inequalities selected from probabilistic meteorology outlooks for use in making an operational hydrology outlook; see Equations (8-9) and (8-10)

\hline $\left(q_{g}\right)_{i}$ \& value of Q_{g} in scenario i

\hline R_{g} \& total basin runoff over period g

\hline r \& number of interval limits defining the $r+1$ intervals of the real line for a variable's values; used additionally to denote the hydrology model in Equation (6-24)

\hline $\left(r_{g}\right)_{i}$ \& value of R_{g} in scenario

\hline \mathbf{S} \& vector of modeled hydrological output variables for the Bayesian Forecasting System

\hline s \& vector of values of modeled hydrological outputs for the Bayesian Forecasting System; see Equation (6-24)

\hline s_{X}^{2} \& sample variance, the sample average of the square of the difference between random variable values x and the sample mean $\bar{x},(x-\bar{x})^{2}$, used as an estimate of σ_{X}^{2}; see Equation (2-20b)

\hline s_{Z}^{2} \& sample variance, the sample average of the square of the difference between random variable values z and the sample mean $\bar{z},(z-\bar{z})^{2}$, used as an estimate of σ_{Z}^{2}; see Equation (2-20b)

\hline T_{g} \& average air temperature over period g

\hline $T_{h, g}$ \& average air temperature in application area h over period g, as $T_{\text {Sup, SON98 }}$ represents the "Superior" application area and the September-OctoberNovember 1998 period

\hline $\left(t_{g}\right)_{i}$ \& value of T_{g} in scenario i

\hline u \& an integer constant, as the number of probability constraint inequalities selected from probabilistic meteorology outlooks for use in making an operational hydrology outlook; see Equation ($10-15 \mathrm{c}$)

\hline u \& vector of deterministic inputs to a hydrology model for the Bayesian Forecasting System

\hline V \& vector of meteorology parameters of a probabilistic quantitative forecast for the Bayesian Forecasting System

\hline v \& vector of values of meteorology parameters of a probabilistic quantitative forecast used in the Bayesian Forecasting System

\hline v \& "artificial" variable to drive to zero in Equations (10-19)

\hline W \& vector of meteorology input variables for the Bayesian Forecasting System

\hline
\end{tabular}

$W_{g} \quad$ average water surface temperature over period g
$\mathbf{w} \quad$ vector of values of meteorology inputs for the Bayesian Forecasting System
$w_{i} \quad$ weight applied to i th scenario in the original set of possible future scenarios for calculation of estimates in a derivative outlook, or added "slack variable" to convert an inequality to an equation
value for variable X in i th scenario in the set of possible future scenarios
value for variable X in k th duplicated scenario in the hypothetical very large structured set of N scenarios
value for variable X in i th scenario in the original set of n possible future scenarios
$\bar{x} \quad$ sample mean, the sample average of random variable values x, used as an estimate of μ_{X}; see Equation (2-20a)
j th ordered value, from smallest to largest, for variable X in the set of possible future scenarios; see Equation (2-24)
j th ordered value, from smallest to largest, for variable X in the hypothetical very large structured set of N scenarios
j th ordered value, from smallest to largest, for variable X in the set of n possible future scenarios
a meteorology or hydrology variable
value for variable Z in j th scenario in the set of possible future scenarios; used additionally in Equations (8-1) through (8-7) as the j th interval limit (j $=1, \ldots, r$) defining the $r+1$ intervals of the real line for a variable's values
value for variable Z in i th scenario in the original set of n possible future scenarios
sample mean, the sample average of random variable values z, used as an estimate of μ_{Z}; see Equation (2-20a)
an integer coefficient equal to unity (1) if and only if the defining event is true in scenario i and zero (0) otherwise; see, for example the transforming of Equations (6-2) and (6-3) into Equations (6-4) and (6-5)
an integer coefficient equal to unity (1) if and only if defining event k is true in scenario i and zero (0) otherwise; see, for example the transforming of Equations (6-6) and (6-3) into Equations (6-7) and (6-9); becomes then the coefficient in the k th equation on the i th weight (for the i th scenario) in Equation (6-7)
∂
γ
η
$\begin{array}{ll}x_{i} & \text { value for variable } X \text { in } i \text { th scenario in the set of possible future scenarios } \\ x_{k}^{N} & \text { value for variable } X \text { in } k \text { th duplicated scenario in the hypothetical very }\end{array}$ ing System
duplication count for i th scenario in the original set of possible future scenarios for the hypothetical very large structured set reference total precipitation γ probability quantile for period g; see Equation (3-9)
reference total precipitation γ probability quantile in application area h over period g, as $\hat{\theta}_{\text {Sup }, \text { SON98 }, 0.667}$ represents the 0.667 -probability quantile for the Lake Superior application area and the September-OctoberNovember 1998 period
$\lambda_{k} \quad$ LaGrange multiplier, representing the penalty associated with violation of the k th constraint equation in an optimization
$\mu_{X} \quad$ mean, the expected value of random variable X used to define the central location of its distribution; see Equation (2-17a)
$\mu_{z} \quad$ mean, the expected value of random variable Z used to define the central location of its distribution; see Equation (2-17a) reference γ probability quantile for variable X
the product operator (product of expression following the operator indexed as indicated in the operator subscripts and superscripts); see Equation (219) for example
$\pi \quad$ probability density of \mathbf{S} given \mathbf{u} used in the Bayesian Forecasting System correlation, the expected value of the normalized product of the difference between random variable X and its mean $\left(X-\mu_{X}\right)$ and the difference between random variable Z and its mean ($Z-\mu_{Z}$), used to characterize the linear dependence of one on another; see Equation (2-17e)
$\hat{\rho}_{X Z}$ sample correlation, the sample average of the normalized product of the difference between random variable values x and the sample mean ($x-\bar{x}$) and the difference between random variable values z and the sample mean $(z-\bar{z})$, used as an estimate of $\rho_{X z}$; see Equation (2-20e) $\sum \quad$ the summation operator (sum of expression following the operator indexed as indicated in the operator subscripts and superscripts); see Equation (214) for an example
variance, the expected value of the square of the difference between random variable X and the mean $\left(X-\mu_{X}\right)^{2}$ used to define the spread of the distribution about its central location; see Equation (2-17b) variance, the expected value of the square of the difference between random variable Z and the mean $\left(Z-\mu_{Z}\right)^{2}$ used to define the spread of the distribution about its central location; see Equation (2-17b)
$\hat{\tau}_{g, \gamma} \quad$ reference average air temperature γ probability quantile for period g; see Equation (3-5) for an example with $\gamma=0.50$
$\hat{\tau}_{h, g, \gamma} \quad$ reference average air temperature γ probability quantile in application area h over period g, as $\hat{\tau}_{\text {Sup, SON98,0.667 }}$ represents the 0.667 -probability quantile for the Lake Superior application area and the September-OctoberNovember 1998 period
$\phi \quad$ joint probability density of \mathbf{W} and \mathbf{V} for the Bayesian Forecasting System example
$\forall \quad$ the exclusive union operator, denoting the exclusive union of sets; see Equation (2-4a) for an example
the complement operator, denoting the complement of a set; see Equation (2-1c) for an example containment of one set in another; see Equation (2-2) for an example membership in a set; see Equations (2-1) for an example "if and only if"; see Equation (2-2) for an example "implies"; see Equation (2-2) for an example

