Appendix 1

NOTATION

А	event label, as in "event A consists of all outcomes ω such that $X(\omega) \leq x$ "
а	a real number constant, as the degree-day snowmelt constant in Equations (5-2) and the probability limit in Equations (8-21)
a_g	Climate Outlook probability setting for average air temperature for period g
	in the lower third of its 1961–90 range; see Equation (4-2a)
В	event label, as in "event A is contained in event B"
BIAS _{XZ}	bias, the expected value of the difference between the random variables X
	and Z, $(X - Z)$, used to measure the difference between the centers of
	their distributions; see Equation (2-17c)
BIAS _{XZ}	sample bias, the sample average of the difference between the random vari-
	able values x and z, $(x - z)$, used as an estimate of BIAS _{XZ} ; see Equa-
	tion (2-20c)
b_g	Climate Outlook probability setting for average air temperature for period g
	in the upper third of its 1961–90 range; see Equation (4-2b)
c_g	Climate Outlook probability setting for average precipitation for period g in
	the lower third of its 1961–90 range; see Equation (4-2d)
D_i	snow water equivalent at the end of day i
d	the derivative operator; see Equation (2-13a) for an example
d_g	Climate Outlook probability setting for average precipitation for period g in
	the upper third of its 1961–90 range; see Equation (4-2e)
$E[\cdot]$	the "expected value" operator, defined as the integral of the operand over
	the probability distribution function; see Equations (2-15)
e_k	selected weights sum limit in k th equation in Equations (6-7), (6-10), and
	(6-11), corresponding to a climate outlook probability setting, as, for example, in Equations $(6-8)$
F(x)	cumulative distribution function, the probability that $X \leq x$, as in Equa-
	tion (2-19)
$f_X(\mathbf{x})$	the probability density function, the derivative of the cumulative distribu-
	tion function, as in Equation (2-13a)
f(x)	penalty function, for use in optimization objective functions of Equations
	(8-22) and (8-23), for negative or zero arguments; see Equations (8-24)
f_i	forecast average lake level for month i ; see Equations (11-1)–(11-11)

g(x)penalty function, for use in optimization objective functions of Equations (8-22) and (8-23), for negative arguments; see Equations (8-24) L objective function (the Lagrangian) for an unconstrained optimization reformulated from the objective function for a constrained optimization by incorporating the constraints; see Equations (7-6) and (8-16) actual average lake level for month *i*; see Equations (11-1)-(11-11) ℓ_i M_{o} average basin moisture over period g MSE_{XZ} mean square error, the expected value of the square of the difference between the random variables X and Z, $(X - Z)^2$, used to characterize the difference between their values; see Equation (2-17d) MSE xz sample mean square error, the sample average of the square of the difference between the random variable values x and z, $(x - z)^2$, used as an estimate of MSE_{XZ} ; see Equation (2-20d) an integer constant, as the order of a value in a random sample in Equation m (2-24) or (5-13), or the number of equalities to be satisfied in outlooks derivative to meteorology outlooks in Equations (6-10), (6-11), and (8-10) a value of average basin moisture for period g; see Equation (3-13) or (3 m_g 15) reference average basin moisture probability quantile for period g; see $\hat{m}_{g,\gamma}$ Equations (3-12) and (3-14) number of duplicated scenarios in the hypothetical very large structured set Ν used for estimation in the operational hydrology outlook number of duplicated scenarios, in the hypothetical very large structured set N_L used for estimation in the operational hydrology outlook, which have $Q_{\text{Sep}} \leq \hat{\theta}_{\text{Sep}, 0.333}$ in Equation (5-21a) number of scenarios available for use in generating the operational hydroln ogy outlook; see Equation (5-8) number of scenarios, available for use in generating the operational hydrol $n_{(A)}$ ogy outlook, in which event A occurs (A is true) in Equations (5-27) and (5-28)number of scenarios, available for use in generating the operational hydrol n_L ogy outlook, which have $Q_{\text{Sep.}} \leq \hat{\theta}_{\text{Sep.},0.333}$ in Equation (5-22a) number of observations that are less than or equal to x, used in estimating $n_{X \leq x}$ the probability of nonexceedance with the sample relative frequency; see Equation (2-22) probability of the event in brackets, representing its likelihood $P[\cdot]$ $P[X \leq x]$ cumulative distribution function, the probability that $X \leq x$, as in Equation (2-9) $\hat{P}[\cdot]$ relative frequency in a set, of the event in brackets, used as a probability estimate

р	an integer constant, as the number of strictly-less-than probability con-
	straint inequalities selected from probabilistic meteorology outlooks for use in making an operational hydrology outlook; see Equations (8-9) and (8-10)
Q_{g}	total precipitation over period g
$\tilde{Q}_{h,g}$	total precipitation in application area h over period g , as $Q_{\text{Sup, SON98}}$ rep-
	resents the Lake Superior application area and the September-October- November 1998 period
q	an integer constant, as the number of less-than-or-equal-to probability con- straint inequalities selected from probabilistic meteorology outlooks for use in making an operational hydrology outlook; see Equations (8-9) and (8-10)
$\left(q_{g}\right)_{i}$	value of Q_g in scenario <i>i</i>
R _g	total basin runoff over period g
r	number of interval limits defining the $r + 1$ intervals of the real line for a variable's values; used additionally to denote the hydrology model in Equation (6-24)
$\left(r_{g}\right)_{i}$	value of R_g in scenario <i>i</i>
S	vector of modeled hydrological output variables for the Bayesian Fore-
S	casting System vector of values of modeled hydrological outputs for the Bayesian Fore- casting System; see Equation (6-24)
s_X^2	sample variance, the sample average of the square of the difference be-
	tween random variable values x and the sample mean \overline{x} , $(x - \overline{x})^2$, used
	as an estimate of σ_X^2 ; see Equation (2-20b)
s_Z^2	sample variance, the sample average of the square of the difference be-
	tween random variable values z and the sample mean \overline{z} , $(z - \overline{z})^2$, used
_	as an estimate of σ_Z^2 ; see Equation (2-20b)
T_g	average air temperature over period g
$T_{h,g}$	average air temperature in application area h over period g , as $T_{\text{Sup, SON98}}$
	represents the "Superior" application area and the September-October- November 1998 period
$\left(t_{g}\right)_{i}$	value of T_g in scenario <i>i</i>
u	an integer constant, as the number of probability constraint inequalities se- lected from probabilistic meteorology outlooks for use in making an opera-
u	tional hydrology outlook; see Equation (10-15c) vector of deterministic inputs to a hydrology model for the Bayesian Fore- casting System
V	vector of meteorology parameters of a probabilistic quantitative forecast for the Bayesian Forecasting System
v	vector of values of meteorology parameters of a probabilistic quantitative forecast used in the Bayesian Forecasting System
v W	"artificial" variable to drive to zero in Equations (10-19)
**	vector of meteorology input variables for the Bayesian Forecasting System
	155

W_{g}	average water surface temperature over period g
w W	vector of values of meteorology inputs for the Bayesian Forecasting System
$\left(w_{g}\right)_{i}$	value of W_g in scenario <i>i</i>
w _i	weight applied to <i>i</i> th scenario in the original set of possible future scenarios
	for calculation of estimates in a derivative outlook, or added "slack vari- able" to convert an inequality to an equation
X	a meteorology or hydrology variable value for variable X in <i>i</i> th scenario in the set of possible future scenarios
x_i	
x_k^N	value for variable X in k th duplicated scenario in the hypothetical very large structured set of N scenarios
x_i^n	value for variable X in <i>i</i> th scenario in the original set of <i>n</i> possible future scenarios
\overline{x}	sample mean, the sample average of random variable values x, used as an estimate of μ_X ; see Equation (2-20a)
y_j	<i>j</i> th ordered value, from smallest to largest, for variable X in the set of pos-
5	sible future scenarios; see Equation (2-24)
y_j^N	jth ordered value, from smallest to largest, for variable X in the hypotheti-
	cal very large structured set of N scenarios
y_j^n	jth ordered value, from smallest to largest, for variable X in the set of n
7	possible future scenarios
Z_{z_j}	a meteorology or hydrology variable value for variable Z in <i>j</i> th scenario in the set of possible future scenarios;
-)	used additionally in Equations (8-1) through (8-7) as the <i>j</i> th interval limit ($j = 1,, r$) defining the $r + 1$ intervals of the real line for a variable's values
z_i^n	value for variable Z in <i>i</i> th scenario in the original set of n possible future
Ī	scenarios sample mean, the sample average of random variable values z, used as an estimate of μ_z ; see Equation (2-20a)
α_i	an integer coefficient equal to unity (1) if and only if the defining event is
	true in scenario i and zero (0) otherwise; see, for example the transforming of Equations (6-2) and (6-3) into Equations (6-4) and (6-5)
$\alpha_{k,i}$	an integer coefficient equal to unity (1) if and only if defining event k is
	true in scenario i and zero (0) otherwise; see, for example the transforming of Equations (6-6) and (6-3) into Equations (6-7) and (6-9); becomes then the coefficient in the <i>k</i> th equation on the <i>i</i> th weight (for the <i>i</i> th scenario) in Equation (6-7)
9	the partial derivative operator; see Equations (7-7) and (8-17) for examples
γ	a real number (probability) between zero (0) and unity (1), inclusively
η	probability density of W , or of W given V , used in the Bayesian Forecasting System

- ϑ_i duplication count for *i*th scenario in the original set of possible future scenarios for the hypothetical very large structured set
- $\hat{\theta}_{g,\gamma}$ reference total precipitation γ -probability quantile for period g; see Equation (3-9)
- $\hat{\theta}_{h,g,\gamma}$ reference total precipitation γ -probability quantile in application area h

over period g, as $\hat{\theta}_{Sup, SON98, 0.667}$ represents the 0.667-probability quantile for the Lake Superior application area and the September-October-November 1998 period

- λ_k LaGrange multiplier, representing the penalty associated with violation of the *k*th constraint equation in an optimization
- μ_X mean, the expected value of random variable X used to define the central location of its distribution; see Equation (2-17a)
- μ_Z mean, the expected value of random variable Z used to define the central location of its distribution; see Equation (2-17a)
- ξ_{γ} reference γ -probability quantile for variable X
- the product operator (product of expression following the operator indexed as indicated in the operator subscripts and superscripts); see Equation (2-19) for example
- π probability density of S given **u** used in the Bayesian Forecasting System
- ρ_{XZ} correlation, the expected value of the normalized product of the difference between random variable X and its mean $(X - \mu_X)$ and the difference between random variable Z and its mean $(Z - \mu_Z)$, used to characterize the linear dependence of one on another; see Equation (2-17e)
- $\hat{\rho}_{XZ}$ sample correlation, the sample average of the normalized product of the difference between random variable values x and the sample mean $(x \overline{x})$ and the difference between random variable values z and the sample mean $(z \overline{z})$, used as an estimate of ρ_{XZ} ; see Equation (2-20e)
 - the summation operator (sum of expression following the operator indexed
 - as indicated in the operator subscripts and superscripts); see Equation (2-14) for an example
- σ_X^2 variance, the expected value of the square of the difference between random variable X and the mean $(X - \mu_X)^2$ used to define the spread of the distribution about its central location; see Equation (2-17b)
 - variance, the expected value of the square of the difference between random variable Z and the mean $(Z - \mu_Z)^2$ used to define the spread of the distribution about its central location; see Equation (2-17b)
- $\hat{\tau}_{g,\gamma}$ reference average air temperature γ -probability quantile for period g; see Equation (3-5) for an example with $\gamma = 0.50$

Σ

 σ_{7}^{2}

$\hat{\tau}_{h,g,\gamma}$	reference average air temperature probability quantile in application area
	h over period g, as $\hat{\tau}_{Sup, SON98, 0.667}$ represents the 0.667-probability quan-
	tile for the Lake Superior application area and the September-October- November 1998 period
ϕ	joint probability density of W and V for the Bayesian Forecasting System
ϕ_{j}	probability limit for a most-probable interval outlook for interval j
Ω	population or target space, the set of all possible outcomes in an experiment or the set of all possibilities in a population
ω	possibility or outcome, an element from Ω
V	"for all"; see Equation (2-2) for an example
J	the integral operator (integral of the expression following the operator over
	the limits indicated in the operator subscripts and superscripts); see Equa- tion (2-13b) for an example
Ø	the null set or empty set; see Equation (2-1d)
\cap	the intersection operator, denoting the intersection of sets; see Equation (2- 1b) for an example
U	the union operator, denoting the union of sets; see Equation (2-1a) for an example
¥	the exclusive union operator, denoting the exclusive union of sets; see Equation (2-4a) for an example
с	the complement operator, denoting the complement of a set; see Equation (2-1c) for an example
\subset	containment of one set in another; see Equation (2-2) for an example
E	membership in a set; see Equations (2-1) for an example
⇔	"if and only if"; see Equation (2-2) for an example
⇒	"implies"; see Equation (2-2) for an example