Technical Papers
Sep 13, 2024

Instability Conditions of a Silty Sand under Monotonic Loads in Simple Shear Tests

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 11

Abstract

In order to improve the understanding on static liquefaction phenomenon, this paper presents an insight into the instability mechanism of a silty sand originating from the Sakarya region (Turkey). Monotonic undrained simple shear tests were performed in either strain-controlled or stress-controlled modes. The interpretation of the experimental results allowed us to draw three interesting conclusions on instability conditions: (1) Hill’s stability postulate can be conveniently used to identify the onset of instability for strain-controlled tests, whereas in stress-controlled conditions, an alternative new parameter η* (modified apparent viscosity) was introduced. Depending on the strain rate, η* allows to identify stability conditions more clearly than second-order work; (2) the value of the pore pressure ratio at the onset of instability (ru,is), ranging between 0.30 and 0.50, is linearly linked to the state parameter ψ; and (3) at the onset of instability, the dependence of both the major and minor principal stress directions (αis and βis) and Lode’s angle (θis) on ψ was also observed. These findings are expected to be of some help for a more consistent approach to the constitutive modeling of the static instability mechanism.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors are grateful to the anonymous reviewers for having improved the present work.

References

Airey, D. W., M. Budhu, and D. M. Wood. 1985. “Some aspects of the behaviour of soils in simple shear.” In Developments in soil mechanics and foundation engineering, 185–213. London: CRC Press. https://doi.org/10.4324/9780203975879.
Airey, D. W., and D. M. Wood. 1987. “An evaluation of direct simple shear tests on clay.” Géotechnique 37 (1): 25–35. https://doi.org/10.1680/geot.1987.37.1.25.
Al Tarhouni, M. A., and B. Hawlader. 2021. “Monotonic and cyclic behaviour of sand in direct simple shear test conditions considering low stresses.” Soil Dyn. Earthquake Eng. 150 (Nov): 106931. https://doi.org/10.1016/j.soildyn.2021.106931.
Amer, M. I., M. S. Aggour, and W. D. Kovacs. 1984. Size effect in simple shear testing. College Park, MD: Univ. of Maryland.
Amini, F., and G. Z. Qi. 2000. “Liquefaction testing of stratified silty sands.” J. Geotech. Geoenviron. Eng. 126 (3): 208–217. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(208).
ASTM. 2006a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253-06. West Conshohocken, PA: ASTM.
ASTM. 2006b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254-06. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for consolidated undrained direct simple shear testing of fine grain soils. ASTM D6528-17. West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test method for consolidated undrained cyclic direct simple shear test under constant volume with load control or displacement control. ASTM D8296-19. West Conshohocken, PA: ASTM.
Atkinson, J. H., W. H. W. Lau, and J. J. M. Powell. 1991. “Measurement of soil strength in simple shear tests.” Can. Geotech. J. 28 (2): 255–262. https://doi.org/10.1139/t91-031.
Bedin, J., F. Schnaid, A. V. Da Fonseca, and L. D. M. Costa Filho. 2012. “Gold tailings liquefaction under critical state soil mechanics.” Géotechnique 62 (3): 263–267. https://doi.org/10.1680/geot.10.P.037.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Bella, G., and G. Musso. 2024. “Liquefaction susceptibility of silty tailings under monotonic triaxial tests in nearly saturated conditions.” Geomech. Eng. 36 (3): 247–258. https://doi.org/10.12989/gae.2024.36.3.247.
Benahmed, N., T. K. Nguyen, P. Y. Hicher, and M. Nicolas. 2015. “An experimental investigation into the effects of low plastic fines content on the behaviour of sand/silt mixtures.” Eur. J. Environ. Civ. Eng. 19 (1): 109–128. https://doi.org/10.1080/19648189.2014.939304.
Bjerrum, L., and A. Landva. 1966. “Direct simple-shear tests on a Norwegian quick clay.” Géotechnique 16 (1): 1–20. https://doi.org/10.1680/geot.1966.16.1.1.
Bobei, D. C., S. R. Lo, D. Wanatowski, C. T. Gnanendran, and M. M. Rahman. 2009. “Modified state parameter for characterizing static liquefaction of sand with fines.” Can. Geotech. J. 46 (3): 281–295. https://doi.org/10.1139/T08-122.
Bray, J. D., et al. 2004. “Subsurface characterization at ground failure sites in Adapazari, Turkey.” J. Geotech. Geoenviron. Eng. 130 (7): 673–685. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673).
Budhu, M. 1984. “Nonuniformities imposed by simple shear apparatus.” Can. Geotech. J. 21 (1): 125–137. https://doi.org/10.1139/t84-010.
Carraro, J. A. H. 2017. “Analysis of simple shear tests with cell pressure confinement.” Geomech. Geoeng. 12 (3): 169–180. https://doi.org/10.1080/17486025.2016.1193635.
Casagrande, A. 1976. Liquefaction and cyclic deformation of sands: A critical review. Harvard soil mechanics series. Cambridge, MA: Harvard Univ.
Chang, W. J., T. Phantachang, and W. M. Ieong. 2016. “Evaluation of size and boundary effects in simple shear tests with distinct element modeling.” J. GeoEng. 11 (3): 133–142. https://doi.org/10.6310/jog.2016.11(3).3.
Chen, G., E. Zhou, Z. Wang, B. Wang, and X. Li. 2016. “Experimental study on fluid characteristics of medium dense saturated fine sand in pre- and post-liquefaction.” Bull. Earthquake Eng. 14 (8): 2185–2212. https://doi.org/10.1007/s10518-016-9907-6.
Chiu, C. F., and X. J. Fu. 2008. “Interpreting undrained instability of mixed soils by equivalent intergranular state parameter.” Géotechnique 58 (9): 751–755. https://doi.org/10.1680/geot.2008.58.9.751.
Chu, J. 1999. “Quasi-steady state: A real behaviour?” Can. Geotech. J. 36 (1): 190–191. https://doi.org/10.1139/t98-088.
Chu, J., and W. K. Leong. 2001. “Pre-failure strain softening and pre-failure instability of sand: A comparative study.” Géotechnique 51 (4): 311–321. https://doi.org/10.1680/geot.2001.51.4.311.
Chu, J., and W. K. Leong. 2002. “Effect of fines on instability behaviour of loose sand.” Géotechnique 52 (10): 751–755. https://doi.org/10.1680/geot.2002.52.10.751.
Chu, J., and D. Wanatowski. 2009. “Effect of loading mode on strain softening and instability behavior of sand in plane-strain tests.” J. Geotech. Geoenviron. 135 (1): 108–120. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(108).
Della, N., A. Arab, and M. Belkhatir. 2011. “Static liquefaction of sandy soil: An experimental investigation into the effects of saturation and initial state.” Acta Mech. 218 (1–2): 175–186. https://doi.org/10.1007/s00707-010-0410-x.
Doanh, T., E. Ibraim, and R. Matiotti. 1997. “Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: Experimental observations.” Mech. Cohesive-Frict. Mater. Int. J. Exp. Modell. Comput. Mater. Struct. 2 (1): 47–70. https://doi.org/10.1002/(SICI)1099-1484(199701)2:1%3C47::AID-CFM26%3E3.0.CO;2-9.
Doherty, J., and M. Fahey. 2011. “Three-dimensional finite element analysis of the direct simple shear test.” Comput. Geotech. 38 (7): 917–924. https://doi.org/10.1016/j.compgeo.2011.05.005.
Dong, Q., C. Xu, Y. Cai, H. Juang, J. Wang, Z. Yang, and C. Gu. 2016. “Drained instability in loose granular material.” Int. J. Geomech. 16 (2): 04015043. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000524.
Drucker, D. C. 1957. “A definition of stable inelastic material.” J. Appl. Mech. 26 (1): 101–106. https://doi.org/10.1115/1.4011929.
Fanni, R., D. Reid, and A. Fourie. 2022a. “On reliability of inferring liquefied shear strengths from simple shear testing.” Soils Found. 62 (3): 101151. https://doi.org/10.1016/j.sandf.2022.101151.
Fanni, R., D. Reid, and A. Fourie. 2022b. “Effect of principal stress direction on the instability of sand under the constant shear drained stress path.” Géotechnique 74 (9): 875–891. https://doi.org/10.1680/jgeot.22.00062.
Fotovvat, A., A. Sadrekarimi, and M. Etezad. 2022. “Instability of gold mine tailings subjected to undrained and drained unloading stress paths.” Géotechnique 74 (2): 174–192. https://doi.org/10.1680/jgeot.21.00293.
Hanzawa, H., N. Nutt, T. Lunne, Y. X. Tang, and M. Long. 2007. “A comparative study between the NGI direct simple shear apparatus and the Mikasa direct shear apparatus.” Soils Found. 47 (1): 47–58. https://doi.org/10.3208/sandf.47.47.
Hill, R. 1958. “A general theory of uniqueness and stability in elasticplastic solids.” J. Mech. Phys. Solids 6 (3): 236–249. https://doi.org/10.1016/0022-5096(58)90029-2.
Huang, Y. T., A. B. Huang, Y. C. Kuo, and M. D. Tsai. 2004. “A laboratory study on the undrained strength of a silty sand from central western Taiwan.” Soil Dyn. Earthquake Eng. 24 (9–10): 733–743. https://doi.org/10.1016/j.soildyn.2004.06.013.
Ishihara, K. 1993. “Liquefaction and flow failure during earthquakes.” Géotechnique 43 (3): 351–451. https://doi.org/10.1680/geot.1993.43.3.351.
Jefferies, M., and K. Been. 2015. Soil liquefaction: A critical state approach. Boca Raton, FL: CRC Press.
Karim, M. E., M. M. Rahman, M. R. Karim, A. B. Fourie, and D. Reid. 2023. “Characteristics of copper tailings in direct simple shearing: A critical state approach.” J. Geotech. Geoenviron. 149 (5): 04023018. https://doi.org/10.1061/JGGEFK.GTENG-11031.
Ladd, C. C. 1973. “Discussion.” In Vol. 4 of Proc. 8th Int. Conf. Soil Mech. Fdn Engineerin, 108–115. Berlin: Springer. https://doi.org/10.1007/BF01711589.
Lade, P. V. 1993. “Initiation of static instability in the submarine Nerlerk berm.” Can. Geotech. J. 30 (6): 895–904. https://doi.org/10.1139/t93-088.
Lade, P. V., and D. Pradel. 1990. “Instability and plastic flow of soils. I: Experimental observations.” J. Eng. Mech. 116 (11): 2532–2550. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:11(2532).
Lade, P. V., and J. A. Yamamuro. 1997. “Effects of non-plastic fines on static liquefaction of sands.” Can. Geotech. J. 34 (6): 918–928. https://doi.org/10.1139/t97-052.
Li, X. S., and Y. Wang. 1998. “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215).
Lirer, S., and L. Mele. 2019. “On the apparent viscosity of granular soils during liquefaction tests.” Bull. Earthquake Eng. 17 (11): 5809–5824. https://doi.org/10.1007/s10518-019-00706-0.
Lucks, A. S., J. T. Christian, G. E. Brandow, and K. Hoeg. 1972. “Stress condition in NGI simple shear test.” J. Soil Mech. Found. Div. 98 (1). https://doi.org/10.1061/JSFEAQ.0001729.
Mao, X., and M. Fahey. 2003. “Behaviour of calcareous soils in undrained cyclic simple shear.” Géotechnique 53 (8): 715–727. https://doi.org/10.1680/geot.2003.53.8.715.
Mele, L. 2022. “An experimental study on the apparent viscosity of sandy soils: From liquefaction triggering to pseudo-plastic behaviour of liquefied sands.” Acta Geotech. 17 (2): 463–481. https://doi.org/10.1007/s11440-021-01261-2.
Mele, L. 2023. “Experimental study with complete stress state interpretation of undrained monotonic and cyclic simple shear tests with flexible boundaries.” Acta Geotech. 19 (1): 147–161. https://doi.org/10.1007/s11440-023-01907-3.
Modoni, G., J. Koseki, and L. Q. Anh Dan. 2011. “Cyclic stress–strain response of compacted gravel.” Géotechnique 61 (6): 473–485. https://doi.org/10.1680/geot.7.00150.
Monkul, M. M., J. A. Yamamuro, and P. V. Lade. 2011. “Failure, instability, and the second work increment in loose silty sand.” Can. Geotech. J. 48 (6): 943–955. https://doi.org/10.1139/t11-013.
Murthy, T. G., D. Loukidis, J. A. H. Carraro, M. Prezzi, and R. Salgado. 2007. “Undrained monotonic response of clean and silty sands.” Géotechnique 57 (3): 273–288. https://doi.org/10.1680/geot.2007.57.3.273.
Nguyen, H. B. K., M. M. Rahman, and A. Fourie. 2021. “The critical state behaviour of granular material in triaxial and direct simple shear condition: A DEM approach.” Comput. Geotech. 138 (Oct): 104325. https://doi.org/10.1016/j.compgeo.2021.104325.
Ni, X., B. Ye, G. Ye, and F. Zhang. 2021. “Unique determination of cyclic instability state in flow liquefaction of sand.” Mar. Georesour. Geotech. 39 (8): 974–982. https://doi.org/10.1080/1064119X.2020.1791289.
Polito, C. P., and J. R. Martin II. 2001. “Effects of nonplastic fines on the liquefaction resistance of sands.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
Porcino, D. D., and V. Diano. 2017. “The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures.” Soil Dyn. Earthq. Eng. 101 (Oct): 311–321. https://doi.org/10.1016/j.soildyn.2017.07.015.
Porcino, D. D., V. Diano, T. Triantafyllidis, and T. Wichtmann. 2020. “Predicting undrained static response of sand with non-plastic fines in terms of equivalent granular state parameter.” Acta Geotech. 15 (4): 867–882. https://doi.org/10.1007/s11440-019-00770-5.
Prevost, J.-H., and K. Hoeg. 1975. “Soil mechanics and plasticity analysis of strain softening.” Géotechnique 25 (2): 279–297. https://doi.org/10.1680/geot.1975.25.2.279.
Rabbi, A. T. M. Z., M. M. Rahman, and D. Cameron. 2019a. “Critical state study of natural silty sand instability under undrained and constant shear drained path.” Int. J. Geomech. 19 (8): 04019083. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001462.
Rabbi, A. T. M. Z., M. M. Rahman, and D. A. Cameron. 2019b. “The relation between the state indices and the characteristic features of undrained behaviour of silty sand.” Soils Found. 59 (4): 801–813. https://doi.org/10.1016/j.sandf.2019.05.001.
Randolph, M. F., and C. P. Wroth. 1981. “Application of the failure state in undrained simple shear to the shaft capacity of driven piles.” Géotechnique 31 (1): 143–157. https://doi.org/10.1680/geot.1981.31.1.143.
Reid, D., R. Fanni, and A. Fourie. 2023. “Why is –0.05 state parameter the boundary between contractive and dilative behaviour?” In Proc., Conf.: AusIMM Mine Waste and Tailings 2023. Brisbane, Australia: Australasian Institute of Mining and Metallurgy.
Reid, D., and A. Fourie. 2019. “A direct simple shear device for static liquefaction triggering under constant shear drained loading.” Géotech. Lett. 9 (2): 142–146. https://doi.org/10.1680/jgele.19.00011.
Riveros, G. A., and A. Sadrekarimi. 2021. “Static liquefaction behaviour of gold mine tailings.” Can. Geotech. J. 58 (6): 889–901. https://doi.org/10.1139/cgj-2020-0209.
Robertson, P. K., L. de Melo, D. J. Williams, and G. W. Wilson. 2019. “Report of the expert panel on the technical causes of the failure of Feijão Dam I.” Accessed February 4, 2022. http://www.b1technicalinvestigation.com.
Roscoe, K. H. 1953. “An apparatus for the application of simple shear to soil samples.” In Vol. 1 of Proc., 3rd Int. Conf. on Soil Mechanics and Foundation Engineering, 186–191. London: Institution of Civil Engineers.
Roscoe, K. H. 1970. “The influence of strains in soil mechanics.” Géotechnique 20 (2): 129–170. https://doi.org/10.1680/geot.1970.20.2.129.
Rotta, L. H. S., E. Alcântara, E. Park, R. G. Negri, Y. N. Lin, N. Bernardo, T. S. Mendes, and C. R. Souza Filho. 2020. “The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil.” Int. J. Appl. Earth Obs. Geoinf. 90 (Aug): 102119. https://doi.org/10.1016/j.jag.2020.102119.
Salvatore, E., G. Modoni, E. Andò, M. Albano, and G. Viggiani. 2017. “Determination of the critical state of granular materials with triaxial tests.” Soils Found. 57 (5): 733–744. https://doi.org/10.1016/j.sandf.2017.08.005.
Sawicki, A., and W. Świdziński. 2010. “Modelling the pre-failure instabilities of sand.” Comput. Geotech. 37 (6): 781–788. https://doi.org/10.1016/j.compgeo.2010.06.004.
Seed, H. B., and K. L. Lee. 1966. “Liquefaction of saturated sands during cyclic loading.” J. Soil Mech. Found. Div. 92 (6): 105–134. https://doi.org/10.1061/JSFEAQ.0000913.
Shen, C. K., K. Sadigh, and L. R. Hermann. 1978. “An analysis of NGI simple shear apparatus for cyclic soil testing.” In Dynamic geotechnical testing, 148–162. West Conshohocken, PA: ASTM.
Shibuya, S., and D. W. Hight. 1987. “On the stress path in simple shear.” Géotechnique 37 (4): 511–515. https://doi.org/10.1680/geot.1987.37.4.511.
Shuttle, D. A., and J. Cunning. 2008. “Liquefaction potential of silts from CPTu.” Can. Geotech. J. 45 (1): 142–145. https://doi.org/10.1139/T07-119.
Sladen, J. A., R. D. D’hollander, and J. Krahn. 1985. “The liquefaction of sands, a collapse surface approach.” Can. Geotech. J. 22 (4): 564–578. https://doi.org/10.1139/t85-076.
Świdziński, W., and M. Smyczyński. 2022. “Modelling of static liquefaction of partially saturated non-cohesive soils.” Appl. Sci. 12 (4): 2076. https://doi.org/10.3390/app12042076.
Thevanayagam, S. 1998. “Effect of fines and confining stress on undrained shear strength of silty sands.” J. Geotech. Geoenviron. Eng. 124 (6): 479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479).
Viana da Fonseca, A., D. Cordeiro, F. Molina-Gómez, D. Besenzon, A. Fonseca, and C. Ferreira. 2022. “The mechanics of iron tailings from laboratory tests on reconstituted samples collected in post-mortem Dam I in Brumadinho.” Soils Rocks 45 (2): 1. https://doi.org/10.28927/SR.2022.001122.
Vucetic, M., and S. Lacasse. 1982. “Specimen size effect in simple shear test.” J. Geotech. Eng. Div. 108 (12): 1567–1585. https://doi.org/10.1061/AJGEB6.0001395.
Wanatowski, D., and J. Chu. 2007. “Static liquefaction of sand in plane strain.” Can. Geotech. J. 44 (3): 299–313. https://doi.org/10.1139/t06-078.
Yamamuro, J. A., and K. M. Covert. 2001. “Monotonic and cyclic liquefaction of very loose sands with high silt content.” J. Geotech. Geoenviron. 127 (4): 314–324. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(314).
Yamamuro, J. A., and P. V. Lade. 1993. “Effects of strain rate on instability of granular soils.” Geotech. Test. J. 16 (3): 304–313. https://doi.org/10.1520/GTJ10051J.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 11November 2024

History

Received: Nov 22, 2023
Accepted: Jun 26, 2024
Published online: Sep 13, 2024
Published in print: Nov 1, 2024
Discussion open until: Feb 13, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Researcher Fellow, Dept. of Civil, Environmental and Architectural Engineering, Univ. of Napoli Federico II, Napoli 80125, Italy (corresponding author). Email: [email protected]
Kadir Kocaman [email protected]
Ph.D. Student, Dept. of Civil Engineering, Sakarya Univ., Sakarya 54050, Turkey. Email: [email protected]
Professor, Dept. of Civil Engineering, Sakarya Univ., Sakarya 54050, Turkey. ORCID: https://orcid.org/0000-0003-1102-1424. Email: [email protected]
Alessandro Flora [email protected]
Full Professor, Dept. of Civil, Environmental and Architectural Engineering, Univ. of Napoli Federico II, Napoli 80125, Italy. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share