Technical Papers
May 4, 2020

Recent Advances in the Design and Architecture of Bioelectrochemical Systems to Treat Wastewater and to Produce Choice-Based Byproducts

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 24, Issue 3

Abstract

Production of valuable chemicals and fuels using bioelectrochemical systems (BESs) from low-valued solids, liquid, and gaseous wastes has gained enormous attention among scientific communities. For example, a microbial fuel cell can produce bioelectricity using wastewater as substrate in anode and oxygen as oxidant in cathode. Partial desalination of sea water can be achieved in microbial desalination cells using the potential difference between the anode and cathode as a driving force. More interestingly, the microbial electrosynthesis cell is capable of producing organic acids, alcohols, methane, and bioplastics using CO2 (a major greenhouse gas) as sole carbon feedstock. However, these technologies are still in the growing phase—mostly validated in lab-scale studies and, thus, yet to find position among field-scale prototypes. The fabrication details, main output, and various glitches during the bioconversion, where there is scope for further development, are outlined systematically. This manuscript provides a bird’s-eye view of all the different categories of BES, which will be helpful for the beginners of this field of research to understand the topic more clearly.

Get full access to this article

View all available purchase options and get full access to this article.

References

Anusha, G., M. T. Noori, and M. M. Ghangrekar. 2018. “Application of silver-tin dioxide composite cathode catalyst for enhancing performance of microbial desalination cell.” Mater. Sci. Energy Technol. 1 (2): 188–195. https://doi.org/10.1016/j.mset.2018.08.002.
Arugula, M. A., K. S. Brastad, S. D. Minteer, and Z. He. 2012. “Enzyme catalyzed electricity-driven water softening system.” Enzyme Microb. Technol. 51 (6–7): 396–401. https://doi.org/10.1016/j.enzmictec.2012.08.009.
Aryal, N., A. Halder, P.-L. Tremblay, Q. Chi, and T. Zhang. 2016. “Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis.” Electrochim. Acta 217: 117–122. https://doi.org/10.1016/j.electacta.2016.09.063.
Aryal, N., P.-L. Tremblay, D. M. Lizak, and T. Zhang. 2017. “Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide.” Bioresour. Technol. 233: 184–190. https://doi.org/10.1016/j.biortech.2017.02.128.
Asai, Y., M. Miyahara, A. Kouzuma, and K. Watanabe. 2017. “Comparative evaluation of wastewater-treatment microbial fuel cells in terms of organics removal, waste-sludge production, and electricity generation.” Bioresour. Bioprocess. 4 (1): 30–38. https://doi.org/10.1186/s40643-017-0163-7.
Asensio, Y., C. Fernandez-Marchante, J. Villaseñor, J. Lobato, P. Cañizares, and M. A. Rodrigo. 2018. “Algal biomass as fuel for stacked-MFCs for profitable, sustainable and carbon neutral bioenergy generation.” J. Chem. Technol. Biotechnol. 93 (1): 287–293. https://doi.org/10.1002/jctb.5354.
Atanassov, P., C. Apblett, S. Banta, S. Brozik, S. C. Barton, M. Cooney, B. Y. Liaw, S. Mukerjee, and S. D. Minteer. 2007. “Enzymatic biofuel cells.” Interface Electrochem. Soc. 16 (2): 28–31.
Ayyaru, S., P. Letchoumanane, S. Dharmalingam, and A. R. Stanislaus. 2012. “Performance of sulfonated polystyrene-ethylene-butylene-polystyrene membrane in microbial fuel cell for bioelectricity production.” J. Power Sources 217: 204–208. https://doi.org/10.1016/j.jpowsour.2012.05.053.
Bajracharya, S., M. Sharma, G. Mohanakrishna, X. D. Benneton, D. P. B. T. B. Strik, P. M. Sarma, and D. Pant. 2016. “An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond.” Renewable Energy 98: 153–170. https://doi.org/10.1016/j.renene.2016.03.002.
Bajracharya, S., S. Srikanth, G. Mohanakrishna, R. Zacharia, D. P. B. T. B. Strik, and D. Pant. 2017. “Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects.” J. Power Sources 356: 256–273. https://doi.org/10.1016/j.jpowsour.2017.04.024.
Bensaid, S., B. Ruggeri, and G. Saracco. 2015. “Development of a photosynthetic microbial electrochemical cell (PMEC) reactor coupled with dark fermentation of organic wastes: Medium term perspectives.” Energies 8 (1): 399–429. https://doi.org/10.3390/en8010399.
Bhande, R., M. T. Noori, and M. M. Ghangrekar. 2019. “Performance improvement of sediment microbial fuel cell by enriching the sediment with cellulose: Kinetics of cellulose degradation.” Environ. Technol. Innovation 13: 189–196. https://doi.org/10.1016/j.eti.2018.11.003.
Bhowmick, G. D., M. T. Noori, I. Das, B. Neethu, M. M. Ghangrekar, and A. Mitra. 2018. “Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell.” Int. J. Hydrogen Energy 43 (15): 7501–7510. https://doi.org/10.1016/j.ijhydene.2018.02.188.
Brastad, K. S., and Z. He. 2013. “Water softening using microbial desalination cell technology.” Desalination 309: 32–37. https://doi.org/10.1016/j.desal.2012.09.015.
Cao, X., H. Wang, X.-Q. Li, Z. Fang, and X.-N. Li. 2017. “Enhanced degradation of azo dye by a stacked microbial fuel cell-biofilm electrode reactor coupled system.” Bioresour. Technol. 227: 273–278. https://doi.org/10.1016/j.biortech.2016.12.043.
Chae, K.-J., M.-J. Choi, K.-Y. Kim, F. F. Ajayi, I.-S. Chang, and I. S. Kim. 2009. “A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.” Environ. Sci. Technol. 43 (24): 9525–9530. https://doi.org/10.1021/es9022317.
Chang, S.-H., C.-H. Wu, R.-C. Wang, and C.-W. Lin. 2017. “Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.” J. Environ. Manage. 193: 551–557. https://doi.org/10.1016/j.jenvman.2017.02.053.
Chen, S., G. Liu, R. Zhang, B. Qin, and Y. Luo. 2012. “Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions.” Environ. Sci. Technol. 46 (4): 2467–2472. https://doi.org/10.1021/es203332g.
Chen, X., H. Sun, P. Liang, X. Zhang, and X. Huang. 2016. “Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination.” J. Power Sources 324: 79–85. https://doi.org/10.1016/j.jpowsour.2016.05.065.
Chen, X., X. Xia, P. Liang, X. Cao, H. Sun, and X. Huang. 2011. “Stacked microbial desalination cells to enhance water desalination efficiency.” Environ. Sci. Technol. 45 (6): 2465–2470. https://doi.org/10.1021/es103406m.
Cheng, Y., L. Wang, V. Faustorilla, M. Megharaj, R. Naidu, and Z. Chen. 2017. “Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil.” Chemosphere 175: 294–299. https://doi.org/10.1016/j.chemosphere.2017.02.079.
Choi, Y., Y. Kim, H. K. Kim, and J. S. Lee. 2010. “Direct synthesis of sulfonated mesoporous silica as inorganic fillers of proton-conducting organic-inorganic composite membranes.” J. Membr. Sci. 357 (1–2): 199–205. https://doi.org/10.1016/j.memsci.2010.04.024.
Christodoulou, X., and S. B. Velasquez-Orta. 2016. “Microbial electrosynthesis and anaerobic fermentation: An economic evaluation for acetic acid production from CO2 and CO.” Environ. Sci. Technol. 50 (20): 11234–11242. https://doi.org/10.1021/acs.est.6b02101.
Corbella, C., M. Hartl, M. Fernandez-gatell, and J. Puigagut. 2019. “MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands.” Sci. Total Environ. 660: 218–226. https://doi.org/10.1016/j.scitotenv.2018.12.347.
Cosnier, S., M. Holzinger, and A. Le Goff. 2014. “Recent advances in carbon nanotube-based enzymatic fuel cells.” Front. Bioeng. Biotechnol. 2: 45–51. https://doi.org/10.3389/fbioe.2014.00045.
Cusick, R. D., and B. E. Logan. 2012. “Phosphate recovery as struvite within a single chamber microbial electrolysis cell.” Bioresour. Technol. 107: 110–115. https://doi.org/10.1016/j.biortech.2011.12.038.
Cusick, R. D., M. L. Ullery, B. A. Dempsey, and B. E. Logan. 2014. “Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.” Water. Res. 54: 297–306. https://doi.org/10.1016/j.watres.2014.01.051.
Das, I., M. T. Noori, G. D. Bhowmick, and M. M. Ghangrekar. 2018a. “Synthesis of bimetallic iron ferrite Co0.5Zn0.5Fe2O4 as a superior catalyst for oxygen reduction reaction to replace noble metal catalysts in microbial fuel cell.” Int. J. Hydrogen Energy 43 (41): 19196–19205. https://doi.org/10.1016/j.ijhydene.2018.08.113.
Das, I., M. T. Noori, G. D. Bhowmick, and M. M. Ghangrekar. 2018b. “Synthesis of tungstate oxide/bismuth tungstate composite and application in microbial fuel cell as superior low-cost cathode catalyst than platinum.” J. Electrochem. Soc. 165 (13): G146–G153. https://doi.org/10.1149/2.0781813jes.
Du, Z., H. Li, and T. Gu. 2007. “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.” Biotechnol. Adv. 25 (5): 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004.
Falk, M., Z. Blum, and S. Shleev. 2012. “Direct electron transfer based enzymatic fuel cells.” Electrochim. Acta 82: 191–202. https://doi.org/10.1016/j.electacta.2011.12.133.
Feng, Y., W. He, J. Liu, X. Wang, Y. Qu, and N. Ren. 2014. “A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment.” Bioresour. Technol. 156: 132–138. https://doi.org/10.1016/j.biortech.2013.12.104.
Feng, Y., H. Lee, X. Wang, Y. Liu, and W. He. 2010. “Continuous electricity generation by a graphite granule baffled air–cathode microbial fuel cell.” Bioresour. Technol. 101 (2): 632–638. https://doi.org/10.1016/j.biortech.2009.08.046.
Forrestal, C., P. Xu, and Z. Ren. 2012. “Sustainable desalination using a microbial capacitive desalination cell.” Energy Environ. Sci. 5 (5): 7161–7167. https://doi.org/10.1039/c2ee21121a.
Gavilanes, J., M. T. Noori, and B. Min. 2019. “Enhancing bio-alcohol production from volatile fatty acids by suppressing methanogenic activity in single chamber microbial electrosynthesis cells (SCMECs).” Bioresour. Technol. Rep. 7: 100292. https://doi.org/10.1016/j.biteb.2019.100292.
Gil-Carrera, L., A. Escapa, B. Carracedo, A. Morán, and X. Gómez. 2013. “Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages.” Bioresour. Technol. 146: 63–69. https://doi.org/10.1016/j.biortech.2013.07.020.
Gude, V. G. 2016. “Wastewater treatment in microbial fuel cells—an overview.” J. Cleaner Prod. 122: 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022.
Gurung, A., and S.-E. Oh. 2012. “The improvement of power output from stacked microbial fuel cells (MFCs).” Energy Sources Part A 34 (17): 1569–1576. https://doi.org/10.1080/15567036.2012.660561.
Haavisto, J., P. Dessì, P. Chatterjee, M. Honkanen, M. T. Noori, M. Kokko, A.-M. Lakaniemi, P. N. L. Lens, and J. A. Puhakka 2019. “Effects of anode materials on electricity production from xylose and treatability of TMP wastewater in an up-flow microbial fuel cell.” Chem. Eng. J. 372: 141–150. https://doi.org/10.1016/j.cej.2019.04.090.
He, L., P. Du, Y. Chen, H. Lu, X. Cheng, B. Chang, and Z. Wang. 2017. “Advances in microbial fuel cells for wastewater treatment.” Renewable Sustainable Energy Rev. 71: 388–403. https://doi.org/10.1016/j.rser.2016.12.069.
He, Z., J. Kan, F. Mansfeld, L. T. Angenent, and K. H. Nealson. 2009. “Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria.” Environ. Sci. Technol. 43 (5): 1648–1654. https://doi.org/10.1021/es803084a.
Helder, M., D. P. B. T. B. Strik, H. V. M. Hamelers, and C. J. N. Buisman. 2012. “The flat-plate plant-microbial fuel cell: The effect of a new design on internal resistances.” Biotechnol. Biofuels 5 (1): 70–80. https://doi.org/10.1186/1754-6834-5-70.
Hu, H., Y. Fan, and H. Liu. 2009. “Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts.” Int. J. Hydrogen Energy 34 (20): 8535–8542. https://doi.org/10.1016/j.ijhydene.2009.08.011.
Hu, X., J. Zhou, and B. Liu. 2016. “Effect of algal species and light intensity on the performance of an air-lift-type microbial carbon capture cell with an algae-assisted cathode.” RSC Adv. 6 (30): 25094–25100. https://doi.org/10.1039/C5RA26299B.
Ieropoulos, I., J. Greenman, and C. Melhuish. 2008. “Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability.” Int. J. Energy Res. 32 (13): 1228–1240. https://doi.org/10.1002/er.1419.
Islam, M. A., A. Karim, C. W. Woon, B. Ethiraj, C. K. Cheng, A. Yousuf, and M. M. R. Khan. 2017. “Augmentation of air cathode microbial fuel cell performance using wild type Klebsiella variicola.” RSC Adv. 7 (8): 4798–4805. https://doi.org/10.1039/C6RA24835G.
Jabeen, G., and R. Farooq. 2017. “Microbial fuel cells and their applications for cost effective water pollution remediation.” Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci. 87: 625–635.
Jacobson, K. S., D. M. Drew, and Z. He. 2011. “Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.” Bioresour. Technol. 102 (1): 376–380. https://doi.org/10.1016/j.biortech.2010.06.030.
Jadhav, D. A., S. C. Jain, and M. M. Ghangrekar. 2017. “Simultaneous wastewater treatment, algal biomass production and electricity generation in clayware microbial carbon capture cells.” Appl. Biochem. Biotechnol. 183 (3): 1076–1092.
Jana, P. S., M. Behera, and M. M. Ghangrekar. 2010. “Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder.” Int. J. Hydrogen Energy 35 (11): 5681–5686. https://doi.org/10.1016/j.ijhydene.2010.03.048.
Javed, M. M., M. A. Nisar, M. U. Ahmad, and B. Muneer. 2017. “Production of bioelectricity from vegetable waste extract by designing a U-shaped microbial fuel cell.” Pak. J. Zool. 49 (2): 711–716. https://doi.org/10.17582/journal.pjz/2017.49.2.711.716.
Jeremiasse, A. W., H. V. M. Hamelers, and C. J. N. Buisman. 2010. “Microbial electrolysis cell with a microbial biocathode.” Bioelectrochemistry 78 (1): 39–43. https://doi.org/10.1016/j.bioelechem.2009.05.005.
Kadier, A., Y. Simayi, P. Abdeshahian, N. F. Azman, K. Chandrasekhar, and M. S. Kalil. 2016. “A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production.” Alex. Eng. J. 55 (1): 427–443. https://doi.org/10.1016/j.aej.2015.10.008.
Karra, U., E. Troop, M. Curtis, K. Scheible, C. Tenaglier, N. Patel, and B. Li. 2013. “Performance of plug flow microbial fuel cell (PF-MFC) and complete mixing microbial fuel cell (CM-MFC) for wastewater treatment and power generation.” Int. J. Hydrogen Energy 38 (13): 5383–5388. https://doi.org/10.1016/j.ijhydene.2013.02.092.
Kazemi, S., M. Mohseni, and K. Fatih. 2015. “Passive air breathing flat-plate microbial fuel cell operation.” J. Chem. Technol. Biotechnol. 90 (3): 468–475. https://doi.org/10.1002/jctb.4325.
Khunjar, W. O., A. Sahin, A. C. West, K. Chandran, and S. Banta. 2012. “Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell.” PLoS One 7 (9): e44846. https://doi.org/10.1371/journal.pone.0044846.
Ki, D., S. C. Popat, B. E. Rittmann, and C. I. Torres. 2017. “H2O2 production in microbial electrochemical cells fed with primary sludge.” Environ. Sci. Technol. 51 (11): 6139–6145. https://doi.org/10.1021/acs.est.7b00174.
Kim, J.-H., and S. J. Bai. 2014. “Characterization of a photosynthetic microbial solar cell with a membrane electrode assembly.” J. Korean Phys. Soc. 65 (1): 98–102. https://doi.org/10.3938/jkps.65.98.
Kim, M., M. S. Hyun, G. M. Gadd, and H. J. Kim. 2007. “A novel biomonitoring system using microbial fuel cells.” J. Environ. Monit. 9 (12): 1323–1328. https://doi.org/10.1039/b713114c.
Kim, Y., and B. E. Logan. 2013. “Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems.” Desalination 308: 115–121. https://doi.org/10.1016/j.desal.2012.07.031.
Kumar, A. G., A. Singh, H. Komber, B. Voit, B. R. Tiwari, M. T. Noori, Ghangrekar, M. M. and S. Banerjee 2018. “Novel sulfonated Co-poly (ether imide)s containing trifluoromethyl, fluorenyl and hydroxyl groups for enhanced proton exchange membrane properties: Application in microbial fuel cell.” ACS Appl. Mater. Interfaces 10 (17): 14803–14817. https://doi.org/10.1021/acsami.8b03452.
Kumar, P., and P. P. Kundu. 2015. “Formation of semi-IPN membrane composed of crosslinked SPS-[PVdF-co-HFP/Nafion] for application in DMFC: A fine tuning between crosslinker and initiator.” Mater. Chem. Phys. 164: 188–197. https://doi.org/10.1016/j.matchemphys.2015.08.042.
Kyazze, G., A. Popov, R. Dinsdale, S. Esteves, F. Hawkes, G. Premier, and A. Guwy. 2010. “Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell.” Int. J. Hydrogen Energy 35 (15): 7716–7722. https://doi.org/10.1016/j.ijhydene.2010.05.036.
Lai, C.-Y., C.-H. Wu, C.-T. Meng, and C.-W. Lin. 2017. “Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode.” Appl. Energy 188: 392–398. https://doi.org/10.1016/j.apenergy.2016.12.044.
Lee, D. H., H. J. Oh, S. J. Bai, and Y. S. Song. 2014. “Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention.” ACS Nano 8 (6): 6458–6465. https://doi.org/10.1021/nn502033f.
Lee, H.-S., and B. E. Rittmann. 2010. “Characterization of energy losses in an upflow single-chamber microbial electrolysis cell.” Int. J. Hydrogen Energy 35 (3): 920–927. https://doi.org/10.1016/j.ijhydene.2009.11.040.
Lee, H.-S., C. I. Torres, P. Parameswaran, and B. E. Rittmann. 2009. “Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode.” Environ. Sci. Technol. 43 (20): 7971–7976. https://doi.org/10.1021/es900204j.
Leech, D., P. Kavanagh, and W. Schuhmann. 2012. “Enzymatic fuel cells: Recent progress.” Electrochim. Acta 84: 223–234. https://doi.org/10.1016/j.electacta.2012.02.087.
Li, H., W. Zuo, Y. Tian, J. Zhang, S. Di, L. Li, and X. Su. 2017. “Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency.” Environ. Sci. Pollut. Res. 24 (6): 5106–5117. https://doi.org/10.1007/s11356-016-6084-8.
Li, J. L., W. Li, L. M. Wang, Y. Q. Jia, X. H. Wan, and Y. Q. Feng. 2011. “Hydrogen production performance of membrane-less bio-electrochemically assisted microbial reactor.” J. Fuel Chem. Technol. 39 (6): 476–480.
Li, X., X. Wang, L. Wan, Y. Zhang, N. Li, D. Li, and Q. Zhou. 2016a. “Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells.” J. Chem. Technol. Biotechnol. 91 (1): 267–275. https://doi.org/10.1002/jctb.4660.
Li, X., X. Wang, Y. Zhang, Q. Zhao, B. Yu, Y. Li, and Q. Zhou. 2016b. “Salinity and conductivity amendment of soil enhanced the bioelectrochemical degradation of petroleum hydrocarbons.” Sci. Rep. 6: 32861. https://doi.org/10.1038/srep32861.
Li, Y., Y. Wu, B. Liu, H. Luan, T. Vadas, W. Guo, J. Ding, and B. Li. 2015. “Self-sustained reduction of multiple metals in a microbial fuel cell–microbial electrolysis cell hybrid system.” Bioresour. Technol. 192: 238–246. https://doi.org/10.1016/j.biortech.2015.05.030.
Li, Y., H.-Y. Yang, J.-Y. Shen, Y. Mu, and H.-Q. Yu. 2016c. “Enhancement of azo dye decolourization in a MFC–MEC coupled system.” Bioresour. Technol. 202: 93–100. https://doi.org/10.1016/j.biortech.2015.11.079.
Liang, P., L. Yuan, X. Yang, and X. Huang. 2015. “Influence of circuit arrangement on the performance of a microbial fuel cell driven capacitive deionization (MFC-CDI) system.” Desalination 369: 68–74. https://doi.org/10.1016/j.desal.2015.03.029.
Liu, G., H. Luo, Y. Tang, S. Chen, R. Zhang, and Y. Hou. 2014. “Tetramethylammonium hydroxide production using the microbial electrolysis desalination and chemical-production cell.” Chem. Eng. J. 258: 157–162. https://doi.org/10.1016/j.cej.2014.07.025.
Liu, H., S. Cheng, and B. E. Logan. 2005. “Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration.” Environ. Sci. Technol. 39 (14): 5488–5493. https://doi.org/10.1021/es050316c.
Liu, H., and B. E. Logan. 2004. “Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.” Environ. Sci. Technol. 38 (14): 4040–4046. https://doi.org/10.1021/es0499344.
Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. “Microbial fuel cells: Methodology and technology.” Environ. Sci. Technol. 40 (17): 5181–5192. https://doi.org/10.1021/es0605016.
Lovley, D. R. 2011. “Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination.” Energy Environ. Sci. 4 (12): 4896–4906. https://doi.org/10.1039/c1ee02229f.
Lu, L., Z. Huang, G. H. Rau, and Z. J. Ren. 2015. “Microbial electrolytic carbon capture for carbon negative and energy positive wastewater treatment.” Environ. Sci. Technol. 49 (13): 8193–8201. https://doi.org/10.1021/acs.est.5b00875.
Lu, Y., H. Luo, K. Yang, G. Liu, R. Zhang, X. Li, and B. Ye. 2017. “Formic acid production using a microbial electrolysis desalination and chemical-production cell.” Bioresour. Technol. 243: 118–125. https://doi.org/10.1016/j.biortech.2017.06.059.
Luo, H., P. E. Jenkins, and Z. Ren. 2011. “Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.” Environ. Sci. Technol. 45 (1): 340–344. https://doi.org/10.1021/es1022202.
Luo, H., P. Xu, P. E. Jenkins, and Z. Ren. 2012. “Ionic composition and transport mechanisms in microbial desalination cells.” J. Membr. Sci. 409–410: 16–23. https://doi.org/10.1016/j.memsci.2012.02.059.
Mateo, S., A. G. Del Campo, P. Cañizares, J. Lobato, M. A. Rodrigo, and F. J. Fernandez. 2014. “Bioelectricity generation in a self-sustainable Microbial Solar Cell.” Bioresour. Technol. 159: 451–454. https://doi.org/10.1016/j.biortech.2014.03.059.
McKinsey. 2009. Charting our water future. Economics frameworks to inform decision makers. 2030 Water Resources Group. Washington, DC 20006.
Mehanna, M., P. D. Kiely, D. F. Call, and B. E. Logan. 2010. “Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production.” Environ. Sci. Technol. 44 (24): 9578–9583. https://doi.org/10.1021/es1025646.
Meng, F., Q. Zhao, X. Na, Z. Zheng, J. Jiang, L. Wei, and J. Zhang. 2017. “Bioelectricity generation and dewatered sludge degradation in microbial capacitive desalination cell.” Environ. Sci. Pollut. Res. 24 (6): 5159–5167. https://doi.org/10.1007/s11356-016-6853-4.
Min, B., and B. E. Logan. 2004. “Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.” Environ. Sci. Technol. 38 (21): 5809–5814. https://doi.org/10.1021/es0491026.
Min, B., and M. T. Noori. 2019. “Highly porous FexMnOy microsphere as an efficient cathode catalyst for microbial electrosynthesis of volatile fatty acids from CO2.” ChemElectroChem. 6 (24): 5973–5983. https://doi.org/10.1002/celc.201901427.
Min, B., F. W. Poulsen, A. Thygesen, and I. Angelidaki. 2012. “Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly.” Bioresour. Technol. 118: 412–417. https://doi.org/10.1016/j.biortech.2012.04.097.
Minteer, S. D., B. Y. Liaw, and M. J. Cooney. 2007. “Enzyme-based biofuel cells.” Curr. Opin. Biotechnol. 18 (3): 228–234. https://doi.org/10.1016/j.copbio.2007.03.007.
Morel, A., K. Zuo, X. Xia, J. Wei, X. Luo, P. Liang, and X. Huang. 2012. “Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.” Bioresour. Technol. 118: 43–48. https://doi.org/10.1016/j.biortech.2012.04.093.
Nam, J.-Y., R. D. Cusick, Y. Kim, and B. E. Logan. 2012. “Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution.” Environ. Sci. Technol. 46 (9): 5240–5246. https://doi.org/10.1021/es300228m.
Noori, M. T., G. D. Bhowmick, B. R. Tiwari, I. Das, M. M. Ghangrekar, and C. K. Mukherjee. 2018a. “Utilisation of waste medicine wrappers as an efficient low-cost electrode material for microbial fuel cell.” Environ. Technol. 41 (10): 1209–1218. https://doi.org/10.1080/09593330.2018.1526216.
Noori, M. T., G. D. Bhowmick, B. R. Tiwari, O. M. Ghangrekar, M. M. Ghangrekar, and C. K. Mukherjee. 2018d. “Carbon supported Cu-Sn bimetallic alloy as an excellent low-cost cathode catalyst for enhancing oxygen reduction reaction in microbial fuel cell.” J. Electrochem. Soc. 165 (9): F621–F628. https://doi.org/10.1149/2.0271809jes.
Noori, M. T., M. M. Ghangrekar, A. Mitra, and C. K. Mukherjee. 2016b. “Enhanced power generation in microbial fuel cell using MnO2-catalyzed cathode treating fish market wastewater.” In Proc., 1st Int. Conf. on Recent Advances in Bioenergy Research, 285–294. New Delhi: Springer.
Noori, M. T., M. M. Ghangrekar, and C. K. Mukherjee. 2016c. “V2O5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater.” Int. J. Hydrogen Energy 41 (5): 3638–3645. https://doi.org/10.1016/j.ijhydene.2015.12.163.
Noori, M. T., M. M. Ghangrekar, and C. K. Mukherjee. 2018b. “Sediment microbial fuel cell and constructed wetland assisted with it: Challenges and future prospects.” In Microbial fuel cell, edited by D. Das, 335–352. Cham, Switzerland: Springer.
Noori, M. T., M. M. Ghangrekar, C. K. Mukherjee, and B. Min. 2019a. “Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation.” Biotechnol. Adv. 37 (8): 107420. https://doi.org/10.1016/j.biotechadv.2019.107420.
Noori, M. T., S. C. Jain, M. M. Ghangrekar, and C. K. Mukherjee. 2016a. “Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst.” Bioresour. Technol. 220: 183–189. https://doi.org/10.1016/j.biortech.2016.08.061.
Noori, M. T., C. K. Mukherjee, and M. M. Ghangrekar. 2017. “Enhancing performance of microbial fuel cell by using graphene supported V2O5-nanorod catalytic cathode.” Electrochim. Acta 228: 513–521. https://doi.org/10.1016/j.electacta.2017.01.016.
Noori, M. T., B. R. Tiwari, M. M. Ghangrekar, and B. Min. 2019b. “Azadirachta indica leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst.” Sustainable Energy Fuels 3: 3430–3440. https://doi.org/10.1039/C9SE00661C.
Noori, M. T., B. R. Tiwari, C. K. Mukherjee, and M. M. Ghangrekar. 2018c. “Enhancing the performance of microbial fuel cell using AgPt bimetallic alloy as cathode catalyst and anti-biofouling agent.” Int. J. Hydrogen Energy 43 (42): 19650–19660. https://doi.org/10.1016/j.ijhydene.2018.08.120.
Noori, M. T., and N. Verma. 2019. “Cobalt-Iron phthalocyanine supported on carbide-derived carbon as an excellent oxygen reduction reaction catalyst for microbial fuel cells.” Electrochim. Acta 298: 70–79. https://doi.org/10.1016/j.electacta.2018.12.056.
Noori, M. T., M. T. Vu, B. A. Rana, and B. Min. 2020. “Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion.” Chem. Eng. J. 123689. https://doi.org/10.1016/j.cej.2019.123689.
Oh, S. T., J. R. Kim, G. C. Premier, T. H. Lee, C. Kim, and W. T. Sloan. 2010. “Sustainable wastewater treatment: How might microbial fuel cells contribute.” Biotechnol. Adv. 28 (6): 871–881. https://doi.org/10.1016/j.biotechadv.2010.07.008.
Oliveira, V. B., M. Simões, L. F. Melo, and A. M. F. R. Pinto. 2013. “Overview on the developments of microbial fuel cells.” Biochem. Eng. J. 73: 53–64. https://doi.org/10.1016/j.bej.2013.01.012.
Pandit, S., B. K. Nayak, and D. Das. 2012. “Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment.” Bioresour. Technol. 107: 97–102. https://doi.org/10.1016/j.biortech.2011.12.067.
Pant, D., A. Singh, G. Van Bogaert, S. I. Olsen, P. S. Nigam, L. Diels, and K. Vanbroekhoven. 2012. “Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters.” RSC Adv. 2 (4): 1248–1263. https://doi.org/10.1039/C1RA00839K.
Park, Y., S. Park, V. K. Nguyen, J. Yu, C. I. Torres, B. E. Rittmann, and T. Lee. 2017. “Complete nitrogen r emoval by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater.” Chem. Eng. J. 316: 673–679. https://doi.org/10.1016/j.cej.2017.02.005.
Paul, D., M. T. Noori, P. P. Rajesh, M. M. Ghangrekar, and A. Mitra. 2018. “Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell.” Sustainable Energy Technol. Assess. 26: 77–82. https://doi.org/10.1016/j.seta.2017.10.001.
Peixoto, L., B. Min, A. G. Brito, P. Kroff, P. Parpot, I. Angelidaki, and R. Nogueira. 2010. Submersible microbial fuel cell-based biosensor for in situ BOD monitoring. Guimarães, Portugal: Semana da Escola de Engenharia, 11 a 15 de Outubro, 1-2.
Peng, X., T. Tang, X. Zhu, G. Jia, Y. Ding, Y. Chen, Y. Yang, and W. Tang. 2016. “Remediation of acid mine drainage using microbial fuel cell based on sludge anaerobic fermentation.” Environ. Technol. 38 (19): 2400–2409.
Peng, Y., Y. Zhao, X. Hu, and M.-q. Chen. 2019. “Humidity sensor based on unsymmetrical U-shaped twisted microfiber coupler with wide detection range.” Sens. Actuators B 290: 406–413. https://doi.org/10.1016/j.snb.2019.04.017.
Potter, M.C. 1911. “Electrical effects accompanying the decomposition of organic compounds.” Proc. R. Soc. B Biol. Sci. 84 (571): 260–276. https://doi:10.1098/rspb.1911.0073.
Pradhan, H., and M. M. Ghangrekar. 2014. “Multi-chamber microbial desalination cell for improved organic matter and dissolved solids removal from wastewater.” Water Sci. Technol. 70 (12): 1948–1954. https://doi.org/10.2166/wst.2014.438.
Pradhan, H., S. C. Jain, and M. M. Ghangrekar. 2015. “Simultaneous removal of phenol and dissolved solids from wastewater using multichambered microbial desalination cell.” Appl. Biochem. Biotechnol. 177 (8): 1638–1653. https://doi.org/10.1007/s12010-015-1842-5.
Qian, F., G. Wang, and Y. Li. 2010. “Solar-driven microbial photoelectrochemical cells with a nanowire photocathode.” Nano Lett. 10 (11): 4686–4691. https://doi.org/10.1021/nl102977n.
Qin, M., Q. Ping, Y. Lu, I. M. Abu-Reesh, and Z. He. 2015. “Understanding electricity generation in osmotic microbial fuel cells through integrated experimental investigation and mathematical modeling.” Bioresour. Technol. 195: 194–201. https://doi.org/10.1016/j.biortech.2015.06.013.
Qin, X., D. Li, J. Tang, Q. Zhang, and J. Gao. 2013. “Effect of the salt content in soil on bioremediation of soil by contaminated petroleum.” J. Nanjing Forestry Univ. (Natural Sciences Edition) 37 (2): 108–-1112.
Qu, Y., Y. Feng, X. Wang, J. Liu, J. Lv, W. He, and B. E. Logan. 2012. “Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control.” Bioresour. Technol. 106: 89–94. https://doi.org/10.1016/j.biortech.2011.11.045.
Rabaey, K., P. Clauwaert, P. Aelterman, and W. Verstraete. 2005. “Tubular microbial fuel cells for efficient electricity generation.” Environ. Sci. Technol. 39 (20): 8077–8082. https://doi.org/10.1021/es050986i.
Rabaey, K., and R. A. Rozendal. 2010. “Microbial electrosynthesis—revisiting the electrical route for microbial production.” Nat. Rev. Microbiol. 8 (10): 706–716. https://doi.org/10.1038/nrmicro2422.
Rajesh, P. P., M. T. Noori, and M. M. Ghangrekar. 2018. “Pre-treatment of anodic inoculum with nitroethane to improve performance of a microbial fuel cell.” Water Sci. Technol. 77 (10): 2491–2496. https://doi.org/10.2166/wst.2018.206.
Ray, G., M. T. Noori, and M. M. Ghangrekar. 2017. “Novel application of peptaibiotics derived from Trichoderma sp. for methanogenic suppression and enhanced power generation in microbial fuel cells.” RSC Adv. 7 (18): 10707–10717. https://doi.org/10.1039/C6RA27763B.
Reddy, C. N., H. T. H. Nguyen, M. T. Noori, and B. Min. 2019. “Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: Current status and future perspectives.” Bioresour. Technol. 292: 122010. https://doi.org/10.1016/j.biortech.2019.122010.
Saha, S., A. G. Kumar, M. T. Noori, S. Banerjee, M. M. Ghangrekar, H. Komber, and B. Voit. 2018. “New crosslinked sulfonated polytriazoles: Proton exchange properties and microbial fuel cell performance.” Eur. Polym. J. 103: 322–334. https://doi.org/10.1016/j.eurpolymj.2018.04.023.
Sangeetha, T., Z. Guo, W. Liu, M. Cui, C. Yang, L. Wang, and A. Wang. 2016. “Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC).” Int. J. Hydrogen Energy 41 (4): 2189–2196. https://doi.org/10.1016/j.ijhydene.2015.11.111.
Sevda, S., I. M. Abu-Reesh, H. Yuan, and Z. He. 2017. “Bioelectricity generation from treatment of petroleum refinery wastewater with simultaneous seawater desalination in microbial desalination cells.” Energy Convers. Manage. 141: 101–107. https://doi.org/10.1016/j.enconman.2016.05.050.
Shehab, N. A., G. L. Amy, B. E. Logan, and P. E. Saikaly. 2014. “Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC).” J. Membr. Sci. 469: 364–370. https://doi.org/10.1016/j.memsci.2014.06.058.
Sherafatmand, M., and H. Y. Ng. 2015. “Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs).” Bioresour. Technol. 195: 122–130. https://doi.org/10.1016/j.biortech.2015.06.002.
Shin, S. H., Y. J. Choi, S. H. Na, S. H. Jung, and S. H. Kim. 2006. “Development of bipolar plate stack type microbial fuel cells.” Bull. Korean Chem. Soc. 27 (2): 281–285. https://doi.org/10.5012/bkcs.2006.27.2.281.
Singh, S., M. T. Noori, and N. Verma. 2020. “Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system.” Electrochim Acta 338 135887. https://doi.org/10.1016/j.electacta.2020.135887.
Sobieszuk, P., A. Zamojska-Jaroszewicz, and L. Makowski. 2017. “Influence of the operational parameters on bioelectricity generation in continuous microbial fuel cell, experimental and computational fluid dynamics modelling.” J. Power Sources 371: 178–187. https://doi.org/10.1016/j.jpowsour.2017.10.032.
Sonawane, J. M., S. B. Adeloju, and P. C. Ghosh. 2017. “Landfill leachate: A promising substrate for microbial fuel cells.” Int. J. Hydrogen Energy 42 (37): 23794–23798. https://doi.org/10.1016/j.ijhydene.2017.03.137.
Song, T.-S., H. Zhang, H. Liu, D. Zhang, H. Wang, Y. Yang, H. Yuan, and J. Xie. 2017. “High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm.” Bioresour. Technol. 243: 573–582. https://doi.org/10.1016/j.biortech.2017.06.164.
Sophia, A. C., V. M. Bhalambaal, E. C. Lima, and M. Thirunavoukkarasu. 2016. “Microbial desalination cell technology: Contribution to sustainable waste water treatment process, current status and future applications.” J. Environ. Chem. Eng. 4 (3): 3468–3478. https://doi.org/10.1016/j.jece.2016.07.024.
Strik, D. P. B. T. B., H. Terlouw, H. V. M. Hamelers, and C. J. N. Buisman. 2008. “Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).” Appl. Microbiol. Biotechnol. 81 (4): 659–668. https://doi.org/10.1007/s00253-008-1679-8.
Su, L., W. Jia, C. Hou, and Y. Lei. 2011. “Microbial biosensors: A review.” Biosens. Bioelectron. 26 (5): 1788–1799. https://doi.org/10.1016/j.bios.2010.09.005.
Sumaraj, S., and M. M. Ghangrekar. 2014. “Development of microbial fuel cell as biosensor for detection of organic matter of wastewater.” Recent Res. Sci. Technol. 6 (1): 162–166.
Sun, H., Y. Zhang, S. Wu, R. Dong, and I. Angelidaki. 2019. “Innovative operation of microbial fuel cell-based biosensor for selective monitoring of acetate during anaerobic digestion.” Sci. Total Environ. 655: 1439–1447. https://doi.org/10.1016/j.scitotenv.2018.11.336.
Sun, M., et al. 2008. “An MEC-MFC-coupled system for biohydrogen production from acetate.” Environ. Sci. Technol. 42 (21): 8095–8100. https://doi.org/10.1021/es801513c.
Tanikkul, P., and N. Pisutpaisal. 2018. “Membrane-less MFC based biosensor for monitoring wastewater quality.” Int. J. Hydrogen Energy 43 (1): 483–489. https://doi.org/10.1016/j.ijhydene.2017.10.065.
Tiwari, B. R., M. T. Noori, and M. M. Ghangrekar. 2016. “A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell.” Mater. Chem. Phys. 182: 86–93. https://doi.org/10.1016/j.matchemphys.2016.07.008.
Tiwari, B. R., M. T. Noori, and M. M. Ghangrekar. 2017. “Carbon supported Nickel phthalocyanine/MnOx as novel cathode catalyst for microbial fuel cell application.” J. Hydrogen Energy 42 (36): 23085–23094. https://doi.org/10.1016/j.ijhydene.2017.07.201.
Uma Vanitha, M., M. Natarajan, H. Sridhar, and S. Umamaheswari. 2017. “Microbial fuel cell characterisation and evaluation of lysinibacillus macroides MFC02 electrigenic capability.” World J. Microbiol. Biotechnol. 33 (5): 91–100. https://doi.org/10.1007/s11274-017-2252-3.
Venkidusamy, K., M. Megharaj, M. Marzorati, R. Lockington, and R. Naidu. 2016. “Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes.” Sci. Total Environ. 539: 61–69. https://doi.org/10.1016/j.scitotenv.2015.08.098.
Vu, M. T., M. T. Noori, and B. Min. 2020. “Magnetite/Zeolite Nanocomposite-modified Cathode for Enhancing Methane Generation in Microbial Electrochemical Systems.” Chem. Eng. J. 124613. https://doi.org/10.1016/j.cej.2020.124613.
Vu, M. T., M. T. Noori, and B. Min. 2020. “Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems.” Bioresour. Technol. 296: 122265. https://doi.org/10.1016/j.biortech.2019.122265.
Wang, C., H. Deng, and F. Zhao. 2016a. “The remediation of chromium (VI)-contaminated soils using microbial fuel cells.” Soil Sediment Contam. Int. J. 25 (1): 1–12. https://doi.org/10.1080/15320383.2016.1085833.
Wang, X., Y. Feng, J. Liu, H. Lee, C. Li, N. Li, and N. Ren. 2010. “Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs).” Biosens. Bioelectron. 25 (12): 2639–2643. https://doi.org/10.1016/j.bios.2010.04.036.
Wang, X., J. Li, Z. Wang, H. Tursun, R. Liu, Y. Gao, and Y. Li. 2016b. “Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output.” Environ. Sci. Pollut. Res. 23 (20): 20368–20377. https://doi.org/10.1007/s11356-016-7045-y.
Wang, Y.-P., X.-W. Liu, W.-W. Li, F. Li, Y.-K. Wang, G.-P. Sheng, R. J. Zeng, and H.-Q. Yu. 2012. “A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment.” Appl. Energy 98: 230–235. https://doi.org/10.1016/j.apenergy.2012.03.029.
Wilcox, J. 2014. “Grand challenges in advanced fossil fuel technologies.” Front. Energy Res. 2: 1–3.
Wu, Y.-C., Z.-J. Wang, Y. Zheng, Y. Xiao, Z.-H. Yang, and F. Zhao. 2014. “Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism.” Appl. Energy 116: 86–90. https://doi.org/10.1016/j.apenergy.2013.11.066.
Yang, H., M. Zhou, M. Liu, W. Yang, and T. Gu. 2015. “Microbial fuel cells for biosensor applications.” Biotechnol. Lett. 37 (12): 2357–2364. https://doi.org/10.1007/s10529-015-1929-7.
Yu, B., J. Tian, and L. Feng. 2017a. “Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community.” J. Hazard. Mater. 336: 110–118. https://doi.org/10.1016/j.jhazmat.2017.04.066.
Yu, L., Y. Yuan, J. Tang, and S. Zhou. 2017b. “Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2.” Bioelectrochemistry 117: 23–28. https://doi.org/10.1016/j.bioelechem.2017.05.001.
Yuan, H., Y. Hou, I. M. Abu-Reesh, J. Chen, and Z. He. 2016. “Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review.” Mater. Horiz. 3 (5): 382–401. https://doi.org/10.1039/C6MH00093B.
Zhang, F., K. S. Brastad, and Z. He. 2011. “Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation.” Environ. Sci. Technol. 45 (15): 6690–6696. https://doi.org/10.1021/es201505t.
Zhang, B., and Z. He. 2012. “Integrated salinity reduction and water recovery in an osmotic microbial desalination cell.” RSC Adv. 2 (8): 3265–3269. https://doi.org/10.1039/c2ra20193c.
Zhang, B., and Z. He. 2013. “Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell.” J. Membr. Sci. 441: 18–24. https://doi.org/10.1016/j.memsci.2013.04.005.
Zhang, F., M. Chen, Y. Zhang, and R. J. Zeng. 2012. “Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration.” J. Membr. Sci. 417–418: 28–33. https://doi.org/10.1016/j.memsci.2012.06.009.
Zhang, T., H. Nie, T. S. Bain, H. Lu, M. Cui, O. L. Snoeyenbos-West, A. E. Franks, K. P. Nevin, T. P. Russell, and D. R. Lovely. 2013. “Improved cathode materials for microbial electrosynthesis.” Energy Environ. Sci. 6 (1): 217–224. https://doi.org/10.1039/C2EE23350A.
Zhang, Y., and I. Angelidaki. 2012. “Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.” Water. Res. 46 (8): 2727–2736. https://doi.org/10.1016/j.watres.2012.02.038.
Zhou, M., H. He, T. Jin, and H. Wang. 2012. “Power generation enhancement in novel microbial carbon capture cells with immobilized chlorella vulgaris.” J. Power Sources 214: 216–219. https://doi.org/10.1016/j.jpowsour.2012.04.043.
Zhu, X., M. C. Hatzell, and B. E. Logan. 2014. “Microbial reverse-electrodialysis electrolysis and chemical-production cell for H2 production and CO2 sequestration.” Environ. Sci. Technol. Lett 1 (4): 231–235. https://doi.org/10.1021/ez500073q.
Zuo, K., J. Cai, S. Liang, S. Wu, C. Zhang, P. Liang, and X. Huang. 2014. “A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination.” Environ. Sci. Technol. 48 (16): 9917–9924. https://doi.org/10.1021/es502075r.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 24Issue 3July 2020

History

Received: Sep 7, 2019
Accepted: Dec 12, 2019
Published online: May 4, 2020
Published in print: Jul 1, 2020
Discussion open until: Oct 4, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

GET Marie Curie Postdoctoral Fellow, Dept. of Chemical Engineering, Univ. of Alcala De Henares, 28805, Madrid, Spain. ORCID: https://orcid.org/0000-0002-0389-0059. Email: [email protected]
Anusha Ganta [email protected]
PhD scholar, Dept. of Environmental Science and Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India. Email: [email protected]
Bikash R. Tiwari [email protected]
Postdoctoral researcher, Institut national de la recherche scientifique (INRS), Eau Terre Environnement, 490 de la Couronne Street, Quebec City, Québec G1K 9A9 (correspondin author). Email: [email protected].

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share