Technical Papers
Apr 7, 2020

Assessment of Heavy Metal Removal in Different Bioelectrochemical Systems: A Review

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 24, Issue 3

Abstract

Global industrialization has led to an alarming level of release of hazardous and toxic metals in water bodies. Disposal of wastewater containing heavy metals can have adverse impacts on human health, as well as on other components of the environment. The various conventional treatment processes used to date have many disadvantages, such as high amounts of sludge generation, chemical requirements, and cost. Bioelectrochemical systems can overcome these disadvantages and can generate renewable energy or valuable chemicals out of these wastes. Bioelectrochemical systems are processes that can convert the chemical energy derived from oxidation of waste into electrical energy. This chemical energy is derived by the microbial population present in activated sludge. This paper reviews the studies conducted on the three bioelectrochemical processes, namely a microbial fuel cell (MFC), a microbial electrolysis cell (MEC), and a microbial desalination cell (MDC), to treat industrial wastewater rich in heavy metals.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abbas, S. Z., M. Rafatullah, N. Ismail, and M. I. Syakir. 2016. “Removal of metals (chromium and copper) and power generation through sediment microbial fuel cell.” Int. J. Environ. Technol. Sci. 2: 56–60.
Abdullah, N., N. Yusof, W. J. Lau, J. Jaafar, and A. F. Ismail. 2019. “Recent trends of heavy metal removal from water/wastewater by membrane technologies.” J. Ind. Eng. Chem. 76: 17–38. https://doi.org/10.1016/j.jiec.2019.03.029.
Abo-Farha, S. A., A. Y. Abdel-Aal, I. A. Ashour, and S. E. Garamon. 2009. “Removal of some heavy metal cations by synthetic resin Purolite C100.” J. Hazard. Mater. 169 (1–3): 190–194. https://doi.org/10.1016/j.jhazmat.2009.03.086.
Abourached, C., T. Catal, and H. Liu. 2014. “Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production.” Water Res. 51: 228–233. https://doi.org/10.1016/j.watres.2013.10.062.
Aguilar, K. M. M., Y. Amano, and M. Machida. 2016. “Ammonium persulfate oxidized activated carbon fiber as a high capacity adsorbent for aqueous Pb(II).” J. Environ. Chem. Eng. 4 (4): 4644–4652. https://doi.org/10.1016/j.jece.2016.10.028.
Ahmed, M. J. K., and M. Ahmaruzzaman. 2016. “A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions.” J. Water Process Eng. 10: 39–47. https://doi.org/10.1016/j.jwpe.2016.01.014.
Almatouq, A., and A. O. Babatunde. 2017. “Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.” Bioresour. Technol. 237: 193–203. https://doi.org/10.1016/j.biortech.2017.02.043.
An, Z., H. Zhang, Q. Wen, Z. Chen, and M. Du. 2014a. “Desalination combined with hexavalent chromium reduction in a microbial desalination cell.” Desalination 354: 181–188. https://doi.org/10.1016/j.desal.2014.10.006.
An, Z., H. Zhang, Q. Wen, Z. Chen, and M. Du. 2014b. “Desalination combined with copper(II) removal in a novel microbial desalination cell.” Desalination 346: 115–121. https://doi.org/10.1016/j.desal.2014.05.012s.
APHA/AWWA/WEF (American Public Health Association, American Water Works Association, Water Environment Federation). 2012. Standard methods for the examination of water and wastewater. Standard Methods, 541. Virginia, US: Water Environment Federation.
Areco, M. M., S. Hanela, J. Duran, and M. dos Santos Afonso. 2012. “Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead biomasses of green alga Ulva lactuca and the development of a sustainable matrix for adsorption implementation.” J. Hazard. Mater. 213–214: 123–132. https://doi.org/10.1016/j.jhazmat.2012.01.073.
Bajracharya, S., M. Sharma, G. Mohanakrishna, X. Dominguez Benneton, D.P.B.T.B. Strik, P. M. Sarma, and D. Pant. 2016. “An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond.” Renewable Energy 98: 153–170. https://doi.org/10.1016/j.renene.2016.03.002.
Bilal, M., J. A. Shah, T. Ashfaq, S. M. H. Gardazi, A. A. Tahir, A. Pervez, H. Hajira, and Q. Mahmood. 2013. “Waste biomass adsorbents for copper removal from industrial wastewater—A review.” J. Hazard. Mater. 263: 322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071.
Bodek, I., W. Lyman, W. F. Reehl, and D. H. Rosenblatt. 1988. Environmental inorganic chemistry: Properties, processes, and estimation methods. Oxford, UK: Pergamon.
Cao, X., X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, and B. E. Logan. 2009. “A new method for water desalination using microbial desalination cells.” Environ. Sci. Technol. 43 (18): 7148–7152. https://doi.org/10.1021/es901950j.
Carolin, C. F., P. S. Kumar, A. Saravanan, G. J. Joshiba, and M. Naushad. 2017. “Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review.” J. Environ. Chem. Eng. 5 (3): 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029.
Carpentier, W., K. Sandra, I. De Smet, A. Brigé, L. De Smet, and J. Van Beeumen. 2003. “Microbial reduction and precipitation of vanadium by Shewanella oneidensis.” Appl. Environ. Microbiol. 69 (6): 3636–3639. https://doi.org/10.1128/AEM.69.6.3636-3639.2003.
Catal, T., H. Bermek, and H. Liu. 2009. “Removal of selenite from wastewater using microbial fuel cells.” Biotechnol. Lett 31 (8): 1211–1216. https://doi.org/10.1007/s10529-009-9990-8.
Cempel, M., and G. Nikel. 2006. “Nickel: A review of its sources and environmental toxicology.” Pol. J. Environ. Stud. 15 (3): 375–382.
Chen, Y., J. Shen, L. Huang, Y. Pan, and X. Quan. 2016. “Enhanced Cd(II) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO3.” Int. J. Hydrogen Energy 41 (31): 13368–13379. https://doi.org/10.1016/j.ijhydene.2016.06.200.
Cheng, S.-A., B.-S. Wang, and Y.-H. Wang. 2013. “Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters.” Bioresour. Technol. 147: 332–337. https://doi.org/10.1016/j.biortech.2013.08.040.
Chetelat, B., J. Gaillardet, and L. D. Ge. 2005. “Boron isotopes in the Seine River, France: A probe of anthropogenic contamination.” Environ. Sci. Technol. 39 (8): 2486–2493. https://doi.org/10.1021/es048387j.
Choi, C., and Y. Cui. 2012. “Recovery of silver from wastewater coupled with power generation using a microbial fuel cell.” Bioresour. Technol. 107: 522–525. https://doi.org/10.1016/j.biortech.2011.12.058.
Choi, C., and N. Hu. 2013. “The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell.” Bioresour. Technol. 133: 589–598. https://doi.org/10.1016/j.biortech.2013.01.143.
Choi, C., N. Hu, and B. Lim. 2014. “Cadmium recovery by coupling double microbial fuel cells.” Bioresour. Technol. 170: 361–369. https://doi.org/10.1016/j.biortech.2014.07.087.
Colantonio, N., and Y. Kim. 2016. “Cadmium (II) removal mechanisms in microbial electrolysis cells.” J. Hazard. Mater. 311: 134–141. https://doi.org/10.1016/j.jhazmat.2016.02.062.
Cristian, P., P. Violeta, R. Anita-Laura, I. Raluca, E. Alexandrescu, S. Andrei, I. E. Daniela, M. A. Raluca, M. Cristina, and C. A. Ioana. 2015. “Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica.” J. Water Process Eng. 8: 1–10. https://doi.org/10.1016/j.jwpe.2015.08.001.
Demirbas, A. 2008. “Heavy metal adsorption onto agro-based waste materials: A review.” J. Hazard. Mater. 157 (2): 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024.
Dong, Y., J. Liu, M. Sui, Y. Qu, J. J. Ambuchi, H. Wang, and Y. Feng. 2017. “A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination.” J. Hazard. Mater. 321: 307–315. https://doi.org/10.1016/j.jhazmat.2016.08.034.
Eastmond, D. A., J. T. MacGregor, and R. S. Slesinski. 2008. “Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement.” Crit. Rev. Toxicol. 38 (3): 173–190. https://doi.org/10.1080/10408440701845401.
Fang, L., L. Li, Z. Qu, H. Xu, J. Xu, and N. Yan. 2018. “A novel method for the sequential removal and separation of multiple heavy metals from wastewater.” J. Hazard. Mater. 342: 617–624. https://doi.org/10.1016/j.jhazmat.2017.08.072.
Fedje, K., O. Modin, and A.-M. Strömvall. 2015. “Copper recovery from polluted soils using acidic washing and bioelectrochemical systems.” Metals 5 (3): 1328–1348. https://doi.org/10.3390/met5031328.
Feng, C. H., F. B. Li, H. J. Mai, and X. Z. Li. 2010. “Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment.” Environ. Sci. Technol. 44 (5): 1875–1880. https://doi.org/10.1021/es9032925.
Ferguson, J. F., and J. Gavis. 1972. “A review of the arsenic cycle in natural waters.” Water Res. 6 (11): 1259–1274. https://doi.org/10.1016/0043-1354(72)90052-8.
Figueiredo, H., and C. Quintelas. 2014. “Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites.” J. Hazard. Mater. 274: 287–299. https://doi.org/10.1016/j.jhazmat.2014.04.012.
Finizio, A., G. Azimonti, and S. Villa. 2011. “Occurrence of pesticides in surface water bodies: A critical analysis of the Italian national pesticide survey programs.” J. Environ. Monit. 13 (1): 49–57. https://doi.org/10.1039/C0EM00192A.
Fradler, K. R., I. Michie, R. M. Dinsdale, A. J. Guwy, and G. C. Premier. 2014. “Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery.” Water Res. 55: 115–125. https://doi.org/10.1016/j.watres.2014.02.026.
Fu, F., and Q. Wang. 2011. “Removal of heavy metal ions from wastewaters: A review.” J. Environ. Manage. 92 (3): 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011.
Gangadharan, P., I. M. Nambi, and J. Senthilnathan. 2015. “Liquid crystal polaroid glass electrode from e-waste for synchronized removal/recovery of Cr+6 from wastewater by microbial fuel cell.” Bioresour. Technol. 195: 96–101. https://doi.org/10.1016/j.biortech.2015.06.078.
Golub, M. S., ed. 2005. Metals, fertility, and reproductive toxicity. Boca Raton, FL: CRC Press.
Gong, Y., X. Zhao, Z. Cai, S. E. O’Reilly, X. Hao, and D. Zhao. 2014. “A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills.” Mar. Pollut. Bull. 79 (1–2): 16–33. https://doi.org/10.1016/j.marpolbul.2013.12.024.
Guan, X., H. Dong, J. Ma, and L. Jiang. 2009. “Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4–Fe(II) process.” Water Res. 43 (15): 3891–3899. https://doi.org/10.1016/j.watres.2009.06.008.
Gupta, S., A. Yadav, and N. Verma. 2017. “Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode.” Chem. Eng. J. 307: 729–738. https://doi.org/10.1016/j.cej.2016.08.130.
Gupta, V. K., and Suhas. 2009. “Application of low-cost adsorbents for dye removal – A review.” J. Environ. Manage. 90 (8): 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017.
Hamilton, S. J. 2004. “Review of selenium toxicity in the aquatic food chain.” Sci. Total Environ. 326 (1–3): 1–31. https://doi.org/10.1016/j.scitotenv.2004.01.019.
Hashim, M. A., S. Mukhopadhyay, J. N. Sahu, and B. Sengupta. 2011. “Remediation technologies for heavy metal contaminated groundwater.” J. Environ. Manage. 92 (10): 2355–2388. https://doi.org/10.1016/j.jenvman.2011.06.009.
Hayati, B., A. Maleki, F. Najafi, H. Daraei, F. Gharibi, and G. McKay. 2016. “Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater.” J. Mol. Liq. 224: 1032–1040. https://doi.org/10.1016/j.molliq.2016.10.053.
Hong, S. W., I. S. Chang, Y. S. Choi, and T. H. Chung. 2009. “Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell.” Bioresour. Technol. 100 (12): 3029–3035. https://doi.org/10.1016/j.biortech.2009.01.030.
Huang, L., X. Chai, S. Cheng, and G. Chen. 2011. “Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation.” Chem. Eng. J. 166 (2): 652–661. https://doi.org/10.1016/j.cej.2010.11.042.
Huang, L., L. Jiang, Q. Wang, X. Quan, J. Yang, and L. Chen. 2014a. “Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells.” Chem. Eng. J. 253: 281–290. https://doi.org/10.1016/j.cej.2014.05.080.
Huang, L., M. Li, Y. Pan, Y. Shi, X. Quan, and G. L. Puma. 2017. “Efficient W and Mo deposition and separation with simultaneous hydrogen production in stacked bioelectrochemical systems.” Chem. Eng. J. 327: 584–596. https://doi.org/10.1016/j.cej.2017.06.149.
Huang, L., T. Li, C. Liu, X. Quan, L. Chen, A. Wang, and G. Chen. 2013. “Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells.” Bioresour. Technol. 128: 539–546. https://doi.org/10.1016/j.biortech.2012.11.011.
Huang, L., Y. Liu, L. Yu, X. Quan, and G. Chen. 2015. “A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells.” J. Cleaner Prod. 86: 441–446. https://doi.org/10.1016/j.jclepro.2014.08.018.
Huang, L., B. Yao, D. Wu, and X. Quan. 2014b. “Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell – Microbial electrolysis cell systems.” J. Power Sources 259: 54–64. https://doi.org/10.1016/j.jpowsour.2014.02.061.
Huang, L., P. Zhou, X. Quan, and B. E. Logan. 2018. “Removal of binary Cr(VI) and Cd(II) from the catholyte of MFCs and determining their fate in EAB using fluorescence probes.” Bioelectrochemistry 122: 61–68. https://doi.org/10.1016/j.bioelechem.2018.02.010.
Ince, M. 2013. “Treatment of manganese-phosphate coating wastewater by electrocoagulation.” Sep. Sci. Technol. 48 (3): 515–522. https://doi.org/10.1080/01496395.2012.690125.
Jadhav, D. A., S. C. Jain, and M. M. Ghangrekar. 2016. “Cow’s urine as yellow gold for bioelectricity generation in low-cost clayware microbial fuel cell.” Energy 113: 76–84. https://doi.org/10.1016/j.energy.2016.07.025.
Jadhav, D. A., S. G. Ray, and M. M. Ghangrekar. 2017. “Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater.” Renewable Sustainable Energy Rev. 76: 1022–1031. https://doi.org/10.1016/j.rser.2017.03.096.
Jain, C. K., and I. Ali. 2000. “Arsenic: Occurrence, toxicity and speciation techniques.” Water Res. 34 (17): 4304–4312. https://doi.org/10.1016/S0043-1354(00)00182-2.
Jamil, T. S., H. S. Ibrahim, I. A. El-Maksoud, and S. T. El-Wakeel. 2010. “Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions.” Desalination 258 (1): 34–40. https://doi.org/10.1016/j.desal.2010.03.052.
Jiang, L., L. Huang, and Y. Sun. 2014. “Recovery of flakey cobalt from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells.” Int. J. Hydrogen Energy 39 (2): 654–663. https://doi.org/10.1016/j.ijhydene.2013.10.112.
Johnson, R. F., T. G. Manjreker, and J. E. Halligan. 1973. “Removal of oil from water surfaces by sorption on unstructured fibers.” Environ. Sci. Technol. 7 (5): 439–443. https://doi.org/10.1021/es60077a003.
Joseph, L., B.-M. Jun, J. R. V. Flora, C. M. Park, and Y. Yoon. 2019. “Removal of heavy metals from water sources in the developing world using low-cost materials: A review.” Chemosphere 229: 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198.
Kadier, A., Y. Simayi, P. Abdeshahian, N. F. Azman, K. Chandrasekhar, and M. S. Kalil. 2016. “A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production.” Alex. Eng. J. 55 (1): 427–443. https://doi.org/10.1016/j.aej.2015.10.008.
Kadier, A., Y. Simayi, M. S. Kalil, P. Abdeshahian, and A. A. Hamid. 2014. “A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas.” Renewable Energy 71: 466–472. https://doi.org/10.1016/j.renene.2014.05.052.
Katsoyiannis, I. A., and A. I. Zouboulis. 2004. “Application of biological processes for the removal of arsenic from groundwaters.” Water Res. 38 (1): 17–26. https://doi.org/10.1016/j.watres.2003.09.011.
Keegan, G. M., I. D. Learmonth, and C. Case. 2008. “A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants.” Crit. Rev. Toxicol. 38 (8): 645–674. https://doi.org/10.1080/10408440701845534.
Konishi, Y., T. Tsukiyama, K. Ohno, N. Saitoh, T. Nomura, and S. Nagamine. 2006. “Intracellular recovery of gold by microbial reduction of AuCl4 ions using the anaerobic bacterium Shewanella algae.” Hydrometallurgy 81 (1): 24–29. https://doi.org/10.1016/j.hydromet.2005.09.006.
Lackovic, J. A., N. P. Nikolaidis, and G. M. Dobbs. 2000. “Inorganic arsenic removal by zero-valent iron.” Environ. Eng. Sci. 17 (1): 29–39. https://doi.org/10.1089/ees.2000.17.29.
Lai, P., H. Z. Zhao, C. Wang, and J. R. Ni. 2007. “Advanced treatment of coking wastewater by coagulation and zero-valent iron processes.” J. Hazard. Mater. 147 (1): 232–239. https://doi.org/10.1016/j.jhazmat.2006.12.075.
Lakshmanan, D., D. A. Clifford, and G. Samanta. 2010. “Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.” Water Res. 44 (19): 5641–5652. https://doi.org/10.1016/j.watres.2010.06.018.
Lee, Y.-C., and S.-P. Chang. 2011. “The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae.” Bioresour. Technol. 102 (9): 5297–5304. https://doi.org/10.1016/j.biortech.2010.12.103.
Leiva, E., E. Leiva-Aravena, C. Rodríguez, J. Serrano, and I. Vargas. 2018. “Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells.” Sci. Total Environ. 645: 471–481. https://doi.org/10.1016/j.scitotenv.2018.06.378.
Lemly, A. D. 1997. “Ecosystem recovery following selenium contamination in a freshwater reservoir.” Ecotoxicol. Environ. Saf. 36 (3): 275–281. https://doi.org/10.1006/eesa.1996.1515.
Li, Y., A. Lu, H. Ding, S. Jin, Y. Yan, C. Wang, C. Zen, and X. Wang. 2009. “Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells.” Electrochem. Commun. 11 (7): 1496–1499. https://doi.org/10.1016/j.elecom.2009.05.039.
Li, Y., B. Zhang, M. Cheng, Y. Li, L. Hao, and H. Guo. 2016. “Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells.” J. Hazard. Mater. 306: 8–12. https://doi.org/10.1016/j.jhazmat.2015.12.003.
Li, Z., X. Zhang, and L. Lei. 2008. “Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell.” Process Biochem. 43 (12): 1352–1358. https://doi.org/10.1016/j.procbio.2008.08.005.
Liu, H., S. Grot, B. E. Logan, H. Liu, S. Grot, and B. E. Logan. 2005. “Electrochemically assisted microbial production of hydrogen from acetate.” Environ. Sci. Technol. 39 (11): 4317–4320. https://doi.org/10.1021/es050244p.
Liu, L., Y. Yuan, F. B. Li, and C. H. Feng. 2011. “In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria.” Bioresour. Technol. 102 (3): 2468–2473. https://doi.org/10.1016/j.biortech.2010.11.013.
Liu, Y., M. Han, and F. He. 2017. “A review of treating oily wastewater.” Arabian J. Chem. 10: S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020.
Liu, Y., P. Song, R. Gai, C. Yan, Y. Jiao, D. Yin, L. Cai, L. Zhang, and L. Zhang. 2018. “Recovering platinum from wastewater by charring biofilm of microbial fuel cells (MFCs).” J. Saudi Chem. Soc. 23 (3): 338–345. https://doi.org/10.1016/j.jscs.2018.08.003.
Luo, H., G. Liu, R. Zhang, Y. Bai, S. Fu, and Y. Hou. 2014. “Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell.” J. Hazard. Mater. 270: 153–159. https://doi.org/10.1016/j.jhazmat.2014.01.050.
Malakootian, M., H. Mahdizadeh, A. Nasiri, F. Mirzaienia, M. Hajhoseini, and N. Amirmahani. 2018. “Investigation of the efficiency of microbial desalination cell in removal of arsenic from aqueous solutions.” Desalination 438: 19–23. https://doi.org/10.1016/j.desal.2018.03.025.
Mathuriya, A. S., and J. V. Yakhmi. 2014. “Microbial fuel cells to recover heavy metals.” Environ. Chem. Lett. 12 (4): 483–494. https://doi.org/10.1007/s10311-014-0474-2.
Modestra, J. A., G. Velvizhi, K. V. Krishna, K. Arunasri, P. N. Lens, Y. Nancharaiah, and S. V. Mohan. 2017. “Bioelectrochemical systems for heavy metal removal and recovery.” In Sustainable heavy metal remediation, edited by E. Rene, E. Sahinkaya, A. Lewis, and P. Lens, 165–198. Cham, Switzerland: Springer.
Modin, O., X. Wang, X. Wu, S. Rauch, and K. K. Fedje. 2012. “Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions.” J. Hazard. Mater. 235–236: 291–297. https://doi.org/10.1016/j.jhazmat.2012.07.058.
Modin, O., and B.-M. Wilén. 2012. “A novel bioelectrochemical BOD sensor operating with voltage input.” Water Res. 46 (18): 6113–6120. https://doi.org/10.1016/j.watres.2012.08.042.
Mohan, D., and C. U. Pittman. 2007. “Arsenic removal from water/wastewater using adsorbents – A critical review.” J. Hazard. Mater. 142 (1–2): 1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006.
Moreno, R., M. I. San-Martín, A. Escapa, and A. Morán. 2016. “Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell.” Renewable Energy 93: 442–448. https://doi.org/10.1016/j.renene.2016.02.083.
Nancharaiah, Y. V., C. Dodge, V. P. Venugopalan, S. V. Narasimhan, and A. J. Francis. 2010. “Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes.” Appl. Environ. Microbiol. 76 (8): 2433–2438. https://doi.org/10.1128/AEM.02792-09.
Nancharaiah, Y. V., S. V. Mohan, and P. N. L. Lens. 2015. “Metals removal and recovery in bioelectrochemical systems: A review.” Bioresour. Technol. 195: 102–114. https://doi.org/10.1016/j.biortech.2015.06.058.
Ngah, W. W., L. C. Teong, and M. A. K. M. Hanafiah. 2011. “Adsorption of dyes and heavy metal ions by chitosan composites: A review.” Carbohydr. Polym. 83 (4): 1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004.
Ntagia, E., P. Rodenas, A. Ter Heijne, C. J. N. Buisman, and T. H. J. A. Sleutels. 2016. “Hydrogen as electron donor for copper removal in bioelectrochemical systems.” Int. J. Hydrogen Energy 41 (13): 5758–5764. https://doi.org/10.1016/j.ijhydene.2016.02.058.
Ojedokun, A. T., and O. S. Bello. 2016. “Sequestering heavy metals from wastewater using cow dung.” Water Resour. Ind. 13: 7–13. https://doi.org/10.1016/j.wri.2016.02.002.
Oyaro, N., O. Juddy, E. N. M. Murago, and E. Gitonga. 2007. “The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya.” Int. J. Food Agric. Environ. 5: 119–121.
Pang, Y., D. Xie, B. Wu, Z. Lv, X. Zeng, C. Wei, and C. Feng. 2013. “Conductive polymer-mediated Cr(VI) reduction in a dual-chamber microbial fuel cell under neutral conditions.” Synth. Met. 183: 57–62. https://doi.org/10.1016/j.synthmet.2013.09.019.
Park, J., B. Lee, D. Tian, and H. Jun. 2018. “Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell.” Bioresour. Technol. 247: 226–233. https://doi.org/10.1016/j.biortech.2017.09.021.
Paulino, A. T., F. A. Minasse, M. R. Guilherme, A. V. Reis, E. C. Muniz, and J. Nozaki. 2006. “Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters.” J. Colloid Interface Sci. 301 (2): 479–487. https://doi.org/10.1016/j.jcis.2006.05.032.
Pepe, F., B. de Gennaro, P. Aprea, and D. Caputo. 2013. “Natural zeolites for heavy metals removal from aqueous solutions: Modeling of the fixed bed Ba2+/Na+ ion-exchange process using a mixed phillipsite/chabazite-rich tuff.” Chem. Eng. J. 219: 37–42. https://doi.org/10.1016/j.cej.2012.12.075.
Ping, Q., I. M. Abu-Reesh, and Z. He. 2016. “Enhanced boron removal by electricity generation in a microbial fuel cell.” Desalination 398: 165–170. https://doi.org/10.1016/j.desal.2016.07.031.
Polprasert, C., and L. R. J. Liyanage. 1996. “Hazardous waste generation and processing.” Resour. Conserv. Recycl. 16 (1–4): 213–226. https://doi.org/10.1016/0921-3449(95)00058-5.
Pous, N., B. Casentini, S. Rossetti, S. Fazi, S. Puig, and F. Aulenta. 2015. “Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater.” J. Hazard. Mater. 283: 617–622. https://doi.org/10.1016/j.jhazmat.2014.10.014.
Qin, B., H. Luo, G. Liu, R. Zhang, S. Chen, Y. Hou, and Y. Luo. 2012. “Nickel ion removal from wastewater using the microbial electrolysis cell.” Bioresour. Technol. 121: 458–461. https://doi.org/10.1016/j.biortech.2012.06.068.
Quero, G. M., D. Cassin, M. Botter, L. Perini, and G. M. Luna. 2015. “Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs).” Front. Microbiol. 6: 1053. https://doi.org/10.3389/fmicb.2015.01053.
Renault, F., B. Sancey, P. M. Badot, and G. Crini. 2009. “Chitosan for coagulation/flocculation processes – An eco-friendly approach.” Eur. Polym. J. 45 (5): 1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027.
Rhoads, A., H. Beyenal, and Z. Lewandowski. 2005. “Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.” Environ. Sci. Technol. 39(12), 4666–4671. https://doi.org/10.1021/es048386r.
Rodenas Motos, P., A. Ter Heijne, R. van der Weijden, M. Saakes, C. J. N. Buisman, and T. H. J. A. Sleutels. 2015. “High rate copper and energy recovery in microbial fuel cells.” Front. Microbiol. 6: 527. https://doi.org/10.3389/fmicb.2015.00527.
Rozendal, R. A., H. V. Hamelers, G. J. Euverink, S. J. Metz, and C. J. Buisman. 2006. “Principle and perspectives of hydrogen production through biocatalyzed electrolysis.” Int. J. Hydrogen Energy 31 (12): 1632–1640. https://doi.org/10.1016/j.ijhydene.2005.12.006.
Saeed, H. M., G. A. Husseini, S. Yousef, J. Saif, S. Al-Asheh, A. A. Fara, S. Azzam, R. Khawaga, and A. Aidan. 2015. “Microbial desalination cell technology: A review and a case study.” Desalination 359: 1–13. https://doi.org/10.1016/j.desal.2014.12.024.
Santoro, C., C. Arbizzani, B. Erable, and I. Ieropoulos. 2017. “Microbial fuel cells: From fundamentals to applications. A review.” J. Power Sources 356: 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109.
Sevda, S., H. Yuan, Z. He, and I. M. Abu-Reesh. 2015. “Microbial desalination cells as a versatile technology: Functions, optimization and prospective.” Desalination 371: 9–17. https://doi.org/10.1016/j.desal.2015.05.021.
Shafaei, A., M. Rezayee, M. Arami, and M. Nikazar. 2010. “Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process.” Desalination 260 (1): 23–28. https://doi.org/10.1016/j.desal.2010.05.006.
Shi, J., W. Zhao, C. Liu, T. Jiang, and H. Ding. 2017. “Enhanced performance for treatment of Cr(VI)-containing wastewater by microbial fuel cells with natural pyrrhotite-coated cathode.” Water 9 (12): 979. https://doi.org/10.3390/w9120979.
Singhvi, P., and M. Chhabra. 2013. “Simultaneous chromium removal and power generation using algal biomass in a dual chambered salt bridge microbial fuel cell.” J. Biorem. Biodegrad. 4: 190. https://doi.org/10.4172/2155-6199.1000190.
Smedley, P. L., H. B. Nicolli, D. M. J. Macdonald, A. J. Barros, and J. O. Tullio. 2002. “Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina.” Appl. Geochem. 17 (3): 259–284. https://doi.org/10.1016/S0883-2927(01)00082-8.
Song, T. S., Y. Jin, J. Bao, D. Kang, and J. Xie. 2016. “Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.” J. Hazard. Mater. 317: 73–80. https://doi.org/10.1016/j.jhazmat.2016.05.055.
Sophia, A. C., and S. Saikant. 2016. “Reduction of chromium(VI) with energy recovery using microbial fuel cell technology.” J. Water Process Eng. 11: 39–45. https://doi.org/10.1016/j.jwpe.2016.03.006.
Sugnaux, M., M. Happe, C. P. Cachelin, A. Gasperini, M. Blatter, and F. Fischer. 2017. “Cathode deposits favor methane generation in microbial electrolysis cell.” Chem. Eng. J. 324: 228–236. https://doi.org/10.1016/j.cej.2017.05.028.
Sugnaux, M., M. Happe, C. P. Cachelin, O. Gloriod, G. Huguenin, M. Blatter, and F. Fischer. 2016. “Two-stage bioethanol refining with multi-litre stacked microbial fuel cell and microbial electrolysis cell.” Bioresour. Technol. 221: 61–69. https://doi.org/10.1016/j.biortech.2016.09.020.
Syukor, A. A., S. Sulaiman, M. N. I. Siddique, A. W. Zularisam, and M. I. M. Said. 2016. “Integration of phytogreen for heavy metal removal from wastewater.” J. Cleaner Prod. 112: 3124–3131. https://doi.org/10.1016/j.jclepro.2015.10.103.
Tanong, K., L.-H. Tran, G. Mercier, and J.-F. Blais. 2017. “Recovery of Zn(II), Mn(II), Cd(II) and Ni(II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods.” J. Cleaner Prod. 148: 233–244. https://doi.org/10.1016/j.jclepro.2017.01.158.
Tao, H.-C., Z.-Y. Gao, H. Ding, N. Xu, and W.-M. Wu. 2012. “Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors.” Bioresour. Technol. 111: 92–97. https://doi.org/10.1016/j.biortech.2012.02.029.
Tao, H.-C., W. Li, M. Liang, N. Xu, J.-R. Ni, and W.-M. Wu. 2011a. “A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation.” Bioresour. Technol. 102 (7): 4774–4778. https://doi.org/10.1016/j.biortech.2011.01.057.
Tao, H.-C., L.-J. Zhang, Z.-Y. Gao, and W.-M. Wu. 2011b. “Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor.” Bioresour. Technol. 102 (22): 10334–10339. https://doi.org/10.1016/j.biortech.2011.08.116.
Teng, W., G. Liu, H. Luo, R. Zhang, and Y. Xiang. 2016. “Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode.” J. Hazard. Mater. 304: 159–165. https://doi.org/10.1016/j.jhazmat.2015.10.050.
Tounsadi, H., A. Khalidi, A. Machrouhi, M. Farnane, R. Elmoubarki, A. Elhalil, M. Sadiq, and N. Barka. 2016. “Highly efficient activated carbon from Glebionis coronaria L. biomass: Optimization of preparation conditions and heavy metals removal using an experimental design approach.” J. Environ. Chem. Eng. 4 (4): 4549–4564. https://doi.org/10.1016/j.jece.2016.10.020.
Trellu, C., E. Mousset, Y. Pechaud, D. Huguenot, E. D. Van Hullebusch, G. Esposito, and M. A. Oturan. 2016. “Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review.” J. Hazard. Mater. 306: 149–174. https://doi.org/10.1016/j.jhazmat.2015.12.008.
Türker, O. C. 2018. “Simultaneous boron (B) removal and electricity generation from domestic wastewater using duckweed-based wastewater treatment reactors coupled with microbial fuel cell.” J. Environ. Manage. 228: 20–31. https://doi.org/10.1016/j.jenvman.2018.08.112.
Türker, O. C., and A. Yakar. 2017. “A hybrid constructed wetland combined with microbial fuel cell for boron (B) removal and bioelectric production.” Ecol. Eng. 102: 411–421. https://doi.org/10.1016/j.ecoleng.2017.02.034.
Vasudevan, S., J. Lakshmi, and G. Sozhan. 2011. “Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water.” J. Hazard. Mater. 192 (1): 26–34.
Visa, M. 2016. “Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment.” Powder Technol. 294: 338–347. https://doi.org/10.1016/j.powtec.2016.02.019.
Wang, H., H. Luo, P. H. Fallgren, S. Jin, and Z. J. Ren. 2015. “Bioelectrochemical system platform for sustainable environmental remediation and energy generation.” Biotechnol. Adv. 33 (3–4): 317–334. https://doi.org/10.1016/j.biotechadv.2015.04.003.
Wang, H., and Z. J. Ren. 2014. “Bioelectrochemical metal recovery from wastewater: A review.” Water Res. 66: 219–232. https://doi.org/10.1016/j.watres.2014.08.013.
Wang, L., Y. Wang, F. Ma, V. Tankpa, S. Bai, X. Guo, and X. Wang. 2019. “Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review.” Sci. Total Environ. 668: 1298–1309. https://doi.org/10.1016/j.scitotenv.2019.03.011.
Wang, X., J. Li, Z. Wang, H. Tursun, R. Liu, Y. Gao, and Y. Li. 2016. “Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output.” Environ. Sci. Pollut. Res. 23 (20): 20368–20377. https://doi.org/10.1007/s11356-016-7045-y.
Wang, X.-Q., C. P. Liu, Y. Yuan, and F. B. Li. 2014. “Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions.” J. Hazard. Mater. 275: 200–209. https://doi.org/10.1016/j.jhazmat.2014.05.003.
Wang, Z., B. Lim, and C. Choi. 2011. “Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell.” Bioresour. Technol. 102 (10): 6304–6307. https://doi.org/10.1016/j.biortech.2011.02.027.
Wang, Z., B.-S. Lim, H. Lu, J. Fan, and C.-S. Choi. 2010. “Cathodic reduction of Cu2+.” Bull. Korean Chem. Soc. 31 (7): 2025–2030. https://doi.org/10.5012/bkcs.2010.31.7.2025.
Watanabe, T., H. Motoyama, and M. Kuroda. 2001. “Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process.” Water Res. 35 (17): 4102–4110. https://doi.org/10.1016/S0043-1354(01)00158-0.
Wijayawardena, M. A. A., M. Megharaj, and R. Naidu. 2016. “Exposure, toxicity, health impacts, and bioavailability of heavy metal mixtures.” Adv. Agron. 138: 175–234. https://doi.org/10.1016/bs.agron.2016.03.002.
Wu, D., L. Huang, X. Quan, and G. L. Puma. 2016a. “Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells.” J. Power Sources 307: 705–714. https://doi.org/10.1016/j.jpowsour.2016.01.022.
Wu, D., Y. Pan, L. Huang, P. Zhou, X. Quan, and H. Chen. 2015a. “Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs–MECs with stainless steel mesh cathodes under continuous flow conditions.” Sep. Purif. Technol. 147: 114–124. https://doi.org/10.1016/j.seppur.2015.04.016.
Wu, X., F. Tong, X. Yong, J. Zhou, L. Zhang, H. Jia, and P. Wei. 2016b. “Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells.” J. Hazard. Mater. 308: 303–311. https://doi.org/10.1016/j.jhazmat.2016.01.070.
Wu, X., X. Zhu, T. Song, L. Zhang, H. Jia, and P. Wei. 2015b. “Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.” Bioresour. Technol. 180: 185–191. https://doi.org/10.1016/j.biortech.2014.12.105.
Xu, Q., F. Zhang, L. Xu, P. Leung, C. Yang, and H. Li. 2017. “The applications and prospect of fuel cells in medical field: A review.” Renewable Sustainable Energy Rev. 67: 574–580. https://doi.org/10.1016/j.rser.2016.09.042.
Xu, W., H. Zhang, G. Li, and Z. Wu. 2016. “A urine/Cr(VI) fuel cell – Electrical power from processing heavy metal and human urine.” J. Electroanal. Chem. 764: 38–44. https://doi.org/10.1016/j.jelechem.2016.01.013.
Xue, A., Z. Z. Shen, B. Zhao, and H. Z. Zhao. 2013. “Arsenite removal from aqueous solution by a microbial fuel cell-zerovalent iron hybrid process.” J. Hazard. Mater. 261: 621–627. https://doi.org/10.1016/j.jhazmat.2013.07.072.
Xue, H., P. Zhou, L. Huang, X. Quan, and J. Yuan. 2017. “Cathodic Cr(VI) reduction by electrochemically active bacteria sensed by fluorescent probe.” Sens. Actuators, B 243: 303–310. https://doi.org/10.1016/j.snb.2016.11.154.
Yelton, A. P., K. H. Williams, J. Fournelle, K. C. Wrighton, K. M. Handley, and J. F. Banfield. 2013. “Vanadate and acetate biostimulation of contaminated sediments decreases diversity, selects for specific taxa, and decreases aqueous V5+ concentration.” Environ. Sci. Technol. 47 (12): 6500–6509. https://doi.org/10.1021/es4006674.
Yu, L., M. Han, and F. He. 2013. “A review of treating oily wastewater.” Arabian J. Chem. 10: S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020.
Yun-Hai, W., W. Bai-Shi, P. Bin, C. Qing-Yun, and Y. Wei. 2013. “Electricity production from a bio-electrochemical cell for silver recovery in alkaline media.” Appl. Energy 112: 1337–1341. https://doi.org/10.1016/j.apenergy.2013.01.012.
Zamora, P., T. Georgieva, A. Ter Heijne, T. H. Sleutels, A. W. Jeremiasse, M. Saakes, C. J. Buisman, and P. Kuntke. 2017. “Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell.” J. Power Sources 356: 491–499. https://doi.org/10.1016/j.jpowsour.2017.02.089.
Zhang, B., C. Feng, J. Ni, J. Zhang, and W. Huang. 2012a. “Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology.” J. Power Sources 204: 34–39. https://doi.org/10.1016/j.jpowsour.2012.01.013.
Zhang, B., C. Tian, Y. Liu, L. Hao, Y. Liu, C. Feng, Y. Liu, and Z. Wang. 2015a. “Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.” Bioresour. Technol. 179: 91–97. https://doi.org/10.1016/j.biortech.2014.12.010.
Zhang, B., H. Zhao, C. Shi, S. Zhou, and J. Ni. 2009. “Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells.” J. Chem. Technol. Biotechnol. 84 (12): 1780–1786. https://doi.org/10.1002/jctb.2244.
Zhang, L.-J., H.-C. Tao, X.-Y. Wei, T. Lei, J.-B. Li, A.-J. Wang, and W.-M. Wu. 2012b. “Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell.” Chemosphere 89 (10): 1177–1182. https://doi.org/10.1016/j.chemosphere.2012.08.011.
Zhang, Y., L. Yu, D. Wu, L. Huang, P. Zhou, X. Quan, and G. Chen. 2015b. “Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells.” J. Power Sources 273: 1103–1113. https://doi.org/10.1016/j.jpowsour.2014.09.126.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 24Issue 3July 2020

History

Received: Jun 26, 2019
Accepted: Nov 21, 2019
Published online: Apr 7, 2020
Published in print: Jul 1, 2020
Discussion open until: Sep 7, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Somdipta Bagchi
Senior Research Scholar, School of Infrastructure, Indian Institute of Technology, Bhubaneswar, Odisha 752050, India
Assistant Professor, School of Infrastructure, Indian Institute of Technology, Bhubaneswar, Odisha 752050, India (corresponding author). ORCID: https://orcid.org/0000-0003-3829-4916. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share