TECHNICAL PAPERS
Aug 1, 2001

Three-Dimensional Viscoelastic Model with Nonconstant Coefficients

Publication: Journal of Engineering Mechanics
Volume 127, Issue 8

Abstract

This paper presents a fully 3D viscoelastic model to predict the creep and relaxation behavior of anisotropic materials. This model is based on a phenomenological approach using internal variables and is applicable to nonconstant coefficients. The analytical solution of the set of thermodynamic equations is presented using the reduced time approach in conjunction with modal space. The particular case of isotropic material is presented. In addition, from the general 3D model, the analytical solution in 1D is derived and a connection with the classical rheological model is made. Finally, the model is calibrated and assessed with creep test data for concrete in tension and a parameter sensitivity analysis is performed.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Bazant, Z. P. ( 1975). “Theory of creep and shrinkage in concrete structures: A precis of recent development.” Mechanics today, Vol. 2, Pergamon, New York, 1–93.
2.
Bazant, Z. P. ( 1988). Mathematical modeling of creep and shrinkage of concrete, Wiley, Chichester and New York.
3.
Bazant, Z. P., Hauggard, A. B., and Bawja, S. (1997a). “Microprestress-solidification theory for concrete creep. II: Algorithm and verification.”J. Engrg. Mech., ASCE, 123(11), 1195–1201.
4.
Bazant, Z. P., Hauggard, A. B., Bawja, S., and Ulm, F. J. (1997b). “Microprestress-solidification theory for concrete creep. I: Aging and drying effects.”J. Engrg. Mech., ASCE, 123(11), 1188–1194.
5.
Bazant, Z. P., and Parasannan, S. (1989a). “Solidification theory for concrete creep. I: Formulation.”J. Engrg. Mech., ASCE, 115(8), 1691–1703.
6.
Bazant, Z. P., and Parasannan, S. (1989b). “Solidification theory for concrete creep. II: Verification and application.”J. Engrg. Mech., ASCE, 115(8), 1704–1725.
7.
Biot, M. A. ( 1954). “Theory stress-strain relations in anisotropic viscoelasticity and relaxation phenomena.” J. Appl. Phys., 25(11), 1385–1391.
8.
Bissonnette, B. ( 1996). “Le fluage en traction: Un aspect important de la problématique des réparations minces en béton. PhD thesis, Laval de University, Quebec (in French).
9.
Bissonnette, B., and Pigeon, M. ( 1996). “Tensile creep at early ages of ordinary, silica fume, and fiber reinforcement concrete.” Cement and Concrete Res., 25(5), 1075–1085.
10.
Boudjelal, M. T., Fafard, M., Bissonnette, B., Cloutier, A., Bastien, J., and Pigeon, M. ( 1998). “Durabilité des réparations en béton: Expérimentation et développement d'un modèle numérique prédictif.” Rep. No. GCT-98-30, Civ. Engrg. Dept., Laval University, Quebec (in French).
11.
Byfors, J. ( 1980). “Plain concrete at early ages.” Res. Rep. F3:80, Swedish Cement and Concrete Research Institute, Stockholm.
12.
Coleman, B. D., and Gurtin, M. E. ( 1967). “Thermodynamic of internal variable.” J. Chemical Phys., 47(2), 597–613.
13.
Coussy, O. ( 1995). Mechanics of porous continua, Wiley, New York.
14.
Coussy, O., and Ulm, F. J. ( 1995). “Creep and plasticity due to chemomechanical coupling.” Proc., 4th Int. Conf. Complas IV, Computational plasticity. Fundamentals and applications, Pineridge Press, Swansea, U.K., 925–944.
15.
De Borst, R., and van den Boogaard, A. H. (1994). “Finite element modeling of deformation and cracking in early-age concrete.”J. Engrg. Mech., ASCE, 120(12), 2519–2534.
16.
Granger, L. ( 1996). “Comportement différé du béton dans les enceintes de centrales nucléaires: Analyse et modélisation.” PhD thesis, École Nationale des Ponts et Chaussées, Paris (in French).
17.
Guenot, I. ( 1996). “Contribution à l'analyse physique et la modélisation du fluage propre.” Thèse de doctorat de l'École National des Ponts et Chaussées, Paris (in French).
18.
Huet, C., Acker, P., and Baron, J. ( 1982). “Fluage du béton et autres comportements rhéologiques différés.” Connaissance du Béton Hydraulique, R. Sauterey and J. Baron, eds., ENPC Press, Paris, 335–364 (in French).
19.
Lemaitre, J., and Chaboche, J. L. ( 1990). Mechanics of solid materials, Cambridge University Press, London.
20.
Li, Z. X., and Qian, Q. C. ( 1992). “A creep model for concrete with damage in the axial and lateral directions.” Theoretical and Appl. Fracture Mech., 17, 115–120.
21.
Lin, J., and Cloutier, A. ( 1996). “Finite element modeling of the viscoelastic behavior of wood during drying.” Proc., 5th Int. IUFRO Wood Drying Conf., 117–124.
22.
Lubliner, J. ( 1972). “On the thermodynamic foundation of non-linear solid mechanics.” Int. J. Non-Linear Mech., 7, 237–254.
23.
Luhmann, A., and Niemz, P. ( 1993). “Investigations of the failure criterion and mechanosortive creep during wood drying.” Holzforschung und Holzvertung, 45(6), 109–112.
24.
Mauget, B., and Perré, P. ( 1996). “Numerical simulation of drying stresses using a large displacement formulation.” Proc., 5th Int. IUFRO Wood Drying Conf., 59–68.
25.
Morgan, K., Thomas, H. R., and Lewis, R. W. ( 1982). “Numerical modeling of stress reversal in timber drying.” Wood Sci. Technol., 15(2), 139–149.
26.
Neville, A. M., Dilger, W. H., and Brooks, J. J. ( 1983). Creep of plain and structural concrete, Construction Press, London and New York.
27.
Pluvinage, G. ( 1992). “La rupture du bois et de ses composites.” Edition Cepadues, Toulouse, France (in French).
28.
Salin, J. G. ( 1992). “Numerical prediction of checking during timber drying and a new mechano-sorptive creep model.” Holz Roh-Werkst, 50, 195–200.
29.
Schapery, R. A. ( 1964). “Application of thermodynamics to thermomechanical, fracture and birefringement phenomena in viscoelastic media.” J. Appl. Phys., 35(5), 1451–1465.
30.
Schapery, R. A. ( 1968). “On a thermodynamic constitutive theory and its application to various non-linear materials.” Proc., IUTAM Sym. on Irreversible Aspects of Continuum Mech., H. Parkus and L. I. Sedov, eds., Springer, New York, 259–285.
31.
Svensson, S. ( 1996). “Strain and shrinkage force in wood under kiln drying conditions II: Strain, shrinkage and stress measurements under controlled climate conditions.” Hlzforschung, 50, 463–469.
32.
Valanis, K. C. ( 1966). “Thermodynamics of large viscoelastic deformation.” J. Mathematics and Phys., 45(2), 197–212.
33.
Valanis, K. C. ( 1972). Irreversible thermodynamics of continuous media-internal variable theory, Springer, New York.
34.
Wittmann, K. C. ( 1982). “Creep and shrinkage mechanism.” Creep and shrinkage in concrete structures, Z. P. Bazant and F. H. Wittmann, eds., Wiley, New York, 129–161.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 127Issue 8August 2001
Pages: 808 - 815

History

Received: Mar 27, 2000
Published online: Aug 1, 2001
Published in print: Aug 2001

Permissions

Request permissions for this article.

Authors

Affiliations

Prof., Groupe Interdisciplinaire de Recherche en Éléments Finis and Civ. Engrg. Dept., Laval Univ., Quebec, Canada G1K 7P4.
Postdoctoral Fellow, Groupe Interdisciplinaire de Recherche en Éléments Finis and Civ. Engrg. Dept., Laval Univ., Quebec, Canada G1K 7P4.
Res. Assoc., Centre de Recherche Interuniversitaire sur le Béton and Civ. Engrg. Dept., Laval Univ., Quebec, Canada G1K 7P4.
Prof., Groupe Interdisciplinaire de Recherche en Éléments Finis and Wood and Forest Sci. Dept., Laval Univ., Quebec, Canada G1K 7P4.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share