Creating a Sustainable Future
State-of-the-Art Reviews
Jan 2, 2025

Recent Modifications of Anode Materials and Performance Evaluation of Microbial Fuel Cells: A Brief Review

Publication: Journal of Energy Engineering
Volume 151, Issue 2

Abstract

A microbial fuel cell is a bioelectrochemical device that uses different electroactive microorganisms to produce electricity from waste. Its anode is a key component because the extracellular electron transport at the interface of the anode and anolyte influences the overall operation and performance. The effectual extracellular electron transport depends on the thickness and strength of the microbial biofilm formed on the anodic surface. The biofilm should be conductive for the suitable anode potential, half-cell resistance, substrate degradation, and overall cell stability. To achieve the required properties of the biofilm, the anode should have specific material properties that are not embedded in a single material. Modifying the anode material is the best option to achieve the required properties. Many research groups have experimented with different anode modifications like surface treatment, variation of traditional carbonaceous anode materials, fabrication of composite materials, development of biomass-based anodes that mimic the traditional anodes, and hybridization. This review summarizes different anodes and their modifications to enhance the overall performance of microbial fuel cells. The anode modifications are numerous and nonspecific. Different materials, methods, and mechanisms confuse the ultimate objectives. Therefore, separating the types of materials used for the anode modifications and their comparative study describes the actual underlying difficulties, mechanisms behind the microbial fuel cell operation, and perspectives for future research in the field. This article highlights the deficiencies in traditional anodes and their recent modifications, comparative evaluations of anode modifications on microbial fuel cell performance, challenges in the scaled-up microbial fuel cell operation, and future research perspectives.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors are grateful to Professor (Dr.) Manojranjan Nayak, President, Siksha ‘O’ Anusandhan (Deemed to be University), for providing research facilities.

References

Agrahari, R., B. Bayar, H. N. Abubackar, B. S. Giri, E. R. Rene, and R. Rani. 2022. “Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells.” Chemosphere 290 (Mar): 133184. https://doi.org/10.1016/j.chemosphere.2021.133184.
Arulmani, S. R. B., J. Dai, H. Li, Z. Chen, W. Sun, H. Zhang, J. Yan, S. Kandasamy, and T. Xiao. 2022. “Antimony reduction by a non-conventional sulfate reducer with simultaneous bioenergy production in microbial fuel cells.” Chemosphere 291 (1): 132754. https://doi.org/10.1016/j.chemosphere.2021.132754.
Arvin, A., M. Hosseini, M. M. Amin, G. N. Darzi, and Y. Ghasemi. 2019. “Efficient methane production from petrochemical wastewater in a single membrane-less microbial electrolysis cell: The effect of the operational parameters in batch and continuous mode on bioenergy recovery.” J. Environ. Health Sci. Eng. 17 (1): 305–317. https://doi.org/10.1007/s40201-019-00349-y.
Bagchi, S., and M. Behera. 2022. “Effects of pharmaceuticals on the performance of earthen pot microbial fuel cell.” J. Hazard. Toxic Radioact. Waste 26 (2): 04021057. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000675.
Cao, X., Y. Yuan, S. Khodseewong, O. Nishimura, H. Wang, and X. Li. 2022. “Efficient use of electrons in a double-anode microbial fuel cell–biofilm electrode reactor self-powered coupled system for degradation of azo dyes.” Chemosphere 302 (Sep): 134760. https://doi.org/10.1016/j.chemosphere.2022.134760.
Chaijak, P., M. Lertworapreecha, N. Changkit, and P. Sola. 2022. “Electricity generation from hospital wastewater in microbial fuel cell using radiation tolerant bacteria.” Biointerface Res. Appl. Chem. 12 (4): 5601–5609. https://doi.org/10.33263/BRIAC124.56015609.
Chen, B. Y., Y. T. Tsao, and S. H. Chang. 2018. “Cost-effective surface modification of carbon cloth electrodes for microbial fuel cells by candle soot coating.” Coatings 8 (12): 468. https://doi.org/10.3390/coatings8120468.
Chen, J., W. Xu, X. Wu, E. Jiaqiang, N. Lu, T. Wang, and H. Zuo. 2019. “System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater.” Energy Convers. Manage. 193 (Aug): 52–63. https://doi.org/10.1016/j.enconman.2019.04.060.
Chen, S., J. Tang, X. Jing, Y. Liu, Y. Yuan, and S. Zhou. 2016. “A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting.” Electrochim. Acta 212 (Sep): 883–889. https://doi.org/10.1016/j.electacta.2016.07.077.
Chen, X., F. Dong, S. Xu, B. Yin, and X. Xie. 2023. “Experimental study on the droplet transport and dynamic behavior in flow channel with microprotrusions of PEMFC.” J. Energy Eng. 149 (5): 04023029. https://doi.org/10.1061/JLEED9.EYENG-5056.
Cheng, X., Y. Wang, Y. Qiu, Y. Wang, M. Yu, Z. Ma, T. Sun, and S. Liu. 2024. “Biocompatible and capacitive PDA-Ov-Co3O4@CC anode augmented exoelectrogens enrichment and extracellular electron transfer in microbial fuel cells.” Electrochim. Acta 503 (Nov): 144924. https://doi.org/10.1016/j.electacta.2024.144924.
Chowdhury, M. A., N. Hossain, S. R. Islam, M. J. Hossain, D. Chowdhury, S. Ahmed, M. M. Rana, and H. Aoyon. 2023. “Enhancement of microbial fuel cell performance using pure magnesium anode.” Energy Rep. 9 (Dec): 1621–1636. https://doi.org/10.1016/j.egyr.2022.12.053.
Civan, G., B. Palas, G. Ersöz, S. Atalay, I. Bavasso, and L. Di Palma. 2021. “Experimental assessment of a hybrid process including adsorption/photo fenton oxidation and microbial fuel cell for the removal of dicarboxylic acids from aqueous solution.” J. Photochem. Photobiol., A 407 (Feb): 113056. https://doi.org/10.1016/j.jphotochem.2020.113056.
Das, B., N. Soundararajan, S. P. Kashyap, J. H. Jang, C. T. Wang, K. A. Reddy, and V. Katiyar. 2022. “Bioaugmented polyaniline decorated polylactic acid nanofiber electrode by electrospinning technique for real wastewater-fed MFC application.” Int. J. Energy Res. 46 (3): 3588–3601. https://doi.org/10.1002/er.7407.
Day, J. R., E. S. Heidrich, and T. S. Wood. 2022. “A scalable model of fluid flow, substrate removal and current production in microbial fuel cells.” Chemosphere 291 (1): 132686. https://doi.org/10.1016/j.chemosphere.2021.132686.
Delgado, Y., N. Tapia, E. López, J. Llanos, I. Vargas, and F. J. F. Morales. 2025. “Energy and copper recovery from acid mine drainage by microbial fuel cells. Effect of the hydrochar doping on carbon felt anodes.” Sep. Purif. Technol. 354 (5): 129095. https://doi.org/10.1016/j.seppur.2024.129095.
Dessie, Y., S. Tadesse, and Y. Adimasu. 2022. “Improving the performance of graphite anode in a microbial fuel cell via PANI encapsulated α-MnO2 composite modification for efficient power generation and methyl red removal.” Chem. Eng. J. Adv. 10 (May): 100283. https://doi.org/10.1016/j.ceja.2022.100283.
Do, M. H., H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen, A. Pandey, P. Sharma, S. Varjani, T. A. H. Nguyen, and N. B. Hoang. 2022. “A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater.” Sci. Total Environ. 811 (Mar): 152261. https://doi.org/10.1016/j.scitotenv.2021.152261.
Du, H., Y. Bu, Y. Shi, Q. Zhong, and J. Wang. 2016. “Effect of an anode modified with nitrogenous compounds on the performance of a microbial fuel cell.” Energy Sources Part A 38 (4): 527–533. https://doi.org/10.1080/15567036.2013.798716.
Dwivedi, K. A., V. Kumar, C. T. Wang, W. T. Chong, and H. C. Ong. 2022. “Design and feasibility study of novel swirler incorporated microbial fuel cell for enhancing power generation and domestic wastewater treatment.” J. Cleaner Prod. 337 (Feb): 130382. https://doi.org/10.1016/j.jclepro.2022.130382.
Dziegielowski, J., M. Mascia, B. Metcalfe, and M. Di Lorenzo. 2023. “Voltage evolution and electrochemical behaviour of soil microbial fuel cells operated in different quality soils.” Sustainable Energy Technol. Assess. 56 (Mar): 103071. https://doi.org/10.1016/j.seta.2023.103071.
Elmaadawy, K., B. Liu, G. Hassan, X. Wang, Q. Wang, J. Hu, H. Hou, J. Yang, and X. Wu. 2022. “Microalgae-assisted fixed-film activated sludge MFC for landfill leachate treatment and energy recovery.” Process Saf. Environ. Prot. 160 (Apr): 221–231. https://doi.org/10.1016/j.psep.2022.02.021.
Erensoy, A., S. Mulayim, A. Orhan, N. Çek, A. Tuna, and N. Ak. 2022. “The system design of the peat-based microbial fuel cell as a new renewable energy source: The potential and limitations.” Alexandria Eng. J. 61 (11): 8743–8750. https://doi.org/10.1016/j.aej.2022.02.020.
Fadzli, F. S., S. A. Bhawani, and R. E. A. Mohammad. 2021. “Microbial fuel cell: Recent developments in organic substrate use and bacterial electrode interaction.” J. Chem. 2021 (1): 4570388. https://doi.org/10.1155/2021/4570388.
Feng, Y., W. He, J. Liu, X. Wang, Y. Qu, and N. Ren. 2014. “A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment.” Bioresour. Technol. 156 (Mar): 132–138. https://doi.org/10.1016/j.biortech.2013.12.104.
Fu, Y., J. Yu, Y. Zhang, and Y. Meng. 2014. “Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells.” Appl. Surf. Sci. 317 (Oct): 84–89. https://doi.org/10.1016/j.apsusc.2014.08.044.
Ghadge, A. N., and M. M. Ghangrekar. 2015. “Performance of low cost scalable air-cathode microbial fuel cell made from clayware separator using multiple electrodes.” Bioresour. Technol. 182 (Apr): 373–377. https://doi.org/10.1016/j.biortech.2015.01.115.
Gonzalez-Nava, C., J. Manríquez, L. A. Godínez, and F. J. Rodríguez-Valadez. 2022. “Enhancement of the electron transfer and ion transport phenomena in microbial fuel cells containing humic acid-modified bioanodes.” Bioelectrochemistry 144 (Apr): 108003. https://doi.org/10.1016/j.bioelechem.2021.108003.
Guan, Y. F., F. Zhang, B. C. Huang, and H. Q. Yu. 2019. “Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode.” J. Cleaner Prod. 229 (Aug): 412–419. https://doi.org/10.1016/j.jclepro.2019.05.040.
Hassan, H., B. Jin, E. Donner, S. Vasileiadis, C. Saint, and S. Dai. 2018. “Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: Microbial consortia could make differences.” Chem. Eng. J. 332 (Jan): 647–657. https://doi.org/10.1016/j.cej.2017.09.114.
He, X., S. Ma, Z. Wang, Z. Tan, M. Hou, P. Ma, R. Cao, and X. Lu. 2024. “Silver nanowire-doped conductive polymer hydrogel anode for increasing electron transfer and COD removal rate simultaneously in microbial fuel cell.” Electrochim. Acta 497 (Jun): 144566. https://doi.org/10.1016/j.electacta.2024.144566.
He, Y., J. Yang, Q. Fu, J. Li, L. Zhang, X. Zhu, and Q. Liao. 2021. “Structure design of 3D hierarchical porous anode for high performance microbial fuel cells: From macro-to micro-scale.” J. Power Sources 516 (Dec): 230687. https://doi.org/10.1016/j.jpowsour.2021.230687.
Heidrich, E. S., J. Dolfing, M. J. Wade, W. T. Sloan, C. Quince, and T. P. Curtis. 2018. “Temperature, inocula and substrate: Contrasting electroactive consortia, diversity and performance in microbial fuel cells.” Bioelectrochemistry 119 (Feb): 43–50. https://doi.org/10.1016/j.bioelechem.2017.07.006.
Hemdan, B. A., G. E. El-Taweel, S. Naha, and P. Goswami. 2023. “Bacterial community structure of electrogenic biofilm developed on modified graphite anode in microbial fuel cell.” Sci. Rep. 13 (1): 1255. https://doi.org/10.1038/s41598-023-27795-x.
Hinai, A. A., T. Jafary, H. Alhimali, S. Rahman, and A. Al-Mamun. 2022. “Desalination and acid-base recovery in a novel design of microbial desalination and chemical recovery cell.” Desalination 525 (Mar): 115488. https://doi.org/10.1016/j.desal.2021.115488.
Hirose, S., K. Inukai, D. T. Nguyen, and K. Taguchi. 2023. “Use of loofah electrodes coated with rice husk smoked charcoal and Japanese ink in a microbial fuel cell for muddy water treatment.” Energy Rep. 9 (3): 160–167. https://doi.org/10.1016/j.egyr.2022.12.118.
Hossain, M. A., B. Paul, K. Khan, M. Paul, M. Mamun, and M. E. Quayum. 2022. “Green synthesis and characterization of silver nanoparticles by using Bryophyllum pinnatum and the evaluation of its power generation activities on bio-electrochemical cell.” Mater. Chem. Phys. 282 (Apr): 125943. https://doi.org/10.1016/j.matchemphys.2022.125943.
Hosseinpour, M., M. Asadi, T. R. Eliato, M. Vossoughi, and I. Alemzadeh. 2016. “Ethylene glycol biodegradation in microbial fuel cell.” Energy Sources Part A 38 (8): 1096–1102. https://doi.org/10.1080/15567036.2013.831144.
Hu, M., Y. Lin, X. Li, W. Zhang, Z. Chen, Y. Yang, G. Li, Y. Lu, and W. Li. 2022. “Nano-Fe3C@2D-NC@CC as anode for improving extracellular electron transfer and electricity generation of microbial fuel cells.” Electrochim. Acta 404 (Feb): 139618. https://doi.org/10.1016/j.electacta.2021.139618.
Huang, J., C. Zeng, H. Luo, J. Bai, G. Liu, and R. Zhang. 2022. “Enhanced sulfur recovery and sulfate reduction using single-chamber bioelectrochemical system.” Sci. Total Environ. 823 (Jun): 153789. https://doi.org/10.1016/j.scitotenv.2022.153789.
Huang, S. J., K. A. Dwivedi, S. Kumar, C. T. Wang, and A. K. Yadav. 2023. “Binder-free NiO/MnO2 coated carbon based anodes for simultaneous norfloxacin removal, wastewater treatment and power generation in dual-chamber microbial fuel cell.” Environ. Pollut. 317 (Jan): 120578. https://doi.org/10.1016/j.envpol.2022.120578.
Jaeel, A. J., A. I. Al-wared, and Z. Z. Ismail. 2016. “Prediction of sustainable electricity generation in microbial fuel cell by neural network: Effect of anode angle with respect to flow direction.” J. Electroanal. Chem. 767 (Apr): 56–62. https://doi.org/10.1016/j.jelechem.2016.02.015.
Jangu, S., B. K. Satpathy, M. Raju, C. Jacob, and D. Pradhan. 2021. “Synthesis of V-shaped MnO2 nanostructure and its composites with reduced graphene oxide for supercapacitor application.” Dalton Trans. 50 (20): 6878–6888. https://doi.org/10.1039/D1DT00422K.
Jaswal, V., and Y. K. Nandabalan. 2023. “Rice husk-derived silicon nanostructured anode to enhance power generation in microbial fuel cell treating distillery wastewater.” J. Environ. Manage. 328 (Feb): 116912. https://doi.org/10.1016/j.jenvman.2022.116912.
Ji, B., Y. Zhao, Y. Yang, C. Tang, Y. Dai, X. Zhang, Y. Tai, R. Tao, and W. Ruan. 2022. “Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system.” Sci. Total Environ. 808 (Feb): 152078. https://doi.org/10.1016/j.scitotenv.2021.152078.
Jiang, N., J. Song, M. Yan, Y. Hu, M. Wang, Y. Liu, and M. Huang. 2023. “Iron cobalt-doped carbon nanofibers anode to simultaneously boost bioelectrocatalysis and direct electron transfer in microbial fuel cells: Characterization, performance, and mechanism.” Bioresour. Technol. 367 (Jan): 128230. https://doi.org/10.1016/j.biortech.2022.128230.
Jiang, N., M. Yan, Q. Li, S. Zheng, Y. Hu, X. Xu, L. Wang, Y. Liu, and M. Huang. 2024. “Bioelectrocatalytic reduction by integrating pyrite assisted manganese cobalt-doped carbon nanofiber anode and bacteria for sustainable antimony catalytic removal.” Bioresour. Technol. 395 (Mar): 130378. https://doi.org/10.1016/j.biortech.2024.130378.
Jin, Z., T. Huang, X. Zhang, and S. Zhang. 2022. “Bioelectrochemical-assisted bioleaching of chalcopyrite: Effect of pulp density, anode material, and sliver ion.” Process Saf. Environ. Prot. 159 (Mar): 740–748. https://doi.org/10.1016/j.psep.2022.01.051.
Jung, S. P., E. Kim, and B. Koo. 2018. “Effects of wire-type and mesh-type anode current collectors on performance and electrochemistry of microbial fuel cells.” Chemosphere 209 (Oct): 542–550. https://doi.org/10.1016/j.chemosphere.2018.06.070.
Jung, S. P., S. Son, and B. Koo. 2023. “Reproducible polarization test methods and fair evaluation of polarization data by using interconversion factors in a single chamber cubic microbial fuel cell with a brush anode.” J. Cleaner Prod. 390 (Mar): 136157. https://doi.org/10.1016/j.jclepro.2023.136157.
Kalathil, S., S. Patil, and D. Pant. 2018. “Microbial fuel cells: Electrode materials.” In Encyclopedia of interfacial chemistry, edited by K. Wandelt, 309–318. Amsterdam, Netherlands: Elsevier.
Kang, H., J. Jeong, P. L. Gupta, and S. P. Jung. 2017. “Effects of brush-anode configurations on performance and electrochemistry of microbial fuel cells.” Int. J. Hydrogen Energy 42 (45): 27693–27700. https://doi.org/10.1016/j.ijhydene.2017.06.181.
Kaur, R., S. Singh, V. A. Chhabra, A. Marwaha, K. H. Kim, and S. K. Tripathi. 2021. “A sustainable approach towards utilization of plastic waste for an efficient electrode in microbial fuel cell applications.” J. Hazard. Mater. 417 (Sep): 125992. https://doi.org/10.1016/j.jhazmat.2021.125992.
Khan, N., A. H. Anwer, S. Sultana, A. Ibhadon, and M. Z. Khan. 2022. “Effective toxicity assessment of synthetic dye in microbial fuel cell biosensor with spinel nanofiber anode.” J. Environ. Chem. Eng. 10 (2): 107313. https://doi.org/10.1016/j.jece.2022.107313.
Kim, J. H., Y. T. Kim, and S. H. Joo. 2020. “Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active site atoms.” Curr. Opin. Electrochem. 21 (Jun): 109–116. https://doi.org/10.1016/j.coelec.2020.01.007.
Kolubah, P. D., H. O. Mohamed, M. Ayach, A. Rao Hari, H. N. Alshareef, P. Saikaly, K. J. Chae, and P. Castaño. 2023. “W2N-MXene composite anode catalyst for efficient microbial fuel cells using domestic wastewater.” Chem. Eng. J. 461 (Apr): 141821. https://doi.org/10.1016/j.cej.2023.141821.
Lai, B. L., H. X. Wei, Z. N. Luo, T. Zheng, Y. H. Lin, Z. Q. Liu, and N. Li. 2023. “ZIF-8-derived Cu, N co-doped carbon as a bifunctional cathode catalyst for enhanced performance of microbial fuel cell.” Sci. Total Environ. 856 (2): 159083. https://doi.org/10.1016/j.scitotenv.2022.159083.
Li, B., D. Xu, L. Feng, Y. Liu, and L. Zhang. 2022a. “Advances and prospects on the aquatic plant coupled with sediment microbial fuel cell system.” Environ. Pollut. 297 (Mar): 118771. https://doi.org/10.1016/j.envpol.2021.118771.
Li, C., H. Jing, J. Hu, G. Hu, and Y. Deng. 2023. “Sliding mode control for power tracking of proton-exchange membrane fuel-cell system.” J. Energy Eng. 149 (3): 04023011. https://doi.org/10.1061/JLEED9.EYENG-4734.
Li, H., Y. Sun, J. Wang, Y. Liu, and C. Li. 2022b. “Nanoflower-branch LDHs and CoNi alloy derived from electrospun carbon nanofibers for efficient oxygen electrocatalysis in microbial fuel cells.” Appl. Catal., B 307 (Jun): 121136. https://doi.org/10.1016/j.apcatb.2022.121136.
Li, J., J. Qian, X. Chen, X. Zeng, L. Li, B. Ouyang, E. Kan, and W. Zhang. 2022c. “Three-dimensional hierarchical graphitic carbon encapsulated CoNi alloy/N-doped CNTs/carbon nanofibers as an efficient multifunctional electrocatalyst for high-performance microbial fuel cells.” Composites, Part B 231 (Feb): 109573. https://doi.org/10.1016/j.compositesb.2021.109573.
Littfinski, T., J. Beckmann, T. Gehring, M. Stricker, E. Nettmann, S. Krimmler, E. Murnleitner, M. Lübken, D. Pant, and M. Wichern. 2022. “Model-based identification of biological and pH gradient driven removal pathways of total ammonia nitrogen in single-chamber microbial fuel cells.” J. Chem. Eng. 431 (Mar): 133987. https://doi.org/10.1016/j.cej.2021.133987.
Liu, D., Q. Chang, Y. Gao, W. Huang, Z. Sun, M. Yan, and C. Guo. 2020. “High performance of microbial fuel cell afforded by metallic tungsten carbide decorated carbon cloth anode.” Electrochim. Acta 330 (Jan): 135243. https://doi.org/10.1016/j.electacta.2019.135243.
Liu, D., R. Wang, W. Chang, L. Zhang, B. Peng, H. Li, S. Liu, M. Yan, and C. Guo. 2018. “Ti3C2 MXene as an excellent anode material for high performance microbial fuel cells.” J. Mater. Chem. A 6 (42): 20887–20895. https://doi.org/10.1039/C8TA07305H.
Liu, S., Y. X. Lu, H. Chen, S. Zhang, B. Chen, and H. L. Song. 2022a. “Variation in the microbial community in bioelectrochemical systems treating sulfamethoxazole wastewater-Identifying key operating parameters and revealing sul gene-harboring host bacteria.” J. Water Process Eng. 46 (Apr): 102572. https://doi.org/10.1016/j.jwpe.2022.102572.
Liu, Y., F. Harnisch, K. Fricke, U. Schröder, V. Climent, and J. M. Feliu. 2010. “The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells.” Biosens. Bioelectron. 25 (9): 2167–2171. https://doi.org/10.1016/j.bios.2010.01.016.
Liu, Z., D. Wang, X. Kou, X. Dong, X. Chi, H. Ma, and G. Wang. 2022b. “High-performance oxygen reduction electrocatalysts derived from bimetal-organic framework and sulfur-doped precursors for use in microbial fuel cells.” J. Power Sources 521 (Feb): 230944. https://doi.org/10.1016/j.jpowsour.2021.230944.
Logan, B., S. Cheng, V. Watson, and G. Estadt. 2007. “Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.” Environ. Sci. Technol. 41 (9): 3341–3346. https://doi.org/10.1021/es062644y.
Lu, M., Y. Qian, C. Yang, X. Huang, H. Li, X. Xie, L. Huang, and W. Huang. 2017. “Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells.” Nano Energy 32 (Feb): 382–388. https://doi.org/10.1016/j.nanoen.2016.12.046.
Ma, H., Y. Zheng, J. Xian, Z. Feng, Z. Li, and F. Cui. 2022. “A light-enhanced α-FeOOH nanowires/polyaniline anode for improved electricity generation performance in microbial fuel cells.” Chemosphere 296 (Jun): 133994. https://doi.org/10.1016/j.chemosphere.2022.133994.
Magotra, V. K., T. Kang, A. T. Aqueel Ahmed, A. I. Inamdar, H. Im, G. Ghodake, R. K. Choubey, V. Kumar, and S. Kumar. 2021. “Effect of gold nanoparticles laced anode on the bio-electro-catalytic activity and power generation ability of compost based microbial fuel cell as a coin cell sized device.” Biomass Bioenergy 152 (Sep): 106200. https://doi.org/10.1016/j.biombioe.2021.106200.
Mahmoud, M., A. S. El-Kalliny, and G. Squadrito. 2022. “Stacked titanium dioxide nanotubes photoanode facilitates unbiased hydrogen production in a solar-driven photoelectrochemical cell powered with a microbial fuel cell treating animal manure wastewater.” Energy Convers. Manage. 254 (Feb): 115225. https://doi.org/10.1016/j.enconman.2022.115225.
Mahmoud, R. H., F. A. Samhan, G. H. Ali, M. K. Ibrahim, and R. Y. Hassan. 2018. “Assisting the biofilm formation of exoelectrogens using nanostructured microbial fuel cells.” J. Electroanal. Chem. 824 (Sep): 128–135. https://doi.org/10.1016/j.jelechem.2018.07.045.
Meng, L., M. Feng, J. Sun, R. Wang, F. Qu, C. Yang, and W. Guo. 2022. “High-performance free-standing microbial fuel cell anode derived from Chinese date for enhanced electron transfer rates.” Bioresour. Technol. 353 (Jun): 127151. https://doi.org/10.1016/j.biortech.2022.127151.
Mirza, S. S., M. M. Al-Ansari, M. Ali, S. Aslam, M. Akmal, L. Al-Humaid, and A. Hussain. 2022. “Towards sustainable wastewater treatment: Influence of iron, zinc and aluminum as anode in combination with salt bridge on microbial fuel cell performance.” Environ. Res. 209 (Jun): 112781. https://doi.org/10.1016/j.envres.2022.112781.
Mohan, S. V., and K. Chandrasekhar. 2011. “Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation.” Bioresour. Technol. 102 (20): 9532–9541. https://doi.org/10.1016/j.biortech.2011.07.038.
Mohanakrishna, G., R. I. Al-Raoush, I. M. Abu-Reesh, and K. Aljaml. 2019. “Removal of petroleum hydrocarbons and sulfates from produced water using different bioelectrochemical reactor configurations.” Sci. Total Environ. 665 (May): 820–827. https://doi.org/10.1016/j.scitotenv.2019.02.181.
Moradian, J. M., J. L. Mi, X. Dai, G. F. Sun, J. Du, X. M. Ye, and Y. C. Yong. 2022. “Yeast-induced formation of graphene hydrogels anode for efficient xylose-fueled microbial fuel cells.” Chemosphere 291 (2): 132963. https://doi.org/10.1016/j.chemosphere.2021.132963.
Nam, T., H. Kang, S. Pandit, S. H. Kim, S. Yoon, S. Bae, and S. P. Jung. 2020. “Effects of vertical and horizontal configurations of different numbers of brush anodes on performance and electrochemistry of microbial fuel cells.” J. Cleaner Prod. 277 (Dec): 124125. https://doi.org/10.1016/j.jclepro.2020.124125.
Nguyen, H. D., and S. Babel. 2022. “Insights on microbial fuel cells for sustainable biological nitrogen removal from wastewater: A review.” Environ. Res. 204 (Mar): 112095. https://doi.org/10.1016/j.envres.2021.112095.
Opoku, P. A., H. Jingyu, L. Yi, L. Guang, and E. Norgbey. 2022. “Scaled-up multi-anode shared cathode microbial fuel cell for simultaneous treatment of multiple real wastewaters and power generation.” Chemosphere 299 (Jul): 134401. https://doi.org/10.1016/j.chemosphere.2022.134401.
Ouyang, T., X. Hu, W. Liu, X. Shi, and J. Lu. 2022. “An innovative model for biofilm-based microfluidic microbial fuel cells.” J. Power Sources 521 (Feb): 230940. https://doi.org/10.1016/j.jpowsour.2021.230940.
Pal, M., A. Shrivastava, and R. K. Sharma. 2023. “Electroactive biofilm development on carbon fiber anode by Pichia fermentans in a wheat straw hydrolysate based microbial fuel cell.” Biomass Bioenergy 168 (Jan): 106682. https://doi.org/10.1016/j.biombioe.2022.106682.
Palanisamy, G., S. Thangarasu, R. K. Dharman, C. S. Patil, T. P. P. S. Negi, M. D. Kurkuri, R. K. Pai, and T. H. Oh. 2023. “The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells: A comprehensive review.” J. Energy Chem. 80 (May): 402–431. https://doi.org/10.1016/j.jechem.2023.01.018.
Palma, L. D., I. Bavasso, F. Sarasini, J. Tirillò, D. Puglia, F. Dominici, and L. Torre. 2018. “Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell.” Eur. Polym. J. 99 (Feb): 222–229. https://doi.org/10.1016/j.eurpolymj.2017.12.037.
Pan, X., J. Wang, Y. Chen, Q. Wen, C. Lin, H. Gao, Z. Qiu, and L. Yang. 2023. “Fe-Ni alloy modified Zr-based MOF derivatives as bioelectrocatalyst for regulating multipath EET efficiency and biofilm electrogenic activity.” Appl. Surf. Sci. 640 (Dec): 158436. https://doi.org/10.1016/j.apsusc.2023.158436.
Pei, H., S. Liu, Z. Wang, L. Zhang, and X. Yao. 2023. “Effects of microstructure on water removal in the U-shaped region of PEMFC serpentine flow channel.” J. Energy Eng. 149 (5): 04023030. https://doi.org/10.1061/JLEED9.EYENG-4875.
Picot, M., L. Lapinsonnière, M. Rothballer, and F. Barrière. 2011. “Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.” Biosens. Bioelectron. 28 (1): 181–188. https://doi.org/10.1016/j.bios.2011.07.017.
Quan, Q., H. Xu, B. Sun, and Z. Xiao. 2018. “Anode modification with palladium nanoparticles enhanced Evans Blue removal and power generation in microbial fuel cells.” Int. Biodeterior. Biodegradation 132 (Aug): 94–101. https://doi.org/10.1016/j.ibiod.2018.01.001.
Radeef, A. Y., and Z. Z. Ismail. 2022. “Reclamation of actual automobile wash wastewater combined with energy recovery in 3D- microbial fuel cell packed with acid-activated multi walled carbon nanotubes coated anode.” Sep. Purif. Technol. 286 (Apr): 120455. https://doi.org/10.1016/j.seppur.2022.120455.
Rani, G., V. Jaswal, and K. N. Yogalakshmi. 2023. “Anode modification: An approach to improve power generation in microbial fuel cells (MFCs).” Chap. 9 in Development in wastewater treatment research and processes, edited by M. P. Shah, S. R. Couto, A. K. Nadda, and A. Daverey, 133–152. Amsterdam, Netherlands: Elsevier.
Reimers, C. E., M. Wolf, Y. Alleau, and C. Li. 2022. “Benthic microbial fuel cell systems for marine applications.” J. Power Sources 522 (Feb): 231033. https://doi.org/10.1016/j.jpowsour.2022.231033.
Rosenbaum, M., F. Zhao, M. Quaas, H. Wulff, U. Schröder, and F. Scholz. 2007. “Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells.” Appl. Catal., B 74 (3–4): 261–269. https://doi.org/10.1016/j.apcatb.2007.02.013.
Roshanravan, B., H. Younesi, M. Abdollahi, M. Rahimnejad, and S. H. Pyo. 2022. “Incorporating sulfonated MIL-100(Fe) in sulfonated polysulfone for enhancing microbial fuel cell performance.” Fuel 312 (Mar): 122962. https://doi.org/10.1016/j.fuel.2021.122962.
Ryu, J., Y. Gao, J. H. Cho, and S. Choi. 2021. “Horizontally structured microbial fuel cells in yarns and woven fabrics for wearable bioenergy harvesting.” J. Power Sources 484 (Feb): 229271. https://doi.org/10.1016/j.jpowsour.2020.229271.
Sabin, J. M., H. Leverenz, and H. N. Bischel. 2022. “Microbial fuel cell treatment energy-offset for fertilizer production from human urine.” Chemosphere 294 (May): 133594. https://doi.org/10.1016/j.chemosphere.2022.133594.
Sar, T., S. Harirchi, M. Ramezani, G. Bulkan, M. Y. Akbas, A. Pandey, and M. J. Taherzadeh. 2022. “Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review.” Sci. Total Environ. 810 (Mar): 152253. https://doi.org/10.1016/j.scitotenv.2021.152253.
Saravanan, A., P. S. Kumar, S. Srinivasan, S. Jeevanantham, R. Kamalesh, and S. Karishma. 2022. “Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy.” Chemosphere 290 (Mar): 133295. https://doi.org/10.1016/j.chemosphere.2021.133295.
Sayed, E. T., A. G. Olabi, M. Mouselly, H. Alawadhi, and M. A. Abdelkareem. 2024. “Zinc-based metal organic framework on carbon fiber brush as a novel anode of yeast-based microbial fuel cell.” Int. J. Hydrogen Energy 52 (Jan): 856–864. https://doi.org/10.1016/j.ijhydene.2023.06.016.
Sevda, S., and I. M. Abu-Reesh. 2019. “Improved petroleum refinery wastewater treatment and seawater desalination performance by combining osmotic microbial fuel cell and up-flow microbial desalination cell.” Environ. Technol. 40 (7): 888–895. https://doi.org/10.1080/09593330.2017.1410580.
Sharma, R., R. Kumari, D. Pant, and P. Malaviya. 2022. “Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of microbial fuel cells.” Chemosphere 292 (Apr): 133437. https://doi.org/10.1016/j.chemosphere.2021.133437.
Shen, J., C. Wang, Y. Liu, C. Hu, Y. Xin, N. Ding, and S. Su. 2018. “Effect of ultrasonic pretreatment of the dairy manure on the electricity generation of microbial fuel cell.” Biochem. Eng. J. 129 (Jan): 44–49. https://doi.org/10.1016/j.bej.2017.10.013.
Singh, S., P. K. Bairagi, and N. Verma. 2018. “Candle soot-derived carbon nanoparticles: An inexpensive and efficient electrode for microbial fuel cells.” Electrochim. Acta 264 (Feb): 119–127. https://doi.org/10.1016/j.electacta.2018.01.110.
Singh, S., A. Pophali, R. A. Omar, R. Kumar, P. Kumar, D. P. Mondal, D. Pant, and N. Verma. 2021. “A nickel oxide-decorated in situ grown 3-D graphitic forest engrained carbon foam electrode for microbial fuel cells.” Chem. Commun. 57 (7): 879–882. https://doi.org/10.1039/D0CC07303B.
Srikanth, S., M. Kumar, D. Singh, M. Singh, and B. Das. 2016. “Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation.” Bioresour. Technol. 221 (Dec): 70–77. https://doi.org/10.1016/j.biortech.2016.09.034.
Syed, Z., M. Sogani, A. Kumar, J. Rajvanshi, G. Sharma, and K. Sonu. 2022. “Biodegradation of synthetic estrogen using bioelectrochemical system and degradation pathway analysis through quadrupole-time-of-flight-mass spectrometry.” Bioresour. Technol. 349 (Apr): 126857. https://doi.org/10.1016/j.biortech.2022.126857.
Szelényi, G. Z., R. Kurdi, N. Nemestóthy, K. Bélafi-Bakó, and P. Bakonyi. 2022. “Managing the effluents of anaerobic fermentations by bioprocess schemes involving membrane bioreactors and bio-electrochemical systems: A mini-review.” Energies 15 (5): 1643. https://doi.org/10.3390/en15051643.
Tan, W. H., S. Chong, H. W. Fang, K. L. Pan, M. Mohamad, J. W. Lim, T. J. Tiong, Y. J. Chan, C. M. Huang, and T. C. K. Yang. 2021. “Microbial fuel cell technology—A critical review on scale-up issues.” Processes 9 (6): 985. https://doi.org/10.3390/pr9060985.
Tang, X., L. Liu, and Y. Cui. 2022. “β-FeOOH modified carbon monolith anode derived from wax gourd for microbial fuel cells.” Int. J. Hydrogen Energy 47 (7): 4838–4845. https://doi.org/10.1016/j.ijhydene.2021.11.096.
Taskan, B., M. Bakır, and E. Taskan. 2020a. “Enhanced power generation from algal biomass using multi-anode membrane-less sediment microbial fuel cell.” Int. J. Energy Res. 45 (2): 2011–2022. https://doi.org/10.1002/er.5894.
Taskan, B., and E. Taskan. 2021. “Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4.” Chemosphere 285 (Dec): 131538. https://doi.org/10.1016/j.chemosphere.2021.131538.
Taskan, B., E. Taskan, and H. Hasar. 2020b. “Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti–TiO2 electrode.” Environ Prog. Sustainable Energy 39 (5): e13407. https://doi.org/10.1002/ep.13407.
Thakur, A., A. Kumar, S. Kaya, D. V. N. Vo, and A. Sharma. 2022. “Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: A review.” Fuel 312 (Mar): 122934. https://doi.org/10.1016/j.fuel.2021.122934.
Tian, L., X. Yan, D. Wang, Q. Du, Y. Wan, L. Zhou, T. Li, C. Liao, N. Li, and X. Wang. 2022a. “Two key Geobacter species of wastewater-enriched electroactive biofilm respond differently to electric field.” Water Res. 213 (Apr): 118185. https://doi.org/10.1016/j.watres.2022.118185.
Tian, Y., C. Li, D. Liang, T. Xie, W. He, D. Li, and Y. Feng. 2022b. “Fungus-sourced filament-array anode facilitates Geobacter enrichment and promotes anodic bio-capacitance improvement for efficient power generation in microbial fuel cells.” Sci. Total Environ. 838 (1): 155926. https://doi.org/10.1016/j.scitotenv.2022.155926.
Toczyłowska-Mamińska, R., K. Pielech-Przybylska, A. Sekrecka-Belniak, and U. Dziekońska-Kubczak. 2020. “Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development.” Appl. Energy 271 (Aug): 115184. https://doi.org/10.1016/j.apenergy.2020.115184.
Tran, H. V. H., E. Kim, and S. P. Jung. 2022. “Anode biofilm maturation time, stable cell performance time, and time-course electrochemistry in a single-chamber microbial fuel cell with a brush-anode.” J. Ind. Eng. Chem. 106 (Feb): 269–278. https://doi.org/10.1016/j.jiec.2021.11.001.
Vempaty, A., A. Kumar, S. Pandit, M. Gupta, A. S. Mathuriya, D. Lahiri, M. Nag, Y. Kumar, S. Joshi, and N. Kumar. 2023. “Evaluation of the Datura peels derived biochar-based anode for enhancing power output in microbial fuel cell application.” Biocatal. Agric. Biotechnol. 47 (Jan): 102560. https://doi.org/10.1016/j.bcab.2022.102560.
Wang, J., B. Li, S. Wang, T. Liu, B. Jia, W. Liu, and P. Dong. 2022a. “Metal-organic framework-derived iron oxide modified carbon cloth as a high-power density microbial fuel cell anode.” J. Cleaner Prod. 341 (Mar): 130725. https://doi.org/10.1016/j.jclepro.2022.130725.
Wang, J., X. Song, Y. Wang, Z. Zhao, B. Wang, and D. Yan. 2017. “Effects of electrode material and substrate concentration on the bioenergy output and wastewater treatment in air-cathode microbial fuel cell integrating with constructed wetland.” Ecol. Eng. 99 (Feb): 191–198. https://doi.org/10.1016/j.ecoleng.2016.11.015.
Wang, R., M. Yan, H. Li, L. Zhang, B. Peng, J. Sun, D. Liu, and S. Liu. 2018. “FeS2 nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density.” Adv. Mater. 30 (22): 1800618. https://doi.org/10.1002/adma.201800618.
Wang, S., M. Xu, B. Jin, U. J. Wünsch, Y. Su, and Y. Zhang. 2022b. “Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water.” Water Res. 211 (Mar): 118046. https://doi.org/10.1016/j.watres.2022.118046.
Wei, H., X. S. Wu, L. Zou, G. Y. Wen, D. Y. Liu, and Y. Qiao. 2016. “Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells.” J. Power Sources 315 (May): 192–198. https://doi.org/10.1016/j.jpowsour.2016.03.033.
Wu, H., M. Cui, N. Yang, Y. Liu, X. Wang, L. Zhang, and G. Zhan. 2022. “Aerobic biocathodes with potential regulation for ammonia oxidation with concomitant cathodic oxygen reduction and their microbial communities.” Bioelectrochemistry 144 (Apr): 107997. https://doi.org/10.1016/j.bioelechem.2021.107997.
Wu, X., Z. Chen, Z. Lv, L. Zhang, F. Xin, Y. Li, G. Liu, W. Dong, P. Wei, and H. Jia. 2021. “Enhanced chloramphenicol-degrading biofilm formation in microbial fuel cells through a novel synchronous acclimation strategy.” J. Cleaner Prod. 317 (Oct): 128376. https://doi.org/10.1016/j.jclepro.2021.128376.
Xia, J., Y. Geng, S. Huang, D. Chen, N. Li, Q. Xu, H. Li, J. He, and J. Lu. 2021. “High-performance anode material based on S and N co-doped graphene/iron carbide nanocomposite for microbial fuel cells.” J. Power Sources 512 (Nov): 230482. https://doi.org/10.1016/j.jpowsour.2021.230482.
Xiao, B., F. Yang, and J. Liu. 2013. “Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.” J. Hazard. Mater. 254-255 (Jun): 57–63. https://doi.org/10.1016/j.jhazmat.2013.03.039.
Xu, H., X. Quan, Z. Xiao, and L. Chen. 2018. “Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells.” J. Chem. Eng. 335 (Mar): 539–547. https://doi.org/10.1016/j.cej.2017.10.159.
Xu, H., Y. Sheng, Q. Liu, C. Li, Q. Tang, Z. Li, and W. Wang. 2022. “In situ fabrication of gold nanoparticles into biocathodes enhance chloramphenicol removal.” Bioelectrochemistry 144 (Apr): 108006. https://doi.org/10.1016/j.bioelechem.2021.108006.
Yang, G., L. Huang, Z. Yu, X. Liu, S. Chen, J. Zeng, S. Zhou, and L. Zhuang. 2019. “Anode potentials regulate Geobacter biofilms: New insights from the composition and spatial structure of extracellular polymeric substances.” Water Res. 159 (Aug): 294–301. https://doi.org/10.1016/j.watres.2019.05.027.
Yang, J., S. Cheng, S. Zhang, W. Han, and B. Jin. 2022a. “Modifying Ti3C2 MXene with NH4+ as an excellent anode material for improving the performance of microbial fuel cells.” Chemosphere 288 (2): 132502. https://doi.org/10.1016/j.chemosphere.2021.132502.
Yang, J., Y. G. Zhao, X. Liu, and Y. Fu. 2022b. “Anode modification of sediment microbial fuel cells (SMFC) towards bioremediating mariculture wastewater.” Mar. Pollut. Bull. 182 (Sep): 114013. https://doi.org/10.1016/j.marpolbul.2022.114013.
Yang, Q., D. Luo, X. Liu, T. Guo, X. Zhao, X. Zheng, and W. Wang. 2021. “Improving the anode performance of microbial fuel cell with carbon nanotubes supported cobalt phosphate catalyst.” Bioelectrochemistry 142 (Dec): 107941. https://doi.org/10.1016/j.bioelechem.2021.107941.
Yap, K. L., L. N. Ho, S. A. Ong, K. Guo, Y. S. Oon, Y. P. Ong, and S. H. Thor. 2020. “Crucial roles of aeration and catalyst on caffeine removal and bioelectricity generation in a double chambered microbial fuel cell integrated electrocatalytic process.” J. Environ. Chem. Eng. 9 (1): 104636. https://doi.org/10.1016/j.jece.2020.104636.
Yi, G., et al. 2022a. “The ins and outs of photo-assisted microbial electrochemical systems for synchronous wastewater treatment and bioenergy recovery.” Resour. Conserv. Recycl. 181 (Jun): 106230. https://doi.org/10.1016/j.resconrec.2022.106230.
Yi, Y., A. Liang, L. Luo, Y. Zang, H. Zhao, and A. Luo. 2022b. “A novel real-time TMAO detection method based on microbial electrochemical technology.” Bioelectrochemistry 144 (Apr): 108038. https://doi.org/10.1016/j.bioelechem.2021.108038.
Yoon, J. Y., Y. Ahn, and U. Schröder. 2018. “Parylene C-coated PDMS-based microfluidic microbial fuel cells with low oxygen permeability.” J. Power Sources 398 (Sep): 209–214. https://doi.org/10.1016/j.jpowsour.2018.07.064.
You, J., J. Yu, S. Zhang, J. Chen, and D. Chen. 2023. “Performance and mechanism of innovative two-phase partitioning microbial fuel cell for effective propanethiol treatment.” Chem. Eng. J. 453 (2): 139731. https://doi.org/10.1016/j.cej.2022.139731.
Yu, S., Y. Liu, Y. Zhao, R. Khan, X. Cao, and C. Li. 2024. “CNFs@MnO2 nanofiber as anode material for improving the extracellular electron transfer of microbial fuel cells.” Catal. Sci. Technol. 14 (2): 464–477. https://doi.org/10.1039/D3CY01510F.
Yu, Y. Y., C. X. Guo, Y. C. Yong, C. M. Li, and H. Song. 2015. “Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.” Chemosphere 140 (Dec): 26–33. https://doi.org/10.1016/j.chemosphere.2014.09.070.
Yuan, J., H. Huang, S. G. Chatterjee, Z. Wang, and S. Wang. 2022. “Effective factors for the performance of a co-generation system for bioethanol and electricity production via microbial fuel cell technology.” Biochem. Eng. J. 178 (Jan): 108309. https://doi.org/10.1016/j.bej.2021.108309.
Zhang, B., et al. 2023a. “Recent advances in enrichment, isolation, and bio-electrochemical activity evaluation of exoelectrogenic microorganisms.” Biotechnol. Adv. 66 (Sep): 108175. https://doi.org/10.1016/j.biotechadv.2023.108175.
Zhang, S., S. Xu, and F. Dong. 2023b. “Effect of the shape parameter on droplet behavior in multiple channels of a proton-exchange membrane fuel cell.” J. Energy Eng. 149 (1): 04022047. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000874.
Zhang, Y., Y. Zheng, Q. Zhang, J. Sun, S. Wang, L. An, and L. Liu. 2022. “Catalytic membrane cathode integrated in a proton exchange membrane-free microbial fuel cell for coking wastewater treatment.” J. Taiwan Inst. Chem. Eng. 132 (Mar): 104117. https://doi.org/10.1016/j.jtice.2021.10.017.
Zhao, C., Y. Wang, S. Meng, W. Zhang, X. Zhang, L. Yan, Q. Wei, and D. Wei. 2023a. “Solid slow-release carbon source assembled microbial fuel cell for promoting superior nitrogen removal in an aerobic granular sludge bioreactor.” J. Environ. Manage. 325 (Jan): 116430. https://doi.org/10.1016/j.jenvman.2022.116430.
Zhao, N., Y. Jiang, M. Alvarado-Morales, L. Treu, I. Angelidaki, and Y. Zhang. 2018a. “Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass.” Bioelectrochemistry 123 (Oct): 145–149. https://doi.org/10.1016/j.bioelechem.2018.05.002.
Zhao, X., X. Li, Y. Xu, Y. Qi, Q. Wei, and X. Jia. 2023b. “Effects of Fe-Co@N-BC anode on degradation of sulfamethoxazole (SMX) in microbial fuel cells.” J. Water Process. Eng. 52 (Apr): 103569. https://doi.org/10.1016/j.jwpe.2023.103569.
Zhao, Y., Y. Ma, T. Li, Z. Dong, and Y. Wang. 2018b. “Modification of carbon felt anodes using double-oxidant HNO3/H2O2 for application in microbial fuel cells.” RSC Adv. 8 (4): 2059–2064. https://doi.org/10.1039/C7RA12923H.
Zheng, L., X. Lin, Y. Liu, H. Li, Y. Sun, and C. Li. 2022. “Synergistically enhanced oxygen reduction reaction and oxytetracycline mineralization by FeCoO/GO modified cathode in microbial fuel cell.” Sci. Total Environ. 808 (Feb): 151873. https://doi.org/10.1016/j.scitotenv.2021.151873.
Zhi, Z., Y. Pan, X. Lu, J. Wang, and G. Zhen. 2022. “Bioelectrochemical regulation accelerates biomethane production from waste activated sludge: Focusing on operational performance and microbial community.” Sci. Total Environ. 814 (Mar): 152736. https://doi.org/10.1016/j.scitotenv.2021.152736.
Zhou, J., H. Zhang, T. Zuo, Q. Jia, L. Wang, Y. Tian, L. Gong, Y. Zhou, and J. Wang. 2022a. “Enhanced copper-containing wastewater treatment with MnO2/CNTs modified anode microbial fuel cell.” Process Saf. Environ. Prot. 159 (Mar): 157–167. https://doi.org/10.1016/j.psep.2021.12.060.
Zhou, L., Q. Jiang, S. Sun, Y. Wu, T. Li, Y. Gao, W. Zhang, L. Tian, M. Tang, and X. Wang. 2022b. “Acetate stimulates tetracycline biodegradation pathways in bioelectrochemical system.” Sep. Purif. Technol. 286 (Apr): 120481. https://doi.org/10.1016/j.seppur.2022.120481.
Zhu, K., et al. 2022a. “Heteroatom-doped porous carbon nanoparticle-decorated carbon cloth (HPCN/CC) as efficient anode electrode for microbial fuel cells (MFCs).” J. Cleaner Prod. 336 (Feb): 130374. https://doi.org/10.1016/j.jclepro.2022.130374.
Zhu, X., C. Shen, J. Huang, L. Wang, Q. Pang, F. Peng, J. Hou, L. Ni, F. He, and B. Xu. 2022b. “The effect of sulfamethoxazole on nitrogen removal and electricity generation in a tidal flow constructed wetland coupled with a microbial fuel cell system: Microbial response.” Chem. Eng. J. 431 (Mar): 134070. https://doi.org/10.1016/j.cej.2021.134070.
Zhu, Y., Y. Feng, L. Zhang, N. Wang, P. Yang, J. Liu, and W. He. 2022c. “Economic affordable carbonized phenolic foam anode with controlled structure for microbial fuel cells.” Sci. Total Environ. 810 (Mar): 151314. https://doi.org/10.1016/j.scitotenv.2021.151314.
Zou, L., Z. Lu, Y. Huang, Z. E. Long, and Y. Qiao. 2017. “Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells.” J. Power Sources 359 (Aug): 549–555. https://doi.org/10.1016/j.jpowsour.2017.05.101.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 151Issue 2April 2025

History

Published online: Jan 2, 2025
Published in print: Apr 1, 2025
Discussion open until: Jun 2, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Research Fellow, Biofuels and Bioprocessing Research Center, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be Univ.), Bhubaneswar, Odisha 751030, India. ORCID: https://orcid.org/0000-0002-6867-6213. Email: [email protected]
Priti Chhanda Ojha [email protected]
Research Fellow, Biofuels and Bioprocessing Research Center, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be Univ.), Bhubaneswar, Odisha 751030, India. Email: [email protected]
Ritesh Ojha [email protected]
Research Fellow, Biofuels and Bioprocessing Research Center, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be Univ.), Bhubaneswar, Odisha 751030, India. Email: [email protected]
Jyotilagna Dash [email protected]
Research Fellow, Biofuels and Bioprocessing Research Center, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be Univ.), Bhubaneswar, Odisha 751030, India. Email: [email protected]
Assistant Professor, Biofuels and Bioprocessing Research Center, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be Univ.), Bhubaneswar, Odisha 751030, India (corresponding author). ORCID: https://orcid.org/0000-0003-4995-6882. Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share

ASCE OPEN: Multidisciplinary Journal of Civil Engineering