Technical Papers
Jul 27, 2024

Improving WISE Crop Evapotranspiration Estimates Using Crop Coefficients Derived from Remote-Sensing Algorithms

Publication: Journal of Irrigation and Drainage Engineering
Volume 150, Issue 5

Abstract

Sustainable irrigation water management is achievable only when irrigation scheduling is optimized to conserve water and soil resources in an agricultural setting. This study evaluated the use of remote sensing–based algorithms for determining actual crop evapotranspiration (ETa) mapping to update crop coefficients (kc) of an irrigation scheduler software (WISE). The scheduler’s kc values are based on the FAO-56 approach for crop evapotranspiration (ETc) determination. A surface-irrigated (furrow) maize (Zea mays L.) field in Fort Collins, Colorado, was used from July to September 2020 and 2021. An eddy covariance energy balance system (ECSEBS) installed on a tower at 3.5 m above the ground surface was used to determine hourly and daily maize ETa data. These EC-based ETa data were used to evaluate the performance of three approaches for maize ETa estimation and the FAO-56–based ETc predictions from WISE. Microsatellite PlanetScope multispectral imagery, at a 3-m-pixel spatial resolution, provided surface reflectance in the red and near-infrared bands for input in the remote sensing of ETa algorithms. On-site micrometeorological data were measured at the exact location of the ECSEBS tower. Optimization of kc values was done using an ordinary least-squares regression approach. The optimized kc values were calculated for the maize midseason growth stage. Results indicated that using remote sensing of ETa algorithms has excellent potential to improve irrigation scheduling by integrating optimized crop coefficients. WISE overestimated daily maize ETc predictions by as much as 26%. When remote sensing-based optimized kc values were introduced, the overestimation of daily maize ETc was reduced significantly, by 18% to 75%, depending on the remote sensing of the ETa algorithm used. The research findings support the combined use of remote sensing data and the FAO-56 approach for irrigation scheduling to improve agricultural water management at the farm level.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors thank the Irrigation Innovation Consortium (IIC) and Colorado Corn for funding this research. This research effort was supported by Colorado Agricultural Experiment Station (CAES)–USDA NIFA project COL00796, to whom the authors express gratitude for their support. Furthermore, the authors thank Cole Lucero, Rustin Jensen, Mia Morones, Kelsey Walker, and Luke Stark for the field efforts to collect data, install instrumentation, and farm management.
Author contributions: Edson Costa-Filho processed the data, developed the optimization analysis, and wrote the bulk of the manuscript. José L. Chávez, Allan Andales, and Ansley Brown were responsible for the project conceptualization and design, management, financial procurement, fieldwork planning, and manuscript writing contributions and editing.

References

Abedinpour, M., A. Sarangi, T. B. S. Rajput, M. Singh, H. Pathak, and T. Ahmad. 2012. “Performance evaluation of AquaCrop model for maize crop in a semi-arid environment.” Agric. Water Manage. 110 (Jan): 55–66. https://doi.org/10.1016/j.agwat.2012.04.001.
Acharya, B., and V. Sharma. 2021. “Comparison of satellite driven surface energy balance models in estimating crop evapotranspiration in semi-arid to arid inter-mountain region.” Remote Sens. 13 (9): 1822. https://doi.org/10.3390/rs13091822.
Allen, R. G. 1992. “Standard reference evapotranspiration calculations: REF-ET.” In Irrigation and drainage: Saving a threatened resource—In search of solutions, 140–145. Reston, VA: ASCE.
Allen, R. G. 2000. “Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study.” J. Hydrol. 229 (1–2): 27–41. https://doi.org/10.1016/S0022-1694(99)00194-8.
Allen, R. G., L. S. Pereira, D. Raes, and M. F. J. Smith. 1998. Crop evapotranspiration—Guidelines for computing crop water requirements. Rome: Food and Agriculture Organization.
Anac, M. S., M. Ul, I. H. Tüzel, D. Anac, B. Okur, and H. Hakerlerler. 1996. Optimum irrigation schedules for cotton under deficit irrigation conditions. Rome: Food and Agriculture Organization.
Andales, A. A., T. A. Bauder, and M. Arabi. 2014. “A mobile irrigation water management system using a collaborative GIS and weather station networks.” In Vol. 5 of Practical applications of agricultural system models to optimize the use of limited water: Advances in agricultural systems modeling, edited by L. R. Ahuja, L. Ma, and R. J. Lascano, 53–84. Madison, WI: American Society of Agronomy.
Anderson, M. C., C. M. U. Neale, F. Li, J. M. Norman, W. P. Kustas, H. Jayanthi, and J. Chavez. 2004. “Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery.” Remote Sens. Environ. 92 (4): 447–464. https://doi.org/10.1016/j.rse.2004.03.019.
Arora, N. K. 2019. “Impact of climate change on agriculture production and its sustainable solutions.” Environ. Sustainability 2 (2): 95–96. https://doi.org/10.1007/s42398-019-00078-w.
Arya, P. S. 2001. Introduction to micrometeorology. Amsterdam, Netherlands: Elsevier.
ASCE-EWRI (Environmental & Water Resources Institute). 2005. The ASCE standardized reference evapotranspiration equation. Reston, VA: ASCE.
Bartlett, A. C., A. A. Andales, M. Arabi, and T. A. Bauder. 2015. “A smartphone app to extend use of a cloud-based irrigation scheduling tool.” Comput. Electron. Agric. 111 (Apr): 127–130. https://doi.org/10.1016/j.compag.2014.12.021.
Bausch, W. C. 1995. “Remote sensing of crop coefficients for improving the irrigation scheduling of corn.” Agric. Water Manage. 27 (1): 55–68. https://doi.org/10.1016/0378-3774(95)01125-3.
Bhakta, I., S. Phadikar, and K. Majumder. 2019. “State-of-the-art technologies in precision agriculture: A systematic review.” J. Sci. Food Agric. 99 (11): 4878–4888. https://doi.org/10.1002/jsfa.9693.
Bhattarai, N., S. B. Shaw, L. J. Quackenbush, J. Im, and R. Niraula. 2016. “Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate.” Int. J. Appl. Earth Obs. Geoinf. 49 (Feb): 75–86. https://doi.org/10.1016/j.jag.2016.01.010.
Bodner, G., W. Loiskandl, and H. P. Kaul. 2007. “Cover crop evapotranspiration under semiarid conditions using FAO dual crop coefficient method with water stress compensation.” Agric. Water Manage. 93 (3): 85–98. https://doi.org/10.1016/j.agwat.2007.06.010.
Brest, C. L., and S. N. Goward. 1987. “Deriving surface albedo measurements from narrow band satellite data.” Int. J. Remote Sens. 8 (3): 351–367. https://doi.org/10.1080/01431168708948646.
Brunsell, N. A., and R. R. Gillies. 2002. “Incorporating surface emissivity into a thermal atmospheric correction.” Photogramm. Eng. Remote Sens. 68 (12): 1263–1270.
Brutsaert, W. 1975. “On a derivable formula for long-wave radiation from clear skies.” Water Resour. Res. 11 (5): 742–744. https://doi.org/10.1029/WR011i005p00742.
Brutsaert, W. 2013. Vol. 1 of Evaporation into the atmosphere: Theory, history and applications. New York: Springer.
Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley. 1971. “Flux-profile relationships in the atmospheric surface layer.” J. Atmos. Sci. 28 (2): 181–189. https://doi.org/10.1175/1520-0469(1971)028%3C0181:FPRITA%3E2.0.CO;2.
Chávez, J. L., P. H. Gowda, T. A. Howell, C. M. U. Neale, and K. S. Copeland. 2009. “Estimating hourly crop ET using a two-source energy balance model and multispectral airborne imagery.” Irrig. Sci. 28 (1): 79–91. https://doi.org/10.1007/s00271-009-0177-9.
Chávez, J. L., C. M. U. Neale, L. E. Hipps, J. H. Prueger, and W. P. Kustas. 2005. “Comparing aircraft-based remotely sensed energy balance fluxes with eddy covariance tower data using heat flux source area functions.” J. Hydrometeorol. 6 (6): 923–940. https://doi.org/10.1175/JHM467.1.
Chávez, J. L., C. M. U. Neale, J. H. Prueger, and W. P. Kustas. 2008. “Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values.” Irrig. Sci. 27 (1): 67–81. https://doi.org/10.1007/s00271-008-0122-3.
Choudhury, B. J., and J. L. Monteith. 1988. “A four-layer model for the heat budget of homogeneous land surfaces.” Q. J. R. Meteorolog. Soc. 114 (480): 373–398. https://doi.org/10.1002/qj.49711448006.
Cid, P., S. Taghvaeian, and N. C. Hansen. 2018. “Evaluation of the Fao-56 methodology for estimating maize water requirements under deficit and full irrigation regimes in semiarid northeastern Colorado.” Irrig. Drain. 67 (4): 605–614. https://doi.org/10.1002/ird.2245.
Clark, G. A., D. H. Rogers, and S. Briggeman. 2000. “KanSched—An ET-based irrigation scheduling tool for Kansas summer annual crops.” In Proc., 2004 Central Plains Irrigation Conf. Fort Collins, CO: Colorado State Univ.
Colaizzi, P. D., W. P. Kustas, M. C. Anderson, N. Agam, J. A. Tolk, S. R. Evett, T. A. Howell, P. H. Gowda, and S. A. O’Shaughnessy. 2012. “Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures.” Adv. Water Resour. 50 (Dec): 134–151. https://doi.org/10.1016/j.advwatres.2012.06.004.
Costa-Filho, E., J. L. Chávez, A. A. Andales, and A. J. Brown. 2022. “Updating corn crop coefficients with remote sensing-based actual evapotranspiration algorithms.” In Proc., World Environmental and Water Resources Congress 2022, 618–633. Reston, VA: ASCE.
Costa-Filho, E., J. L. Chávez, and L. Comas. 2020. “Determining maize water stress through an air temperature-based sensible heat flux model.” Irrig. Sci. 38: 501–518. https://doi.org/10.1007/s00271-020-00668-1.
Costa-Filho, E., J. L. Chávez, H. Zhang, and A. A. Andales. 2021. “An optimized surface aerodynamic temperature approach to estimate maize sensible heat flux and evapotranspiration.” Agric. For. Meteorol. 311 (Apr): 108683. https://doi.org/10.1016/j.agrformet.2021.108683.
Cross, H. Z., and M. S. Zuber. 1972. “Prediction of flowering dates in maize based on different methods of estimating thermal units.” Agron. J. 64 (3): 351–355. https://doi.org/10.2134/agronj1972.00021962006400030029x.
Csillik, O., M. Belgiu, G. P. Asner, and M. Kelly. 2019. “Object-based time-constrained dynamic time warping classification of crops using Sentinel-2.” Remote Sens. 11 (10): 1257. https://doi.org/10.3390/rs11101257.
Daughtry, C. S. T., W. P. Kustas, M. S. Moran, P. J. Pinter Jr., R. D. Jackson, P. W. Brown, W. D. Nichols, and L. W. Gay. 1990. “Spectral estimates of net radiation and soil heat flux.” Remote Sens. Environ. 32 (2–3): 111–124. https://doi.org/10.1016/0034-4257(90)90012-B.
Debnath, S., S. Adamala, and N. S. Raghuwanshi. 2015. “Sensitivity analysis of FAO-56 Penman-Monteith method for different agro-ecological regions of India.” Environ. Processes 2 (4): 689–704. https://doi.org/10.1007/s40710-015-0107-1.
Domínguez, A., J. Tarjuelo, J. de Juan, E. López-Mata, J. Breidy, and F. Karam. 2011. “Deficit irrigation under water stress and salinity conditions: The MOPECO-Salt model.” Agric. Water Manage. 98 (9): 1451–1461. https://doi.org/10.1016/j.agwat.2011.04.015.
Dyer, A. 1974. “A review of flux-profile relationships.” Boundary Layer Meteorol. 7 (3): 363–372. https://doi.org/10.1007/BF00240838.
Dyer, A. J., and B. B. Hicks. 1970. “Flux-gradient relationships in the constant flux layer.” Q. J. R. Meteorolog. Soc. 96 (410): 715–721. https://doi.org/10.1002/qj.49709641012.
El-Shafei, A. A., and M. A. Mattar. 2022. “Irrigation scheduling and production of wheat with different water quantities in surface and drip irrigation: Field experiments and modelling using CROPWAT and SALTMED.” Agronomy 12 (7): 1488. https://doi.org/10.3390/agronomy12071488.
Er-Raki, S., A. Chehbouni, N. Guemouria, J. Ezzahar, S. Khabba, G. Boulet, and L. Hanich. 2009. “Citrus orchard evapotranspiration: Comparison between eddy covariance measurements and the FAO-56 approach estimates.” Plant Biosyst. 143 (1): 201–208. https://doi.org/10.1080/11263500802709897.
FAO (Food and Agriculture Organization). 1992. CROPWAT: A computer program for irrigation planning and management by M. Smith. Rome: FAO.
Finnigan, J. J. 1985. “Turbulent transport in flexible plant canopies.” In The forest-atmosphere interaction, 443–480. Dordrecht, Netherlands: Springer.
Fisher, D. K., and H. C. Pringle III. 2013. “Evaluation of alternative methods for estimating reference evapotranspiration.” Agric. Sci. 4 (8A): 1–10. https://doi.org/10.4236/as.2013.48A008.
Foken, T., and C. J. Napo. 2008. Vol. 2 of Micrometeorology. Berlin: Springer.
Foken, T., F. Wimmer, M. Mauder, C. Thomas, and C. Liebethal. 2006. “Some aspects of the energy balance closure problem.” Atmos. Chem. Phys. 6 (12): 4395–4402. https://doi.org/10.5194/acp-6-4395-2006.
Foley, J. A., et al. 2011. “Solutions for a cultivated planet.” Nature 478 (7369): 337–342. https://doi.org/10.1038/nature10452.
French, A. N., D. J. Hunsaker, C. A. Sanchez, M. Saber, J. R. Gonzalez, and R. Anderson. 2020. “Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest.” Agric. Water Manage. 239 (Feb): 106266. https://doi.org/10.1016/j.agwat.2020.106266.
French, A. N., D. J. Hunsaker, and K. R. Thorp. 2015. “Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models.” Remote Sens. Environ. 158 (Aug): 281–294. https://doi.org/10.1016/j.rse.2014.11.003.
Geerts, S., D. Raes, and M. Garcia. 2010. “Using AquaCrop to derive deficit irrigation schedules.” Agric. Water Manage. 98 (1): 213–216. https://doi.org/10.1016/j.agwat.2010.07.003.
Gowda, P. H., T. A. Howell, G. Paul, P. D. Colaizzi, T. H. Marek, B. Su, and K. S. Copeland. 2013. “Deriving hourly evapotranspiration rates with SEBS: A lysimetric evaluation.” Vadose Zone J. 12 (3): 1–11. https://doi.org/10.2136/vzj2012.0110.
Gu, Z., Z. Qi, R. Burghate, S. Yuan, X. Jiao, and J. Xu. 2020. “Irrigation scheduling approaches and applications: A review.” J. Irrig. Drain. Eng. 146 (6): 04020007. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464.
Guzinski, R., M. C. Anderson, W. P. Kustas, H. Nieto, and I. Sandholt. 2013. “Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day–night MODIS observations.” Hydrol. Earth Syst. Sci. 17 (7): 2809–2825. https://doi.org/10.5194/hess-17-2809-2013.
Han, M., H. Zhang, J. L. Chávez, L. Ma, T. J. Trout, and K. C. DeJonge. 2018. “Improved soil water deficit estimation through the integration of canopy temperature measurements into a soil water balance model.” Irrig. Sci. 36 (3): 187–201. https://doi.org/10.1007/s00271-018-0574-z.
Heng, L. K., T. Hsiao, S. Evett, T. Howell, and P. Steduto. 2009. “Validating the FAO AquaCrop model for irrigated and water deficient field maize.” Agron. J. 101 (3): 488–498. https://doi.org/10.2134/agronj2008.0029xs.
Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter, Jr. 1981. “Canopy temperature as a crop water stress indicator.” Water Resour. Res. 17 (4): 1133–1138. https://doi.org/10.1029/WR017i004p01133.
Jayanthi, H., C. M. U. Neale, and J. L. Wright. 2007. “Development and validation of canopy reflectance-based crop coefficient for potato.” Agric. Water Manage. 88 (1–3): 235–246. https://doi.org/10.1016/j.agwat.2006.10.020.
Jensen, M. 1968. “Water consumption by agricultural plants.” In Vol. II of Water deficits and plant growth, edited by T. T. Kozlowski. New York: Academic Press.
Johnson, L. F., and T. J. Trout. 2012. “Satellite NDVI assisted monitoring of vegetable crop evapotranspiration in California’s San Joaquin Valley.” Remote Sens. 4 (2): 439–455. https://doi.org/10.3390/rs4020439.
Jones, H. G. 2004. “Irrigation scheduling: Advantages and pitfalls of plant-based methods.” J. Exp. Bot. 55 (407): 2427–2436. https://doi.org/10.1093/jxb/erh213.
Kaimal, J. C., and J. J. Finnigan. 1994. Atmospheric boundary layer flows: Their structure and measurement. New York: Oxford University Press.
Kington, J. D., IV, K. A. Jordahl, A. N. Kanwar, A. Kapadia, M. Schönert, and K. Wurster. 2019. “Spatially and temporally consistent smallsat-derived basemaps for analytic applications.” In Vol. 2019 of Proc., AGU Fall Meeting Abstracts. Washington, DC: American Geophysical Union.
Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid. 2015. “A simple two-dimensional parameterization for flux footprint prediction (FFP).” Geosci. Model Dev. 8 (11): 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015.
Kustas, W. P., and C. S. T. Daughtry. 1990. “Estimation of the soil heat flux/net radiation ratio from spectral data.” Agric. For. Meteorol. 49 (3): 205–223. https://doi.org/10.1016/0168-1923(90)90033-3.
Kustas, W. P., H. Nieto, L. Morillas, M. C. Anderson, J. G. Alfieri, L. E. Hipps, L. Villagarcía, F. Domingo, and M. Garcia. 2016. “Revisiting the paper ‘Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective’.” Remote Sens. Environ. 184 (Oct): 645–653. https://doi.org/10.1016/j.rse.2016.07.024.
Kustas, W. P., and J. M. Norman. 2000. “A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces.” Agron. J. 92 (5): 847–854. https://doi.org/10.2134/agronj2000.925847x.
Levin, A., and L. Nackley. 2021. “Principles and practices of plant-based irrigation management.” HortTechnology 31 (6): 650–660. https://doi.org/10.21273/HORTTECH04862-21.
Li, F., D. Yu, and Y. Zhao. 2019. “Irrigation scheduling optimization for cotton based on the AquaCrop model.” Water Resour. Manage. 33 (1): 39–55. https://doi.org/10.1007/s11269-018-2087-1.
Li, X., W. Zhu, Z. Xie, P. Zhan, X. Huang, L. Sun, and Z. Duan. 2021. “Assessing the effects of time interpolation of NDVI composites on phenology trend estimation.” Rem. Sens. 13 (24): 5018. https://doi.org/10.3390/rs13245018.
Liou, Y. A., and S. K. Kar. 2014. “Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—A review.” Energies 7 (5): 2821–2849. https://doi.org/10.3390/en7052821.
Liu, H., Z. Gao, and G. G. Katul. 2021. “Non-closure of surface energy balance linked to asymmetric turbulent transport of scalars by large eddies.” J. Geophys. Res.: Atmos. 126 (7): e2020JD034474. https://doi.org/10.1029/2020JD034474.
Liu, S. M., Z. W. Xu, W. Wang, Z. Z. Jia, M. J. Zhu, J. Bai, and J. M. Wang. 2011. “A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem.” Hydrol. Earth Syst. Sci. 15 (4): 1291–1306. https://doi.org/10.5194/hess-15-1291-2011.
Lund, M. R., and H. Soegaard. 2003. “Modelling of evaporation in a sparse millet crop using a two-source model including sensible heat advection within the canopy.” J. Hydrol. 280 (1–4): 124–144. https://doi.org/10.1016/S0022-1694(03)00222-1.
Main-Knorn, M., B. Pflug, J. Louis, V. Debaecker, U. Müller-Wilm, and F. Gascon. 2017. “Sen2Cor for Sentinel-2.” In Vol. 10427 of Proc., Image and Signal Processing for Remote Sensing XXIII, 37–48. Bellingham, WA: Society of Photographic Instrumentation Engineers.
Malhi, G. S., M. Kaur, and P. Kaushik. 2021. “Impact of climate change on agriculture and its mitigation strategies: A review.” Sustainability 13 (3): 1318. https://doi.org/10.3390/su13031318.
Martin, D. L., E. C. Stegman, and E. Fereres. 1990. “Irrigation scheduling principles.” In Management of farm irrigation systems, 155–203. St. Joseph, MI: American Society of Agricultural Engineers.
Massman, W. J. 1992. “A surface energy balance method for partitioning evapotranspiration data into plant and soil components for a surface with partial canopy cover.” Water Resour. Res. 28 (6): 1723–1732. https://doi.org/10.1029/92WR00217.
McMaster, G. S., and W. W. Wilhelm. 1997. “Growing degree-days: One equation, two interpretations.” Agric. For. Meteorol. 87 (4): 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0.
McShane, R. R., K. P. Driscoll, and R. Sando. 2017. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents. Reston, VA: USGS.
Memon, A. V., and S. Jamsa. 2018. “Crop water requirement and irrigation scheduling of soybean and tomato crop using CROPWAT 8.0.” Int. Res. J. Eng. Technol. 5 (9): 669–671.
Mkhwanazi, M., J. L. Chávez, and E. H. Rambikur. 2012. “Comparison of large aperture scintillometer and satellite-based energy balance models in sensible heat flux and crop evapotranspiration determination.” Int. J. Remote Sens. Appl. 2 (1): 24–30.
Monin, A. S., and A. M. Obukhov. 1954. “Basic laws of turbulent mixing in the atmosphere near the ground.” Tr. Akad. Nauk SSSR Geofiz. Inst. 24 (151): 163–187.
Monteith, J. L. 1973. Principles of environmental physics, 214. London: Edward Arnold.
Monteith, J. L., and G. Szeicz. 1961. “The radiation balance of bare soil and vegetation.” Q. J. R. Meteorolog. Soc. 87 (372): 159–170. https://doi.org/10.1002/qj.49708737205.
Mulla, D. J. 2013. “Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps.” Biosyst. Eng. 114 (4): 358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009.
Neale, C. M. U., W. C. Bausch, and D. F. Heermann. 1990. “Development of reflectance-based crop coefficients for corn.” Trans. ASAE 32 (6): 1891–1900. https://doi.org/10.13031/2013.31240.
Norman, J. M., W. P. Kustas, and K. S. Humes. 1995. “Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature.” Agric. For. Meteorol. 77 (3–4): 263–293. https://doi.org/10.1016/0168-1923(95)02265-Y.
Ochsner, T. E., T. J. Sauer, and R. Horton. 2006. “Field tests of the soil heat flux plate method and some alternatives.” Agron. J. 98 (4): 1005. https://doi.org/10.2134/agronj2005.0249.
Ortega Álvarez, J. F., J. A. de Juan Valero, J. M. Tarjuelo Martín-Benito, and E. López Mata. 2004. “MOPECO: An economic optimization model for irrigation water management.” Irrig. Sci. 23 (2): 61–75. https://doi.org/10.1007/s00271-004-0094-x.
Ott, R. L., and M. T. Longnecker. 2015. An introduction to statistical methods and data analysis. Boston: Cengage Learning.
Pardossi, A., and L. Incrocci. 2011. “Traditional and new approaches to irrigation scheduling in vegetable crops.” HortTechnology 21 (3): 309–313. https://doi.org/10.21273/HORTTECH.21.3.309.
Paul, G., P. H. Gowda, P. V. Prasad, T. A. Howell, S. A. Staggenborg, and C. M. U. Neale. 2013. “Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08.” Adv. Water Resour. 59 (Apr): 157–168. https://doi.org/10.1016/j.advwatres.2013.06.003.
Paulson, C. A. 1970. “The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer.” J. Appl. Meteorol. Climatol. 9 (6): 857–861. https://doi.org/10.1175/1520-0450(1970)009%3C0857:TMROWS%3E2.0.CO;2.
Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. “Updated world map of the Köppen-Geiger climate classification.” Hydrol. Earth Syst. Sci. 11 (5): 1633–1644. https://doi.org/10.5194/hess-11-1633-2007.
Pereira, L. S., P. Paredes, and N. Jovanovic. 2020a. “Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach.” Agric. Water Manage. 241 (Jun): 106357. https://doi.org/10.1016/j.agwat.2020.106357.
Pereira, L. S., P. Paredes, F. Melton, L. Johnson, T. Wang, R. López-Urrea, J. J. Cancela, and R. G. Allen. 2020b. “Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data.” Agric. Water Manage. 241 (Sep): 106197. https://doi.org/10.1016/j.agwat.2020.106197.
Pierce, F. J., and P. Nowak. 1999. “Aspects of precision agriculture.” Adv. Agron. 67 (Mar): 1–85. https://doi.org/10.1016/S0065-2113(08)60513-1.
Planet Team. 2017. Planet application program interface: In space for life on Earth. San Francisco: Planet Labs.
Raes, D., P. Steduto, T. C. Hsiao, and E. Fereres. 2009. “AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description.” Agron. J. 101 (3): 438–447. https://doi.org/10.2134/agronj2008.0140s.
Rao, N. H. 1987. “Field test of a simple soil-water balance model for irrigated areas.” J. Hydrol. 91 (1–2): 179–186. https://doi.org/10.1016/0022-1694(87)90135-1.
Rondeaux, G., M. Steven, and F. Baret. 1996. “Optimization of soil-adjusted vegetation indices.” Remote Sens. Environ. 55 (2): 95–107. https://doi.org/10.1016/0034-4257(95)00186-7.
Saitta, D., D. Vanella, J. M. Ramírez-Cuesta, G. Longo-Minnolo, F. Ferlito, and S. Consoli. 2020. “Comparison of orange orchard evapotranspiration by eddy covariance, sap flow, and FAO-56 methods under different irrigation strategies.” J. Irrig. Drain. Eng. 146 (7): 05020002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001479.
Sánchez, J. M., R. López-Urrea, F. Valentín, V. Caselles, and J. M. Galve. 2019. “Lysimeter assessment of the simplified two-source energy balance model and eddy covariance system to estimate vineyard evapotranspiration.” Agric. For. Meteorol. 274 (Apr): 172–183. https://doi.org/10.1016/j.agrformet.2019.05.006.
Sánchez, J. M., L. Simón, J. González-Piqueras, F. Montoya, and R. López-Urrea. 2021. “Monitoring crop evapotranspiration and transpiration/evaporation partitioning in a drip-irrigated young almond orchard applying a two-source surface energy balance model.” Water 13 (15): 2073. https://doi.org/10.3390/w13152073.
Schotanus, P., F. T. M. Nieuwstadt, and H. A. R. De Bruin. 1983. “Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes.” Boundary Layer Meteorol. 26 (1): 81–93. https://doi.org/10.1007/BF00164332.
Seers, B. M., and N. T. Shears. 2015. New Zealand’s climate data in R—An introduction to clifro. Auckland, New Zealand: Univ. of Auckland.
Steduto, P., T. C. Hsiao, D. Raes, and E. Fereres. 2009. “AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles.” Agron. J. 101 (3): 426–437. https://doi.org/10.2134/agronj2008.0139s.
Su, W., M. Zhang, K. Jiang, D. Zhu, J. Huang, and P. Wang. 2018. “Atmospheric correction method for Sentinel-2 satellite imagery.” Acta Optica Sin. 38 (1): 0128001. https://doi.org/10.3788/AOS201838.0128001.
Su, Z. 2002. “The surface energy balance system (SEBS) for estimation of turbulent heat fluxes.” Hydrol. Earth Syst. Sci. 6 (1): 85–100. https://doi.org/10.5194/hess-6-85-2002.
Suleiman, A. A., C. M. T. Soler, and G. Hoogenboom. 2007. “Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate.” Agric. Water Manage. 91 (1–3): 33–42. https://doi.org/10.1016/j.agwat.2007.03.006.
Taghvaeian, S., A. A. Andales, L. N. Allen, I. Kisekka, S. A. O’Shaughnessy, D. O. Porter, R. Sui, S. Irmak, A. Fulton, and J. Aguilar. 2020. “Irrigation scheduling for agriculture in the United States: The progress made and the path forward.” Trans. ASABE 63 (5): 1603–1618. https://doi.org/10.13031/trans.14110.
Tajchman, S. J. 1971. “Evapotranspiration and energy balances of forest and field.” Water Resour. Res. 7 (3): 511–523. https://doi.org/10.1029/WR007i003p00511.
Tanner, C. 1960. “Energy balance approach to evapotranspiration from crops.” Soil Sci. Soc. Am. J. 24 (1): 1–9. https://doi.org/10.2136/sssaj1960.03615995002400010012x.
Tanner, C. B., and G. W. Thurtell. 1969. Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer. Madison, WI: Wisconsin Univ.
Thom, A. I. 1972. “Momentum, mass and heat exchange of vegetation.” Q. J. R. Meteorolog. Soc. 98 (415): 124–134. https://doi.org/10.1002/qj.49709841510.
Timmermans, W. J., W. P. Kustas, M. C. Anderson, and A. N. French. 2007. “An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes.” Remote Sens. Environ. 108 (4): 369–384. https://doi.org/10.1016/j.rse.2006.11.028.
Trout, T. J., and K. C. DeJonge. 2018. “Crop water use and crop coefficients of maize in the great plains.” J. Irrig. Drain. Eng. 144 (6): 04018009. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001309.
Twine, T. E., W. P. Kustas, J. M. Norman, D. R. Cook, P. R. Houser, T. P. Meyers, J. H. Prueger, P. J. Starks, and M. L. Wesely. 2000. “Correcting eddy-covariance flux underestimates over a grassland.” Agric. For. Meteorol. 103 (3): 279–300. https://doi.org/10.1016/S0168-1923(00)00123-4.
Verma, S. B. 1989. “Aerodynamic resistances to transfers of heat, mass and momentum.” In Estimation of area1 evapotranspiration, edited by T. A. Black, D. L. Splittlehouse, M. D. Novak, and D. T. Price, 13–20. Wallingford, UK: International Association for Hydrological Science.
Vorobiova, N., and A. Chernov. 2017. “Curve fitting of MODIS NDVI time series in the task of early crops identification by satellite images.” Procedia Eng. 201 (Sep): 184–195. https://doi.org/10.1016/j.proeng.2017.09.596.
Webb, E. K. 1970. “Profile relationships: The log-linear range, and extension to strong stability.” Q. J. R. Meteorolog. Soc. 96 (407): 67–90. https://doi.org/10.1002/qj.49709640708.
Webb, E. K., G. I. Pearman, and R. Leuning. 1980. “Correction of flux measurements for density effects due to heat and water vapour transfer.” Q. J. R. Meteorolog. Soc. 106 (447): 85–100. https://doi.org/10.1002/qj.49710644707.
Willmott, C. J., S. M. Robeson, and K. Matsuura. 2012. “A refined index of model performance.” Int. J. Climatol. 32 (Mar): 2088–2094. https://doi.org/10.1002/joc.2419.
Yan, H., H. Shi, O. Hiroki, C. Zhang, Z. Xue, B. Cai, and G. Wang. 2015. “Modeling bulk canopy resistance from climatic variables for predicting hourly evapotranspiration of maize and buckwheat.” Meteorol. Atmos. Phys. 127 (3): 305–312. https://doi.org/10.1007/s00703-015-0369-1.
Yin, Y., S. Wu, D. Zheng, and Q. Yang. 2008. “Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China.” Agric. Water Manage. 95 (1): 77–84. https://doi.org/10.1016/j.agwat.2007.09.002.
Zhang, B., Y. Liu, D. Xu, N. Zhao, B. Lei, R. D. Rosa, P. Paredes, T. A. Paço, and L. S. Pereira. 2013. “The dual crop coefficient approach to estimate and partitioning evapotranspiration of the winter wheat–summer maize crop sequence in North China Plain.” Irrig. Sci. 31 (6): 1303–1316. https://doi.org/10.1007/s00271-013-0405-1.
Zhao, Y., F. Li, and R. Jiang. 2021. “Irrigation schedule optimization based on the combination of an economic irrigation quota and the AquaCrop model.” Irrig. Drain. 70 (4): 773–785. https://doi.org/10.1002/ird.2577.
Zhou, Y., and X. Li. 2018. “Progress in the energy closure of eddy covariance systems.” Adv. Earth Sci. 33 (9): 898–913. https://doi.org/10.11867/j.issn.1001-8166.2018.09.0898.

Information & Authors

Information

Published In

Go to Journal of Irrigation and Drainage Engineering
Journal of Irrigation and Drainage Engineering
Volume 150Issue 5October 2024

History

Received: Dec 13, 2022
Accepted: May 2, 2024
Published online: Jul 27, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 27, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Edson Costa-Filho [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Colorado State Univ., Fort Collins, CO 80523-1372. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Colorado State Univ., Fort Collins, CO 80523-1372 (corresponding author). ORCID: https://orcid.org/0000-0001-6456-0822. Email: [email protected]
Allan A. Andales, Ph.D. [email protected]
Professor, Dept. of Soil and Crop Sciences, Colorado State Univ., Fort Collins, CO 80523-1170. Email: [email protected]
Ansley J. Brown [email protected]
Researcher, Dept. of Soil and Crop Sciences, Colorado State Univ., Fort Collins, CO 80523-1170. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share