Technical Papers
Jul 30, 2024

Canopy-Radiation Balance Method to Assess Daily Actual Evapotranspiration: Applications in Brazil’s Caatinga Forest

Publication: Journal of Hydrologic Engineering
Volume 29, Issue 5

Abstract

Evapotranspiration is a key hydrological process in Brazil’s 1,000,000-km2 tropical semiarid Caatinga biome, where monitoring is crucial, but data are scarce. We propose a method to estimate daily actual evapotranspiration (LE) based on the canopy-radiation balance, measuring air and canopy temperatures, relative humidity, wind speed, and global radiation. The method was applied at a location with preserved Caatinga forest [Aiuaba Experimental Basin, daily average net radiation (Rn) of 12  MJ/m2] during one hydrological year (2020–2021). The results, which agree with independently performed field measurements, identify the predominance of distinct evaporative processes throughout the year. In the dry season, net radiation is high (16.7  MJ/m2/day), but actual evapotranspiration is negligible (LE/Rn<0.01) because stress due to extremely low soil water content causes leave deciduousness and root shrinkage. Contrastingly, in the rainy season, soil water content increases, leaves recover, and roots expand, enhancing actual evapotranspiration (LE=6  mm/day and LE/Rn=0.89). Thus, in the Caatinga forest, during the dry and transition periods, actual evapotranspiration is ultimately ruled by the soil water content (source-limited), whereas during the rainy season, it is sink-limited (i.e., controlled by atmospheric demand).

Practical Applications

The authors developed a new method to assess actual evapotranspiration in forested areas. The actual evapotranspiration, which is fundamental to compute irrigation demand, is also essential to understand the impact of climate change on forests. This is particularly important for drylands, such as the 1,000,000-km2 Brazilian semiarid region, where water is scarce and actual evapotranspiration is high, consuming 70% of the precipitation. The method, which estimates the energy balance on the leaves of forest trees, demands the measurement of only a few variables, such as temperature, air relative humidity, wind speed, and radiation. The equipment to perform the measurement is much cheaper (less than 10%) than that of the reference methods for this kind of study. Therefore, with the same budget, the method can be applied at more locations, increasing the spatial representation of the measurements. The method hereafter presented is especially meant to help semiarid and arid regions, where evapotranspiration is high and monitoring is crucial, but data are often scarce.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon request.

Acknowledgments

The authors thank the Federal University of Recôncavo da Bahia and the Federal University of Ceará for their support. This research was funded by CNPq (Grant No. 409332/2018-6) and CAPES/Print (Grant No. 88881.311770/2018-01), to whom we are grateful.

References

Alarcón, J. J., R. Domingo, S. R. Green, M. J. Sánchez-Blanco, P. Rodríguez, and A. Torrecillas. 2000. “Sap flow as an indicator of transpiration and the water status of young apricot trees.” Plant Soil 227 (1): 77–85. https://doi.org/10.1023/A:1026520111166.
Alcantara Costa, J., J. Navarro-Hevia, C. A. G. Costa, and J. C. de Araújo. 2021. “Temporal dynamics of evapotranspiration in semiarid native forests in Brazil and Spain using remote sensing.” Hydrol. Processes 35 (3): e14070. https://doi.org/10.1002/hyp.14070.
Allen, R. G., L. S. Pereira, T. A. Howell, and M. E. Jensen. 2011. “Evapotranspiration information reporting: I. Factors governing measurement accuracy.” Agric. Water Manage. 98 (6): 899–920. https://doi.org/10.1016/j.agwat.2010.12.015.
Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. “Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.” FAO Rome 300 (9): D05109.
Allen, R. G., M. Tasumi, and R. Trezza. 2007. “Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–Model.” J. Irrig. Drain. Eng. 133 (4): 380–394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380).
Annandale, J. G., N. Z. Jovanovic, G. S. Campbell, N. Du Sautoy, and P. Lobit. 2004. “Two-dimensional solar radiation interception model for hedgerow fruit trees.” Agric. For. Meteorol. 121 (3–4): 207–225. https://doi.org/10.1016/j.agrformet.2003.08.004.
Anwar, S., and A. Srivastava. 2023. “On the sensitivity of the potential evapotranspiration of Egypt to different dynamical downscaling options and boundary layer schemes using a high-resolution Regional Climate Model (RegCM4).” Eng. Proc. 52 (1): 116. https://doi.org/10.13140/RG.2.2.22158.33606.
Bambach, N., W. Kustas, J. Alfieri, J. Prueger, L. Hipps, L. McKee, S. J. Castro, J. Volk, M. M. Alsina, and A. J. McElrone. 2022. “Evapotranspiration uncertainty at micrometeorological scales: The impact of the eddy covariance energy imbalance and correction methods.” Irrig. Sci. 40 (4–5): 445–461. https://doi.org/10.1007/s00271-022-00783-1.
Bartholic, J. F., L. N. Namken, and C. L. Wiegand. 1970. “Combination equations used to calculate evaporation and potential evaporation.” In Combination equations used to calculate evaporation and potential evaporation, 41–170. Washington, DC: USDA.
Bastiaanssen, W. G. M. 1995. “Regionalization of surface flux densities and moisture indicators in composite terrain.” In A remote sensing approach under clear skies in Mediterranean climates, 271. Wageningen, Netherlands: DLO Winand Staring Centre.
Bellocchi, G., et al. 2023. “Sensitivity of simulated soil water content, evapotranspiration, gross primary production and biomass to climate change factors in Euro-Mediterranean grasslands.” Agric. For. Meteorol. 343 (Dec): 109778. https://doi.org/10.1016/j.agrformet.2023.109778.
Brown, K. W., and N. J. Rosenberg. 1973. “A resistance model to predict evapotranspiration and its application to a sugar beet field.” Agron. J. 65 (3): 341–347. https://doi.org/10.2134/agronj1973.00021962006500030001x.
Campbell, G. S., and J. M. Norman. 1998. “Water vapor and other gases.” In An introduction to environmental biophysics, 37–51. New York: Springer.
Carvalho, H. F. D. S., M. S. B. D. Moura, and T. G. F. D. Silva. 2018. “Fluxos de radiação e energia em caatinga preservada e cana-de-açúcar no Semiárido” [Radiation and energy fluxes in preserved caatinga and Sugarcane in Semi-Arid]. [In Portuguese.] Revista Brasileira de Meteorologia 33 (Mar): 452–458. https://doi.org/10.1590/0102-7786333005.
Costa, C. A. G., J. W. B. Lopes, E. A. R. Pinheiro, J. C. D. Araújo, and R. R. Gomes Filho. 2013. “Spatial behaviour of soil moisture in the root zone of the Caatinga biome.” Revista Ciência Agronômica 44 (Jun): 685–694. https://doi.org/10.1590/S1806-66902013000400004.
Cowan, I. R. 1965. “Transport of water in the soil-plant-atmosphere system.” J. Appl. Ecol. 2 (1): 221–239. https://doi.org/10.2307/2401706.
Cuxart, J., and A. A. Boone. 2020. “Evapotranspiration over land from a boundary-layer meteorology perspective.” Bound.-Layer Meteorol. 177 (2–3): 427–459. https://doi.org/10.1007/s10546-020-00550-9.
de Almeida, C. L., T. R. A. de Carvalho, and J. C. de Araújo. 2019. “Leaf area index of Caatinga biome and its relationship with hydrological and spectral variables.” Agric. For. Meteorol. 279 (Jun): 107705. https://doi.org/10.1016/j.agrformet.2019.107705.
de Figueiredo, J. V., J. C. de Araújo, P. H. A. Medeiros, and A. C. Costa. 2016. “Runoff initiation in a preserved semiarid Caatinga small watershed, Northeastern Brazil.” Hydrol. Processes 30 (13): 2390–2400. https://doi.org/10.1002/hyp.10801.
de Jong van Lier, Q., J. C. van Dam, A. Durigon, M. A. Dos Santos, and K. Metselaar. 2013. “Modeling water potentials and flows in the soil–plant system comparing hydraulic resistances and transpiration reduction functions.” Vadose Zone J. 12 (3): 1–20. https://doi.org/10.2136/vzj2013.02.0039.
Fullhart, A., D. C. Goodrich, M. B. Meles, P. T. S. Oliveira, C. das Neves Almeida, J. C. de Araújo, and S. Burns. 2023. “Atlas of precipitation extremes for South America and Africa based on depth-duration-frequency relationships in a stochastic weather generator dataset.” Int. Soil Water Conserv. Res. 11 (4): 726–742. https://doi.org/10.1016/j.iswcr.2023.01.004.
Güntner, A., and A. Bronstert. 2004. “Representation of landscape variability and lateral redistribution processes for large-scale hydrological modelling in semiarid areas.” J. Hydrol. 297 (1–4): 136–161. https://doi.org/10.1016/j.jhydrol.2004.04.008.
Haferkorn, U., and S. Knappe. 2002. “Long-term lysimeter experiments-findings from Brandis lysimeter station 1st communication.” Arch. Agron. Soil Sci. 48 (5): 485–491. https://doi.org/10.1080/03650340215651.
Hatfield, J. L., R. J. Reginato, and S. B. Idso. 1984. “Evaluation of canopy temperature—Evapotranspiration models over various crops.” Agric. For. Meteorol. 32 (1): 41–53. https://doi.org/10.1016/0168-1923(84)90027-3.
Jackson, R. D., R. J. Reginato, and S. B. Idso. 1977. “Wheat canopy temperature: A practical tool for evaluating water requirements.” Water Resour. Res. 13 (3): 651–656. https://doi.org/10.1029/WR013i003p00651.
Jensen, M. E., and H. R. Haise. 1963. “Estimating evapotranspiration from solar radiation.” J. Irrig. Drain. Div. 89 (4): 15–41. https://doi.org/10.1061/JRCEA4.0000287.
Jimenez, J. C., J. A. Marengo, L. M. Alves, J. C. Sulca, K. Takahashi, S. Ferrett, and M. Collins. 2021. “The role of ENSO flavours and TNA on recent droughts over Amazon forests and the Northeast Brazil region.” Int. J. Climatol. 41 (7): 3761–3780. https://doi.org/10.1002/joc.6453.
Kan, F., X. Lian, J. Cui, A. Chen, J. Mao, M. He, H. Xu, and S. Piao. 2023. “Discrepant trends in global land-surface and air temperatures controlled by vegetation biophysical feedbacks.” Environ. Res. Lett. 18 (12): 124013. https://doi.org/10.1088/1748-9326/ad0680.
Knoerr, K. R., and L. W. Gay. 1965. “Tree leaf energy balance.” Ecology 46 (1–2): 17–24. https://doi.org/10.2307/1935254.
Liakatas, A., N. Proutsos, and S. Alexandris. 2002. “Optical properties affecting the radiant energy of an oak forest.” Meteorol. Appl. 9 (4): 433–436. https://doi.org/10.1017/S135048270200405X.
Liu, T. 2022. “Digital-output relative humidity & temperature sensor/module DHT22.” Accessed December 2, 2022. https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf.
Mamede, M. D. A., and F. S. De Araújo. 2008. “Effects of slash and burn practices on a soil seed bank of caatinga vegetation in Northeastern Brazil.” J. Arid. Environ. 72 (4): 458–470. https://doi.org/10.1016/j.jaridenv.2007.07.014.
Marin, F. R., G. Inman-Bamber, T. G. Silva, M. S. Vianna, D. S. Nassif, and K. S. Carvalho. 2020. “Sugarcane evapotranspiration and irrigation requirements in tropical climates.” Theor. Appl. Climatol. 140 (3–4): 1349–1357. https://doi.org/10.1007/s00704-020-03161-z.
Martins, R. W. A. 2000. “Balanços de radiação e energia em área reflorestada com algaroba no Seridó do Rio Grande do Norte” [Radiation and energy balance in a reforested area with algaroba in the seridó of Rio Grande do Norte]. [In Portuguese.] M.Sc. thesis, Centre for Technology and Natural Resources, Federal Univ. of Campina Grande.
Mata-González, R., T. McLendon, and D. W. Martin. 2005. “The inappropriate use of crop transpiration coefficients (Kc) to estimate evapotranspiration in arid ecosystems: A review.” Arid Land Res. Manage. 19 (3): 285–295. https://doi.org/10.1080/15324980590951469.
McColl, K. A. 2020. “Practical and theoretical benefits of an alternative to the Penman-Monteith evapotranspiration equation.” Water Resour. Res. 56 (6): e2020WR027106. https://doi.org/10.1029/2020WR027106.
Monteith, J. L. 1973. Principles of environmental physics, 243. New York: American Elsevier.
Penman, H. L. 1948. “Natural evaporation from open water, bare soil and grass.” Proc. R. Soc. London, Ser. A 193 (1032): 120–145. https://doi.org/10.1098/rspa.1948.0037.
Pilau, F. G., and L. R. Angelocci. 2015. “Leaf area and solar radiation interception by orange tree top.” Bragantia 74 (4): 476–482. https://doi.org/10.1590/1678-4499.0130.
Pilau, F. G., and L. R. Angelocci. 2016. “Assessing the coffee canopy light absortion based on the leaf area.” Coffee Sci. 11 (1): 127–136.
Pinheiro, E. A. R., C. A. G. Costa, and J. C. de Araújo. 2013. “Effective root depth of the Caatinga biome.” J. Arid. Environ. 89 (Jun): 1–4. https://doi.org/10.1016/j.jaridenv.2012.10.003.
Pinheiro, E. A. R., K. Metselaar, Q. Jong van Lier, and J. C. de Araújo. 2016. “Importance of soil-water to the Caatinga biome.” Brazil Ecohydrol. 9 (7): 1313–1327. https://doi.org/10.1002/eco.1728.
Santos, J. E. O., F. F. da Cunha, R. Filgueiras, G. H. da Silva, A. H. de Castro Teixeira, F. C. dos Santos Silva, and G. C. Sediyama. 2020. “Performance of SAFER evapotranspiration using missing meteorological data.” Agric. Water Manage. 233 (Mar): 106076. https://doi.org/10.1016/j.agwat.2020.106076.
Silva, A. J. P. D., E. F. Coelho, M. A. Coelho Filho, and J. L. D. Souza. 2018. “Water extraction and implications on soil moisture sensor placement in the root zone of banana.” Sci. Agric. 75 (2): 95–101. https://doi.org/10.1590/1678-992x-2016-0339.
Souza, L. S. B. D., M. S. B. D. Moura, G. C. Sediyama, and T. G. F. D. Silva. 2015. “Balanço de energia e controle biofísico da evapotranspiração na Caatinga em condições de seca intensa” [Energy balance and evapotranspiration biophysical control in Caatinga under intense drought conditions]. [In Portuguese.] Pesquisa Agropecuária Brasileira 50 (8): 627–636. https://doi.org/10.1590/S0100-204X2015000800001.
Teixeira, A. H. C. 2010. “Determining regional actual evapotranspiration of irrigated crops and natural vegetation in the São Francisco River basin (Brazil) using remote sensing and Penman-Monteith equation.” Remote Sens. 2 (5): 1287–1319. https://doi.org/10.3390/rs0251287.
Teixeira, A. H. C., W. G. Bastiaanssen, M. U. D. Ahmad, M. D. Moura, and M. G. Bos. 2008. “Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semiarid Brazil.” J. Hydrol. 362 (1–2): 110–127. https://doi.org/10.1016/j.jhydrol.2008.08.011.
van Dijk, A. I., L. S. Bruijnzeel, and J. Schellekens. 2004. “Micrometeorology and water use of mixed crops in upland West Java, Indonesia.” Agric. For. Meteorol. 124 (1–2): 31–49. https://doi.org/10.1016/j.agrformet.2004.01.006.
Vellame, L. M., E. F. Fraga Júnior, and R. D. Coelho. 2015. “Effect of partial soil wetting on transpiration, vegetative growth and root system of young orange trees.” Sci. Agric. 72 (5): 377–384. https://doi.org/10.1590/0103-9016-2013-0360.
Wang, J., and R. L. Bras. 1999. “Ground heat flux estimated from surface soil temperature.” J. Hydrol. 216 (3–4): 214–226. https://doi.org/10.1016/S0022-1694(99)00008-6.
Wilson, K., et al. 2002. “Energy balance closure at FLUXNET sites.” Agric. For. Meteorol. 113 (1–4): 223–243. https://doi.org/10.1016/S0168-1923(02)00109-0.
Xu, X., D. Medvigy, J. S. Powers, J. M. Becknell, and K. Guan. 2016. “Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.” New Phytol. 212 (1): 80–95. https://doi.org/10.1111/nph.14009.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 29Issue 5October 2024

History

Received: Nov 18, 2023
Accepted: May 1, 2024
Published online: Jul 30, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 30, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Associate Professor, Federal Univ. of Recôncavo da Bahia, Rua Rui Barbosa, Cruz das Almas, BA 44380-000, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-7649-5773. Email: [email protected]
Armin Raabe [email protected]
Research Assistant, Institute for Meteorology, Institutsgebäude Stephanstraße, Univ. of Leipzig, Leipzig 304103, Germany. Email: [email protected]
Quirijn de Jong van Lier [email protected]
Full Professor, Center for Nuclear Energy in Agriculture, Univ. of São Paulo, Av. Centenário, 303, Piracicaba, SP 13400-970, Brazil. Email: [email protected]
Geovana Paim Araújo [email protected]
Postgraduate Program in Agricultural Engineering, Federal Univ. of Recôncavo da Bahia, Rua Rui Barbosa, Cruz das Almas, BA 44380-000, Brazil. Email: [email protected]
Full Professor, Dept. of Agricultural Engineering, Federal Univ. of Ceará, Av. Humberto Monte-Pici, Fortaleza, CE 60440-593, Brazil. ORCID: https://orcid.org/0000-0002-2649-151X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share