Case Studies
May 17, 2024

Investigating the Spatiotemporal Complexity of Rainfall from a Chaotic Perspective: Case Study in the Jinsha River Basin, China

Publication: Journal of Hydrologic Engineering
Volume 29, Issue 4

Abstract

Investigating the complexity of rainfall systems is an important way to understand the impacts of climate change. Based on daily rainfall recorded over the past 50 years from 24 meteorological stations in the Jinsha River Basin (JRB), the phase space analysis, power spectrum, correlation dimension method, and 0–1 test algorithm were used to develop a comprehensive analysis of the spatiotemporal complexity of rainfall at various time scales (daily, monthly, and seasonal). According to spatial patterns of rainfall complexity obtained from the spatial interpolation of asymptotic growth rates (K), the JRB was divided into two subregions by the 29°N line, and the influence of topography and climate on the complexity of regional rainfall was further investigated by correlation analysis. The results show that the rainfall dynamics of the JRB are chaotic, with a relatively strong state at daily and monthly scales, and a weak state at seasonal scale. Spatially, the daily rainfall complexity displays relatively small differences among 24 meteorological stations, while the monthly and seasonal rainfall complexity is ranked as lower reaches > source area > middle reaches. Additionally, monthly rainfall complexity has a significant positive and negative correlation (p<0.05) with elevation at lower and higher latitudes, respectively. Seasonal rainfall complexity has a significant positive correlation (p<0.05) with the dryness index (DI) at higher latitudes. The results of this study improve the understanding of the rainfall complexity in the JRB and can be further applied to the research on hydrometeorological zoning.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used in this study is available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52379017). We are grateful to anonymous reviewers for their useful constructive comments and insightful suggestions.

References

Ali, A., S. Iqbal, H. A. Muqeet, H. M. Munir, S. S. H. Bukhari, J. S. Ro, and Z. Akbar. 2022. “Application of 0-1 test for chaos on forward converter to study the nonlinear dynamics.” Sci. Rep. 12 (1): 15696. https://doi.org/10.1038/s41598-022-19667-7.
Bernardini, D., and G. Litak. 2016. “An overview of 0–1 test for chaos.” J. Braz. Soc. Mech. Sci. Eng. 38 (5): 1433–1450. https://doi.org/10.1007/s40430-015-0453-y.
Cannon, S. H., J. E. Gartner, R. C. Wilson, J. C. Bowers, and J. L. Laber. 2008. “Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California.” Geomorphology 96 (3–4): 250–269. https://doi.org/10.1016/j.geomorph.2007.03.019.
Chiang, F., O. Mazdiyasni, and A. AghaKouchak. 2021. “Evidence of anthropogenic impacts on global drought frequency, duration, and intensity.” Nat. Commun. 12 (1): 2754. https://doi.org/10.1038/s41467-021-22314-w.
Curio, J., and D. Scherer. 2016. “Seasonality and spatial variability of dynamic precipitation controls on the Tibetan plateau.” Earth Syst. Dyn. Discuss. 7 (3): 767–782. https://doi.org/10.5194/esd-7-767-2016.
Dahri, Z. H., F. Ludwig, E. Moors, B. Ahmad, A. Khan, and P. Kabat. 2016. “An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.” Sci. Total Environ. 548 (Jun): 289–306. https://doi.org/10.1016/j.scitotenv.2016.01.001.
Dhanya, C. T., and D. Nagesh Kumar. 2010. “Nonlinear ensemble prediction of chaotic daily rainfall.” Adv. Water Resour. 33 (3): 327–347. https://doi.org/10.1016/j.advwatres.2010.01.001.
Di, C., T. Wang, Q. Han, M. Mai, L. Wang, and X. Chen. 2023. “Complexity and predictability of daily actual evapotranspiration across climate regimes.” Water Resour. Res. 59 (4): e2022WR032811. https://doi.org/10.1029/2022WR032811.
Di, C., T. Wang, X. Yang, and S. Li. 2018. “Technical note: An improved Grassberger–Procaccia algorithm for analysis of climate system complexity.” Hydrol. Earth Syst. Sci. 22 (10): 5069–5079. https://doi.org/10.5194/hess-22-5069-2018.
Dong, D., G. Huang, W. Tao, R. Wu, K. Hu, and C. Li. 2018. “Interannual variation of precipitation over the Hengduan mountains during rainy season.” Int. J. Climatol. 38 (4): 2112–2125. https://doi.org/10.1002/joc.5321.
Du, L., X. Li, M. Yang, B. Sivakumar, Y. Zhu, X. Pan, Z. Li, and Y.-F. Sang. 2021. “Assessment of spatiotemporal variability of precipitation using entropy indexes: A case study of Beijing, China.” Stochastic Environ. Res. Risk Assess. 36 (4): 939–953. https://doi.org/10.1007/s00477-021-02116-8.
Eckmann, J. P., and D. Ruelle. 1985. “Ergodic theory of chaos and strange attractors.” Rev. Mod. Phys. 57 (3): 617–656. https://doi.org/10.1103/RevModPhys.57.617.
Falconer, I., G. A. Gottwald, I. Melbourne, and K. Wormnes. 2007. “Application of the 0-1 test for chaos to experimental data.” SIAM J. Appl. Dyn. Syst. 6 (2): 395–402. https://doi.org/10.1137/060672571.
Ghorbani, M. A., R. Khatibi, A. Danandeh Mehr, and H. Asadi. 2018. “Chaos-based multigene genetic programming: A new hybrid strategy for river flow forecasting.” J. Hydrol. 562 (Sep): 455–467. https://doi.org/10.1016/j.jhydrol.2018.04.054.
Gottwald, G. A., and I. Melbourne. 2004. “A new test for chaos in deterministic systems.” Proc. R. Soc. London, Ser. A 460 (2042): 603–611. https://doi.org/10.1098/rspa.2003.1183.
Gottwald, G. A., and I. Melbourne. 2005. “Testing for chaos in deterministic systems with noise.” Phys. D 212 (1–2): 100–110. https://doi.org/10.1016/j.physd.2005.09.011.
Gottwald, G. A., and I. Melbourne. 2009a. “On the implementation of the 0-1 test for chaos.” SIAM J. Appl. Dyn. Syst. 8 (1): 129–145. https://doi.org/10.1137/080718851.
Gottwald, G. A., and I. Melbourne. 2009b. “On the validity of the 0-1 test for chaos.” Nonlinearity 22 (6): 1367–1382. https://doi.org/10.1088/0951-7715/22/6/006.
Gottwald, G. A., and I. Melbourne. 2016. “The 0-1 test for chaos: A review.” In Vol. 915 of Chaos detection and predictability, edited by C. Skokos, G. Gottwald, and J. Laskar, 221–247. Berlin: Springer. https://doi.org/10.1007/978-3-662-48410-4_7.
Grassberger, P., and I. Procaccia. 1983. “Measuring the strangeness of strange attractors.” Phys. D 9 (1–2): 189–208. https://doi.org/10.1016/0167-2789(83)90298-1.
Jayawardena, A. W., and F. Lai. 1994. “Analysis and prediction of chaos in rainfall and stream flow time series.” J. Hydrol. 153 (1–4): 23–52. https://doi.org/10.1016/0022-1694(94)90185-6.
Jothiprakash, V., and T. A. Fathima. 2013. “Chaotic analysis of reservoir inflow series: A case study on Koyna reservoir inflow.” J. Inst. Eng. India Ser. A 94 (2): 89–97. https://doi.org/10.1007/s40030-013-0047-6.
Kan, B., F. Su, B. Xu, Y. Xie, J. Li, and H. Zhang. 2018. “Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the Upper Yarkant basin in the Karakoram.” J. Geophys. Res: Atmos. 123 (16): 8462–8486. https://doi.org/10.1029/2017JD028055.
Kędra, M. 2014. “Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains).” J. Hydrol. 509 (Feb): 474–503. https://doi.org/10.1016/j.jhydrol.2013.11.055.
Kumar Adhikary, S., N. Muttil, and A. Gokhan Yilmaz. 2016. “Ordinary kriging and genetic programming for spatial estimation of rainfall in the Middle Yarra River catchment, Australia.” Hydrol. Res. 47 (6): 1182–1197. https://doi.org/10.2166/nh.2016.196.
Leuning, R., Y. Q. Zhang, A. Rajaud, H. Cleugh, and K. Tu. 2008. “A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation.” Water Resour. Res. 45 (Sep): W01701. https://doi.org/10.1029/2008WR007631.
Li, H., X. Zuo, L. Kang, L. Ren, F. Liu, H. Liu, N. Zhang, R. Min, X. Liu, and G. Dong. 2016. “Prehistoric agriculture development in the Yunnan-Guizhou Plateau, southwest China: Archaeobotanical evidence.” Sci. China Earth Sci. 59 (8): 1562–1573. https://doi.org/10.1007/s11430-016-5292-x.
Li, X., T. Hu, Y. Wang, T. Li, T. Wang, and Z. Ren. 2019. “Multiple spatial scales chaos characterization in runoff series by the 0-1 test algorithm.” Tecnol. y Cienc. del agua 10 (4): 182–194. https://doi.org/10.24850/j-tyca-2019-04-09.
Liang, H., D. Zhang, W. Wang, S. Yu, and S. Nimai. 2023a. “Evaluating future water security in the upper Yangtze River Basin under a changing environment.” Sci. Total Environ. 889 (Feb): 164101. https://doi.org/10.1016/j.scitotenv.2023.164101.
Liang, H., D. Zhang, W. Wang, S. Yu, and H. Wang. 2023b. “Quantifying future water and energy security in the source area of the western route of China’s South-to-North water diversion project within the context of climatic and societal changes.” J. Hydrol. Reg. Stud. 47 (Jan): 101443. https://doi.org/10.1016/j.ejrh.2023.101443.
Liu, D., T. Yan, Y. Ji, Q. Fu, M. Li, M. Abrar Faiz, S. Ali, T. Li, S. Cui, and M. Imran Khan. 2021. “Novel method for measuring regional precipitation complexity characteristics based on multiscale permutation entropy combined with CMFO-PPTTE model.” J. Hydrol. 592 (Sep): 125801. https://doi.org/10.1016/j.jhydrol.2020.125801.
Luo, Y., R. Zhang, W. Qian, Z. Luo, and X. Hu. 2011. “Intercomparison of deep convection over the Tibetan plateau–Asian monsoon region and subtropical North America in boreal Summer using CloudSat/CALIPSO data.” J. Clim. 24 (8): 2164–2177. https://doi.org/10.1175/2010JCLI4032.1.
Mcguffie, K., and A. Henderson-Sellers. 2001. “Forty years of numerical climate modeling.” Int. J. Climatol. 21 (9): 1067–1109. https://doi.org/10.1002/joc.632.
Millán, H., J. Rodríguez, B. Ghanbarian-Alavijeh, R. Biondi, and G. Llerena. 2011. “Temporal complexity of daily precipitation records from different atmospheric environments: Chaotic and Lévy stable parameters.” Atmos. Res. 101 (4): 879–892. https://doi.org/10.1016/j.atmosres.2011.05.021.
Ng, W. W., U. S. Panu, and W. C. Lennox. 2007. “Chaos based analytical techniques for daily extreme hydrological observations.” J. Hydrol. 342 (1–2): 17–41. https://doi.org/10.1016/j.jhydrol.2007.04.023.
Nicolis, C., and G. Nicolis. 1984. “Is there a climatic attractor?” Nature 311 (5986): 529–532. https://doi.org/10.1038/311529a0.
Ombadi, M., P. Nguyen, S. Sorooshian, and K.-l. Hsu. 2021. “Complexity of hydrologic basins: A chaotic dynamics perspective.” J. Hydrol. 597 (Apr): 126222. https://doi.org/10.1016/j.jhydrol.2021.126222.
Packard, N. H., J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. 1980. “Geometry from a time series.” Phys. Rev. Lett. 45 (9): 712–716. https://doi.org/10.1103/PhysRevLett.45.712.
Porporato, A., and L. Ridolfi. 1996. “Clues to the existence of deterministic chaos in river flow.” Int. J. Mod. Phys. B 10 (15): 1821–1862. https://doi.org/10.1142/S0217979296000830.
Qi, D., Y. Li, C. Zhou, and D. Chen. 2022. “Climatic change of summer rainstorms and the water vapor budget in the Sichuan basin.” J. Appl. Meteor. Climatol. 61 (5): 537–557. https://doi.org/10.1175/JAMC-D-21-0100.1.
Rajagopalan, B., S. T. Erkyihun, U. Lall, E. Zagona, and K. Nowak. 2019. “A nonlinear dynamical systems-based modeling approach for stochastic simulation of streamflow and understanding predictability.” Water Resour. Res. 55 (7): 6268–6284. https://doi.org/10.1029/2018WR023650.
Rodriguez-Iturbe, I., B. Febres De Power, M. B. Sharifi, and K. P. Georgakakos. 1989. “Chaos in rainfall.” Water Resour. Res. 25 (7): 1667–1675. https://doi.org/10.1029/WR025i007p01667.
Rodríguez-Iturbe, I. 1991. “Exploring complexity in the structure of rainfall.” Adv. Water Resour. 14 (4): 162–167. https://doi.org/10.1016/0309-1708(91)90011-C.
Scheidegger, A. E. 1998. “Complexity theory of natural disasters; boundaries of self-structured domains.” In Earthquake and atmospheric hazards, edited by M. I. El-Sabh, S. Venkatesh, C. Lomnitz, and T. S. Murty, 103–112. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-011-5034-7_1.
Shu, Z., P. W. Chan, Q. Li, Y. He, and B. Yan. 2020. “Characterization of daily rainfall variability in Hong Kong: A nonlinear dynamic perspective.” Int. J. Climatol. 41 (1): E2913–E2926. https://doi.org/10.1002/joc.6891.
Shu, Z., M. Jesson, and M. Sterling. 2021. “Nonlinear dynamic analysis of daily rainfall variability across the UK from 1989 to 2018.” J. Hydrol. 603 (Sep): 126849. https://doi.org/10.1016/j.jhydrol.2021.126849.
Simpson, N. P., et al. 2021. “A framework for complex climate change risk assessment.” One Earth 4 (4): 489–501. https://doi.org/10.1016/j.oneear.2021.03.005.
Sivakumar, B. 2000. “Fractal analysis of rainfall observed in two different climatic regions.” Hydrol. Sci. J. 45 (5): 727–738. https://doi.org/10.1080/02626660009492373.
Sivakumar, B., A. W. Jayawardena, and W. K. Li. 2007. “Hydrologic complexity and classification: A simple data reconstruction approach.” Hydrol. Processes 21 (20): 2713–2728. https://doi.org/10.1002/hyp.6362.
Sivakumar, B., M. Persson, R. Berndtsson, and C. B. Uvo. 2002. “Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?” Water Resour. Res. 38 (2): 3. https://doi.org/10.1029/2001WR000333.
Sivakumar, B., and V. P. Singh. 2012. “Hydrologic system complexity and nonlinear dynamic concepts for a catchment classification framework.” Hydrol. Earth Syst. Sci. 16 (11): 4119–4131. https://doi.org/10.5194/hess-16-4119-2012.
Sivakumar, B., S. Sorooshian, H. V. Gupta, and X. Gao. 2001. “A chaotic approach to rainfall disaggregation.” Water Resour. Res. 37 (1): 61–72. https://doi.org/10.1029/2000WR900196.
Sivakumar, B., F. M. Woldemeskel, and C. E. Puente. 2013. “Nonlinear analysis of rainfall variability in Australia.” Stochastic Environ. Res. Risk A 28 (1): 17–27. https://doi.org/10.1007/s00477-013-0689-y.
Takens, F. 1981. “Detecting strange attractors in turbulence.” In Vol. 898 of Dynamical systems and turbulence, Warwick 1980, edited by D. Rand and L. S. Young, 366–381. Berlin: Springer. https://doi.org/10.1007/BFb0091924.
Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. 1992. “Testing for nonlinearity in time series: The method of surrogate data.” Phys. D 58 (1–4): 77–94. https://doi.org/10.1016/0167-2789(92)90102-S.
Tian, Z. 2021. “Analysis and research on chaotic dynamics behaviour of wind power time series at different time scales.” J. Ambient Intell. Hum. Comput. 14 (Feb): 897–921. https://doi.org/10.1007/s12652-021-03343-1.
Wang, Z., R. Wu, S. Yang, and M. Lu. 2022. “An interdecadal change in the influence of ENSO on the Spring Tibetan plateau snow-cover variability in the early 2000s.” J. Clim. 35 (2): 725–743. https://doi.org/10.1175/JCLI-D-21-0348.1.
Welch, P. D. 1967. “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms.” IEEE Trans. Audio Electroacoust. 15 (2): 70–73. https://doi.org/10.1109/TAU.1967.1161901.
Westerhold, T., et al. 2020. “An astronomically dated record of earth’s climate and its predictability over the last 66 million years.” Science 369 (6509): 1383–1387. https://doi.org/10.1126/science.aba6853.
Xavier, S. F. A., R. F. M. Xavier, J. S. Jale, T. Stosic, and C. A. C. D. Santos. 2021. “Multiscale entropy analysis of monthly rainfall time series in Paraíba, Brazil.” Chaos Solitons Fractals 151 (9): 111296. https://doi.org/10.1016/j.chaos.2021.111296.
Xiao, Q., Y. Liao, W. Xu, J. Chen, and H. Wang. 2022. “Impact of damping amplitude on chaos detection reliability of the improved 0–1 test for oversampled and noisy observations.” Nonlinear Dyn. 108 (4): 4385–4398. https://doi.org/10.1007/s11071-022-07416-4.
Xie, Y. X., S. C. Zeng, D. L. Li, and J. Wang. 2014. “Complexity analysis of rainfall in Jinsha River Basin, China.” Appl. Mech. Mater. 530–531 (Mar): 586–590. https://doi.org/10.4028/www.scientific.net/AMM.530-531.586.
Xu, J., Y. Chen, W. Li, Z. Liu, J. Tang, and C. Wei. 2015. “Understanding temporal and spatial complexity of precipitation distribution in Xinjiang, China.” Theor. Appl. Climatol. 123 (1–2): 321–333. https://doi.org/10.1007/s00704-014-1364-z.
Yang, X. 2022. “Construction and application of integrated entropy model for measuring precipitation complexity.” Earth Sci. Inf. 15 (3): 1597–1606. https://doi.org/10.1007/s12145-022-00812-9.
Yuan, Z., J. Xu, and Y. Wang. 2018. “Projection of future extreme precipitation and flood changes of the Jinsha River Basin in China based on CMIP5 climate models.” Int. J. Environ. Res. Public Health 15 (11): 2491. https://doi.org/10.3390/ijerph15112491.
Zachilas, L., and I. N. Psarianos. 2012. “Examining the chaotic behavior in dynamical systems by means of the 0-1 test.” J. Appl. Math. 2012 (Apr): 681296. https://doi.org/10.1155/2012/681296.
Zeng, X., N. Zhao, H. Sun, L. Ye, and J. Zhai. 2014. “Temporal and spatial variations of precipitation in the Jinsha River basin during 1961–2010.” In Proc., IAHS 368, 120–125. Wallingford, UK: International Association Hydrological Sciences. https://doi.org/10.5194/piahs-368-120-2015.
Zhang, D., W. Wang, S. Liang, S. Wang, and R. Fraile. 2020. “Spatiotemporal variations of extreme precipitation events in the Jinsha River Basin, Southwestern China.” Adv. Meteorol. 2020 (Jan): 1–13. https://doi.org/10.1155/2020/3268923.
Zhang, D., W. Wang, S. Yu, S. Liang, and Q. Hu. 2021. “Assessment of the contributions of climate change and human activities to runoff variation: Case study in four subregions of the Jinsha River Basin, China.” J. Hydrol. Eng. 26 (9): 05021024. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002119.
Zhang, L., H. Li, D. Liu, Q. Fu, M. Li, M. A. Faiz, M. I. Khan, and T. Li. 2019. “Identification and application of the most suitable entropy model for precipitation complexity measurement.” Atmos. Res. 221 (Feb): 88–97. https://doi.org/10.1016/j.atmosres.2019.02.002.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 29Issue 4August 2024

History

Received: Mar 21, 2023
Accepted: Feb 13, 2024
Published online: May 17, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 17, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Research Scholar, School of Water Resource and Hydropower, Sichuan Univ., Chengdu, Sichuan 610065, China. Email: [email protected]
Professor, School of Water Resource and Hydropower, Sichuan Univ., Chengdu, Sichuan 610065, China; Professor, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan Univ., Chengdu, Sichuan 610065, China (corresponding author). ORCID: https://orcid.org/0000-0002-1045-6146. Email: [email protected]
Hanxu Liang [email protected]
Research Scholar, School of Water Resource and Hydropower, Sichuan Univ., Chengdu, Sichuan 610065, China. Email: [email protected]
Engineer, Changjiang Survey, Planning, Design and Research Co., Ltd., No. 1863, Jiefang Ave., Jiangan District, Wuhan, Hubei 430010, China. ORCID: https://orcid.org/0000-0002-5871-7990. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share