Technical Papers
Jul 17, 2024

Enhancing Hydrothermal Carbonization of Food Waste with Landfill Leachate: Optimization, Methane Recovery, and Sustainable Energy Generation

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28, Issue 4

Abstract

Hydrothermal carbonization (HTC) emerges as a promising avenue for converting food waste into valuable resources while addressing environmental concerns. This study investigated the optimization of HTC parameters, utilizing landfill leachate as a sustainable moisture source and exploring methane recovery from process water. Employing the response surface methodology (RSM) and artificial neural networks (ANN), the influence of key process variables on HTC efficiency was meticulously analyzed. Notably, the superior predictive capability of ANN over RSM was demonstrated, with a lower mean-squared error and a higher correlation coefficient. The identified optimal HTC conditions were 193°C for 175 min at a solid/liquid ratio of 0.2; under these conditions, RSM and ANN predicted mass yields of 66.37 ± 1.15% and 65.68 ± 0.11%, respectively. Furthermore, under these conditions, process water exhibited a remarkable biomethane production rate of approximately 283.11 ± 13.5 mL/g COD, fitting well with the modified Gompertz model. This study advances HTC optimization strategies and underscores the potential of integrating landfill leachate and methane recovery into food waste valorization processes, thereby paving the way for sustainable resource management practices.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abiad, M. G., and L. I. Meho. 2018. “Food loss and food waste research in the Arab world: A systematic review.” Food Secur. 10: 311–322. https://doi.org/10.1007/s12571-018-0782-7.
Afolabi, O. O. D., M. Sohail, and Y. L. Cheng. 2020. “Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation.” Renewable Energy 147: 1380–1391. https://doi.org/10.1016/j.renene.2019.09.098.
Aragón-Briceño, C., A. B. Ross, and M. A. Camargo-Valero. 2017. “Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment.” Appl. Energy 208: 1357–1369. https://doi.org/10.1016/j.apenergy.2017.09.019.
Aragón-Briceño, C. I., O. Grasham, A. B. Ross, V. Dupont, and M. A. Camargo-Valero. 2020. “Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics.” Renewable Energy 157: 959–973. https://doi.org/10.1016/j.renene.2020.05.021.
Assis, E. I. N. C., B. Gidudu, and E. M. N. Chirwa. 2022. “Hydrothermal carbonisation of paper sludge: Effect of process conditions on hydrochar fuel characteristics and energy recycling efficiency.” J. Cleaner Prod. 373: 133775. https://doi.org/10.1016/j.jclepro.2022.133775.
Bashir, M. J. K., H. A. Aziz, S. S. A. Amr, S. Sethupathi, C. A. Ng, and J. W. Lim. 2015. “The competency of various applied strategies in treating tropical municipal landfill leachate.” Desalin. Water Treat. 54 (9): 2382–2395. https://doi.org/10.1080/19443994.2014.901189.
Bella, K., S. Pilli, and P. Venkateswara Rao. 2023. “A comparison of ultrasonic, ozone, and enzyme pre-treatments on cheese whey degradation for enhancement of anaerobic digestion.” J. Environ. Manage. 340: 117960. https://doi.org/10.1016/j.jenvman.2023.117960.
Cheng, C., Q. Guo, L. Ding, A. Raheem, Q. He, S. Shiung Lam, and G. Yu. 2022. “Upgradation of coconut waste shell to value-added hydrochar via hydrothermal carbonization: Parametric optimization using response surface methodology.” Appl. Energy 327: 120136. https://doi.org/10.1016/j.apenergy.2022.120136.
Choe, U., A. M. Mustafa, H. Lin, J. Xu, and K. Sheng. 2019. “Effect of bamboo hydrochar on anaerobic digestion of fish processing waste for biogas production.” Bioresour. Technol. 283: 340–349. https://doi.org/10.1016/j.biortech.2019.03.084.
Dey, S., N. M. Reang, A. Majumder, M. Deb, and P. K. Das. 2020. “A hybrid ANN-fuzzy approach for optimization of engine operating parameters of a CI engine fueled with diesel-palm biodiesel-ethanol blend.” Energy 202: 117813. https://doi.org/10.1016/j.energy.2020.117813.
Erdogan, E., B. Atila, J. Mumme, M. T. Reza, A. Toptas, M. Elibol, and J. Yanik. 2015. “Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor.” Bioresour. Technol. 196: 35–42. https://doi.org/10.1016/j.biortech.2015.06.115.
Ghavami, N., K. Özdenkçi, and C. De Blasio. 2024. “Process simulation of co-HTC of sewage sludge and food waste digestates and supercritical water gasification of aqueous effluent integrated with biogas plants.” Energy 291: 130221. https://doi.org/10.1016/j.energy.2023.130221.
Gupta, S., P. Patel, and P. Mondal. 2022. “Biofuels production from pine needles via pyrolysis: Process parameters modeling and optimization through combined RSM and ANN based approach.” Fuel 310: 122230. https://doi.org/10.1016/j.fuel.2021.122230.
Ischia, G., M. Cazzanelli, L. Fiori, M. Orlandi, and A. Miotello. 2022. “Exothermicity of hydrothermal carbonization: Determination of heat profile and enthalpy of reaction via high-pressure differential scanning calorimetry.” Fuel 310: 122312. https://doi.org/10.1016/j.fuel.2021.122312.
Jabeen, S., X. Gao, J. ichiro Hayashi, M. Altarawneh, and B. Z. Dlugogorski. 2023. “Effects of product recovery methods on the yields and properties of hydrochars from hydrothermal carbonization of algal biomass.” Fuel 332: 126029. https://doi.org/10.1016/j.fuel.2022.126029.
Kapetanakis, T. N., I. O. Vardiambasis, C. D. Nikolopoulos, A. I. Konstantaras, T. K. Trang, D. A. Khuong, T. Tsubota, R. Keyikoglu, A. Khataee, and D. Kalderis. 2021. “Towards engineered hydrochars: Application of artificial neural networks in the hydrothermal carbonization of sewage sludge.” Energies (Basel) 14 (11): 3000. https://doi.org/10.3390/en14113000.
Ke, C., X. Ma, Y. Tang, F. Tang, and W. Zheng. 2019. “Effects of natural and modified calcium-based sorbents on heavy metals of food waste under oxy-fuel combustion.” Bioresour. Technol. 271: 251–257. https://doi.org/10.1016/j.biortech.2018.09.109.
Li, L., M. Hale, P. Olsen, and N. D. Berge. 2014. “Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.” Waste Manage. (Oxford) 34 (11): 2185–2195. https://doi.org/10.1016/j.wasman.2014.06.024.
Li, L., Q. He, X. Zhao, D. Wu, X. Wang, and X. Peng. 2018. “Anaerobic digestion of food waste: Correlation of kinetic parameters with operational conditions and process performance.” Biochem. Eng. J. 130: 1–9. https://doi.org/10.1016/j.bej.2017.11.003.
Li, Y., Y. Chen, and J. Wu. 2019. “Enhancement of methane production in anaerobic digestion process: A review.” Appl. Energy 240: 120–137. https://doi.org/10.1016/j.apenergy.2019.01.243.
Lucian, M., M. Volpe, L. Gao, G. Piro, J. L. Goldfarb, and L. Fiori. 2018. “Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste.” Fuel 233: 257–268. https://doi.org/10.1016/j.fuel.2018.06.060.
Luo, C., F. Lü, L. Shao, and P. He. 2015. “Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes.” Water Res. 68: 710–718. https://doi.org/10.1016/j.watres.2014.10.052.
Majee, U., R. Kaushal, M. C. Liang, T. Muguli, and P. Ghosh. 2024. “Isotopic tracing of leachate percolation from municipal solid waste dump sites to groundwater in diverse climatic zones of India.” Environ. Sci. Pollut. Res. 31: 21829–21844. https://doi.org/10.1007/s11356-024-32551-3.
Mannarino, G., A. Sarrion, E. Diaz, R. Gori, M. A. De la Rubia, and A. F. Mohedano. 2022. “Improved energy recovery from food waste through hydrothermal carbonization and anaerobic digestion.” Waste Manage. (Oxford) 142: 9–18. https://doi.org/10.1016/j.wasman.2022.02.003.
MATLAB. 2022. Version R2022a. Natick, Massachusetts: The MathWorks Inc.
Mumme, J., F. Srocke, K. Heeg, and M. Werner. 2014. “Use of biochars in anaerobic digestion.” Bioresour. Technol. 164: 189–197. https://doi.org/10.1016/j.biortech.2014.05.008.
Murillo, H. A., J. Pagés-Díaz, L. A. Díaz-Robles, F. Vallejo, and C. Huiliñir. 2022. “Valorization of oat husk by hydrothermal carbonization: Optimization of process parameters and anaerobic digestion of spent liquors.” Bioresour. Technol. 343: 126112. https://doi.org/10.1016/j.biortech.2021.126112.
Nawaz, A., and P. Kumar. 2022. “Optimization of process parameters of Lagerstroemia speciosa seed hull pyrolysis using a combined approach of response surface methodology (RSM) and artificial neural network (ANN) for renewable fuel production.” Bioresour. Technol. Rep. 18: 101110. https://doi.org/10.1016/j.biteb.2022.101110.
Pagés-Díaz, J., and C. Huiliñir. 2020. “Valorization of the liquid fraction of co-hydrothermal carbonization of mixed biomass by anaerobic digestion: Effect of the substrate to inoculum ratio and hydrochar addition.” Bioresour. Technol. 317: 123989. https://doi.org/10.1016/j.biortech.2020.123989.
Pecchi, M., M. Baratieri, A. R. Maag, and J. L. Goldfarb. 2023. “Uncovering the transition between hydrothermal carbonization and liquefaction via secondary char extraction: A case study using food waste.” Waste Manage. (Oxford) 168: 281–289. https://doi.org/10.1016/j.wasman.2023.06.009.
Periyavaram, S. R., K. Bella, L. Uppala, and P. H. P. Reddy. 2023. “Hydrothermal carbonization of food waste: Process parameters optimization and biomethane potential evaluation of process water.” J. Environ. Manage. 347: 119132. https://doi.org/10.1016/j.jenvman.2023.119132.
Periyavaram, S. R., L. Uppala, and P. H. P. Reddy. 2022. “Hydrothermal carbonization of food waste: Effect of leachate on physicochemical and energetic properties of hydrochar.” Bioresour. Technol. Rep. 20: 101276. https://doi.org/10.1016/j.biteb.2022.101276.
Raheem, A., L. Ding, Q. He, F. Hussain Mangi, Z. Hussain Khand, M. Sajid, A. Ryzhkov, and G. Yu. 2022. “Effective pretreatment of corn straw biomass using hydrothermal carbonization for co-gasification with coal: Response surface methodology—Box Behnken design.” Fuel 324: 124544. https://doi.org/10.1016/j.fuel.2022.124544.
Rasam, S., F. Talebkeikhah, M. Talebkeikhah, A. Salimi, and M. K. Moraveji. 2021. “Physico-chemical properties prediction of hydrochar in macroalgae Sargassum horneri hydrothermal carbonisation.” Int. J. Environ. Anal. Chem. 101 (14): 2297–2318. https://doi.org/10.1080/03067319.2019.1700973.
Reza, M. T., M. H. Uddin, J. G. Lynam, S. K. Hoekman, and C. J. Coronella. 2014. “Hydrothermal carbonization of loblolly pine: Reaction chemistry and water balance.” Biomass Convers. Biorefin. 4 (4): 311–321. https://doi.org/10.1007/s13399-014-0115-9.
Saba, A., P. Saha, and M. T. Reza. 2017. “Co-hydrothermal carbonization of coal-biomass blend: Influence of temperature on solid fuel properties.” Fuel Process. Technol. 167: 711–720. https://doi.org/10.1016/j.fuproc.2017.08.016.
Sakar, S., K. Yetilmezsoy, and E. Kocak. 2009. “Anaerobic digestion technology in poultry and livestock waste treatment—A literature review.” Waste Manage. Res. 27 (1): 3–18. https://doi.org/10.1177/0734242X07079060.
Saqib, N. U., H. B. Sharma, S. Baroutian, B. Dubey, and A. K. Sarmah. 2019. “Valorisation of food waste via hydrothermal carbonisation and techno-economic feasibility assessment.” Sci. Total Environ. 690: 261–276. https://doi.org/10.1016/j.scitotenv.2019.06.484.
Shao, Y., Y. Long, H. Wang, D. Liu, D. Shen, and T. Chen. 2019. “Hydrochar derived from green waste by microwave hydrothermal carbonization.” Renewable Energy 135: 1327–1334. https://doi.org/10.1016/j.renene.2018.09.041.
Sharma, H. B., A. K. Sarmah, and B. Dubey. 2020. “Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar.” Renewable Sustainable Energy Rev. 123: 109761. https://doi.org/10.1016/j.rser.2020.109761.
Shukla, K. A., A. D. A. B. A. Sofian, A. Singh, W. H. Chen, P. L. Show, and Y. J. Chan. 2024. “Food waste management and sustainable waste to energy: Current efforts, anaerobic digestion, incinerator and hydrothermal carbonization with a focus in Malaysia.” J. Cleaner Prod. 448: 141457. https://doi.org/10.1016/j.jclepro.2024.141457.
Strik, D. P. B. T. B., A. M. Domnanovich, L. Zani, R. Braun, and P. Holubar. 2005. “Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB neural network toolbox.” Environ. Modell. Software 20 (6): 803–810. https://doi.org/10.1016/j.envsoft.2004.09.006.
Venna, S., H. B. Sharma, P. H. P. Reddy, S. Chowdhury, and B. K. Dubey. 2021. “Landfill leachate as an alternative moisture source for hydrothermal carbonization of municipal solid wastes to solid biofuels.” Bioresour. Technol. 320: 124410. https://doi.org/10.1016/j.biortech.2020.124410.
Volpe, M., and L. Fiori. 2017. “From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties.” J. Anal. Appl. Pyrolysis 124: 63–72. https://doi.org/10.1016/j.jaap.2017.02.022.
Wang, R., K. Lin, P. Peng, Z. Lin, Z. Zhao, Q. Yin, and L. Ge. 2022. “Energy yield optimization of co-hydrothermal carbonization of sewage sludge and pinewood sawdust coupled with anaerobic digestion of the wastewater byproduct.” Fuel 326: 125025. https://doi.org/10.1016/j.fuel.2022.125025.
Yan, M., F. Chen, T. Li, L. Zhong, H. Feng, Z. Xu, D. Hantoko, and H. Wibowo. 2023. “Hydrothermal carbonization of food waste digestate solids: Effect of temperature and time on products characteristic and environmental evaluation.” Process Saf. Environ. Prot. 178: 296–308. https://doi.org/10.1016/j.psep.2023.08.010.
Zhao, K., Y. Li, Y. Zhou, W. Guo, H. Jiang, and Q. Xu. 2018. “Characterization of hydrothermal carbonization products (hydrochars and spent liquor) and their biomethane production performance.” Bioresour. Technol. 267: 9–16. https://doi.org/10.1016/j.biortech.2018.07.006.
Zulkornain, M. F., A. H. Shamsuddin, S. Normanbhay, J. Md Saad, and M. F. M. Ahmad Zamri. 2022. “Optimization of rice husk hydrochar via microwave-assisted hydrothermal carbonization: Fuel properties and combustion kinetics.” Bioresour. Technol. Rep. 17: 100888. https://doi.org/10.1016/j.biteb.2021.100888.
Zwietering, M. H., I. Jongenburger, F. M. Rombouts, K. Van't, and T. Riet. 1990. “Modeling of the bacterial growth curve.” Appl. Environ. Microbiol. 56: 1875–1887. https://doi.org/10.1128/aem.56.6.1875-1881.1990.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28Issue 4October 2024

History

Received: Mar 7, 2024
Accepted: Apr 26, 2024
Published online: Jul 17, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 17, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, National Institute of Technology, Warangal 506004, India. ORCID: https://orcid.org/0000-0003-2913-0100. Email: [email protected]
Bella Kunnoth [email protected]
Research Scholar, Dept. of Civil Engineering, National Institute of Technology, Warangal 506004, India. Email: [email protected]
Lavakumar Uppala [email protected]
Research Scholar, Dept. of Civil Engineering, National Institute of Technology, Warangal 506004, India. Email: [email protected]
Associate Professor, Dept. of Civil Engineering, National Institute of Technology, Warangal 506004, India (corresponding author). ORCID: https://orcid.org/0000-0002-1763-3256. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share