Technical Papers
Sep 26, 2024

Numerical Simulation of Crack Propagation and Coalescence in Quasi-Brittle Materials under Compression Using the Field-Enriched Finite-Element Method

Publication: Journal of Engineering Mechanics
Volume 150, Issue 12

Abstract

In this paper, the field-enriched finite-element method is developed to simulate crack evolution of quasibrittle materials under compression by considering two kinds of fracture criteria: the maximum circumferential stress criterion; and the Mohr–Coulomb criterion. The benchmark of the specimens containing a single flaw is illustrated to verify that the maximum circumferential stress criterion and the Mohr–Coulomb criterion can capture the tensile crack and secondary crack. Moreover, the numerical examples of specimens containing two flaws are illustrated to prove that the field-enriched finite-element method can effectively simulate the crack coalescence in specimens under compression. Finally, specimens containing multiple flaws are illustrated to investigate the crack evolution mechanism under compression as well as the crack coalescence types.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The work is supported by the National Key Research and Development Program of China (No. 2023YFC2907200), the National Natural Science Foundation of China (No. 52027814), the Natural Science Foundation of Chongqing, China (No. 2023NSCQ-MSX3411), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (No. KJQN202301307), and the Research Program of Chongqing University of Arts and Sciences, China (No. R2022TM06).

References

Adams, L. H., and E. D. Williamson. 1923. “On the compressibility of minerals and rocks at high pressures.” J. Franklin. Inst. 195 (4): 475–529. https://doi.org/10.1016/S0016-0032(23)90314-5.
Agheshlui, H., M. H. Sedaghat, and S. Azizmohammadi. 2019. “A comparative study of stress influence on fracture apertures in fragmented rocks.” J. Rock Mech. Geotech. 11 (1): 38–45. https://doi.org/10.1016/j.jrmge.2018.05.003.
Baud, P., T. Reuschlé, and P. Charlez. 1996. “An improved wing crack model for the deformation and failure of rock in compression.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 (5): 539–542. https://doi.org/10.1016/0148-9062(96)00004-6.
Belytschko, T., and T. Black. 1999. “Elastic crack growth in finite elements with minimal remeshing.” Int. J. Numer. Meth. Eng. 45 (5): 601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3C601::AID-NME598%3E3.0.CO;2-S.
Bi, J., J. C. Tang, C. L. Wang, D. G. Quan, and M. Y. Teng. 2022. “Crack coalescence behavior of rock-like specimens containing two circular embedded flaws.” Lithosphere 2022 (Special 11): 9498148. https://doi.org/10.2113/2022/9498148.
Bobet, A. 1997. Fracture coalescence in rock materials: experimental observations and numerical predictions. Cambridge, MA: Massachusetts Institute of Technology.
Bobet, A., and H. H. Einstein. 1998. “Numerical modeling of fracture coalescence in a model rock material.” Int. J. Fract. 92 (3): 221–252. https://doi.org/10.1023/A:1007460316400.
Cheng, H., and X. P. Zhou. 2015. “A multi-dimensional space method for dynamic cracks problems using implicit time scheme in the framework of the extended finite element method.” Int. J. Damage Mech. 24 (6): 859–890. https://doi.org/10.1177/1056789514555149.
Cheng, H., X. P. Zhou, J. Zhu, and Q. H. Qian. 2016. “The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression.” Rock Mech. Rock Eng. 49 (9): 3481–3494. https://doi.org/10.1007/s00603-016-0998-9.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Ding, C. D., Y. Zhang, and D. W. Hu. 2020. “Foliation effects on mechanical and failure characteristics of slate in 3D space under Brazilian test conditions.” Rock Mech. Rock Eng. 53 (9): 3919–3936. https://doi.org/10.1007/s00603-020-02146-8.
Erdogan, G., and G. C. Sih. 1963. “On the crack extension in plates under plane loading and transverse shear.” J. Basic Eng. ASME 85 (4): 519–525. https://doi.org/10.1115/1.3656897.
Horodecky, B., E. Perfect, H. Bilheux, J. Brabazon, and C. Gates. 2020. “Onset dynamics of air-water menisci on rock fracture surfaces.” Adv. Water Resour. 146 (12): 103754. https://doi.org/10.1016/j.advwatres.2020.103754.
Jia, Z. M., X. P. Zhou, and F. Berto. 2021. “Compressive-shear fracture model of the phase-field method coupled with a modified Hoek-Brown criterion.” Int. J. Fract. 229 (2): 161–184. https://doi.org/10.1007/s10704-021-00546-7.
Lajtai, E. 1974. “Brittle fracture in compression.” Int. J. Fract. 10 (4): 525–536. https://doi.org/10.1007/BF00155255.
Liu, X. W., H. Cheng, Q. S. Liu, and J. He. 2021. “Grout penetration process simulation and grouting parameters analysis in fractured rock mass using numerical manifold method.” Eng. Anal. Bound. Elem. 123 (Sep): 93–106. https://doi.org/10.1016/j.enganabound.2020.11.008.
Nguyen, T. L. 2011. “Endommagement localisé dans les roches tendres.” Accessed February 23, 2011. https://theses.hal.science/tel-00576834/document.
Paluszny, A., and S. K. Matthäi. 2009. “Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media.” Int. J. Solids Struct. 46 (18–19): 3383–3397. https://doi.org/10.1016/j.ijsolstr.2009.05.007.
Pyrak-Nolte, L., W. Braverman, and N. Nolte. 2020. “Probing complex geophysical geometries with chattering dust.” Nat. Commun. 11 (1): 5282. https://doi.org/10.1038/s41467-020-19087-z.
Rabczuk, T., and T. Belytschko. 2004. “Cracking particles: a simplified meshfree method for arbitrary evolving cracks.” Int. J. Numer. Methods Eng. 61 (13): 2316–2343. https://doi.org/10.1002/nme.1151.
Rabczuk, T., G. Zi, S. Bordas, and H. Nguyen-Xuan. 2010. “A simple and robust three-dimensional cracking-particle method without enrichment.” Comput. Methods Appl. Mech. Eng. 199 (37–40): 2437–2455. https://doi.org/10.1016/j.cma.2010.03.031.
Rannou, J., N. Limodin, and J. Réthoré. 2010. “Three dimensional experimental and numerical multiscale analysis of a fatigue crack.” Comput. Meth. Appl. Mech. 199 (21–22): 1307–1325. https://doi.org/10.1016/j.cma.2009.09.013.
Rong, G., J. Tan, and H. B. Zhan. 2020. “Quantitative evaluation of fracture geometry influence on nonlinear flow in a single rock fracture.” J. Hydrol. 589 (10): 125162. https://doi.org/10.1016/j.jhydrol.2020.125162.
Sagong, M., and A. Bobet. 2002. “Coalescence of multiple flaws in a rock-model material in uniaxial compression.” Int. J. Rock Mech. Min. Sci. 39 (2): 229–241. https://doi.org/10.1016/S1365-1609(02)00027-8.
Shou, Y. D., X. P. Zhou, and Q. H. Qian. 2018. “A critical condition of the zonal disintegration in deep rock masses: Strain energy density approach.” Theor. Appl. Fract. Mech. 97 (Sep): 322–332. https://doi.org/10.1016/j.tafmec.2017.05.024.
Silling, S. A. 2000. “Reformulation of elasticity theory for discontinuities and long-range forces.” J. Mech. Phys. Solids 48 (1): 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0.
Spetz, A., R. Denzer, E. Tudisco, and O. Dahlblom. 2021. “A modified phase-field fracture model for simulation of mixed mode brittle fractures and compressive cracks in porous rock.” Rock Mech. Rock Eng. 54 (10): 5375–5388. https://doi.org/10.1007/s00603-021-02627-4.
Sprunt, E. S., and W. F. Brace. 1974. “Direct observation of microcavities in crystalline rocks.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 11 (4): 139–150. https://doi.org/10.1016/0148-9062(74)92874-5.
Sun, G., J. X. Wang, H. Y. Yu, and L. J. Guo. 2023. “An extended peridynamic bond-based constitutive model for simulation of crack propagation in rock-like materials.” Comput. Geosci. 27 (5): 829–851. https://doi.org/10.1007/s10596-023-10234-1.
Wang, H., Y. T. Gao, and Y. Zhou. 2022. “Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression.” Theor. Appl. Fract. Mech. 117 (Sep): 103167. https://doi.org/10.1016/j.tafmec.2021.103167.
Wang, L. F., and X. P. Zhou. 2021. “Fracture analysis of functionally graded materials by the field-enriched finite element method.” Eng. Fract. Mech. 253 (Mar): 107875. https://doi.org/10.1016/j.engfracmech.2021.107875.
Wong, L. N. Y., and H. H. Einstein. 2009. “Crack coalescence in molded gypsum and Carrara marble: part 1. macroscopic observations and interpretation.” Rock Mech. Rock Eng. 42 (3): 475–511. https://doi.org/10.1007/s00603-008-0002-4.
Wong, T. F., R. H. C. Wong, and M. R. Jiao. 2004. “Micromechanics and rock failure process analysis.” Key Eng. Mater. 261 (Sep): 39–44. https://doi.org/10.4028/www.scientific.net/KEM.261-263.39.
Wu, Z. J., and L. N. Y. Wong. 2012. “Frictional crack initiation and propagation analysis using the numerical manifold method.” Comput. Geotech. 39 (Feb): 38–53. https://doi.org/10.1016/j.compgeo.2011.08.011.
Xie, H. P., Z. M. Zhu, and T. Y. Fan. 1998. “Boundary coordination analysis of brittle rock fracture mechanisms.” J. Mech. 3 (2): 110–118.
Xu, X., and A. Needleman. 1994. “Numerical simulations of fast crack growth in brittle solids.” J. Mech. Phys. Solids 42 (9): 1397–1434. https://doi.org/10.1016/0022-5096(94)90003-5.
Yang, F., D. Hu, H. Zhou, and J. Lu. 2020. “Physico-mechanical behaviors of granite under coupled static and dynamic cyclic loadings.” Rock Mech. Rock Eng. 53 (5): 2157–2173. https://doi.org/10.1007/s00603-019-02040-y.
Yang, S. Q., D. S. Yang, H. W. Jing, Y. H. Li, and S. Y. Wang. 2011. “An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures.” Rock Mech. Rock Eng. 45 (Feb): 563–582. https://doi.org/10.1007/s00603-011-0206-x.
Yang, Y. T., Y. Xia, H. Zheng, and Z. J. Liu. 2021. “Investigation of rock slope stability using a 3D nonlinear strength-reduction numerical manifold method.” Eng. Geol. 292 (6): 106285. https://doi.org/10.1016/j.enggeo.2021.106285.
Yau, J. F., S. S. Wang, and H. T. Corten. 1980. “A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity.” J. Appl. Mech. 47 (2): 335–341. https://doi.org/10.1115/1.3153665.
Yu, T. T. 2011. “The extended finite element method (XFEM) for discontinuous rock masses” Eng. Comput. 28 (3): 340–369. https://doi.org/10.1108/02644401111118178.
Zhang, X., S. W. Sloan, C. Vignes, and D. Sheng. 2017. “A modification of the phase-field model for mixed mode crack propagation in rock-like materials.” Comput. Methods Appl. Mech. Eng. 322 (Jan): 123–136. https://doi.org/10.1016/j.cma.2017.04.028.
Zhao, Z. H. 2013. “Gouge particle evolution in a rock fracture undergoing shear: a microscopic DEM study.” Rock Mech. Rock Eng. 46 (6): 1461–1479. https://doi.org/10.1007/s00603-013-0373-z.
Zhou, S. W., T. Rabczuk, and X. Y. Zhuang. 2018a. “Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies.” Adv. Eng. Software 122 (Sep): 31–49. https://doi.org/10.1016/j.advengsoft.2018.03.012.
Zhou, S. W., X. Y. Zhuang, J. M. Zhou, and F. Liu. 2021. “Phase field characterization of rock fractures in Brazilian splitting test specimens containing voids and inclusions.” Int. J. Geomech. 21 (3): 04021006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001930.
Zhou, X. P., H. Cheng, and Y. F. Feng. 2014a. “An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression.” Rock Mech. Rock Eng. 47 (6): 1961–1986. https://doi.org/10.1007/s00603-013-0511-7.
Zhou, X. P., E. B. Du, and Y. T. Wang. 2022. “Thermo-hydro-chemo-mechanical coupling peridynamic model of fractured rock mass and its application in geothermal extraction.” Comput. Geotech. 148 (Sep): 104837. https://doi.org/10.1016/j.compgeo.2022.104837.
Zhou, X. P., Y. J. Lian, L. N. Y. Wong, and F. Berto. 2018b. “Understanding the fracture behavior of brittle and ductile multi-flawed rocks by uniaxial loading by digital image correlation.” Eng. Fract. Mech. 199 (Mar): 438–460. https://doi.org/10.1016/j.engfracmech.2018.06.007.
Zhou, X. P., Y. D. Shou, Q. H. Qian, and M. H. Yu. 2014b. “Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method.” Int. J. Rock Mech. Min. Sci. 72 (Jun): 54–60. https://doi.org/10.1016/j.ijrmms.2014.08.013.
Zhou, X. P., and L. F. Wang. 2021a. “A field-enriched finite element method for crack propagation in fiber-reinforced composite lamina without remeshing.” Compos. Struct. 270 (Dec): 114074. https://doi.org/10.1016/j.compstruct.2021.114074.
Zhou, X. P., and L. F. Wang. 2021b. “Investigating propagation path of interface crack by the field-enriched finite element method.” Appl. Math. Model 99 (May): 81–105. https://doi.org/10.1016/j.apm.2021.06.012.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 150Issue 12December 2024

History

Received: Sep 6, 2023
Accepted: Jul 16, 2024
Published online: Sep 26, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 26, 2025

Permissions

Request permissions for this article.

Authors

Affiliations

Zhiming Jia [email protected]
School of Civil Engineering, Chongqing Univ., Chongqing 400045, PR China; School of Civil Engineering, Chongqing Univ. of Arts and Sciences, Chongqing 402160, PR China. Email: [email protected]
Xiaoping Zhou [email protected]
Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, PR China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share