Technical Papers
Sep 21, 2020

Metamodel-Based Prediction of Structural Damages due to Tunneling-Induced Settlements

Publication: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 6, Issue 4

Abstract

Tunneling-induced settlements in soft soil are inevitable and often suspected to impair buildings along the alignment. Public focus is thus targeted toward the consequences rather than the benefits of tunneling projects. To reduce the risk of damage, costly compensation is frequently applied in practice when crossing below critical structures, and critical scenarios are usually assessed via deterministic analyses of analytic models. These models are well known and overestimate potential damage since they conceive of buildings as idealized, simple Timoshenko beams without considering soil–structure interaction. The present study introduces an approach to providing an efficient prediction of realistically idealized structures prone to settlement-induced damages based on random input. This approach uses a nonlinear finite-element simulation of façades to render damage assessment. Global sensitivity analysis that uses both elementary effects and Sobol indices identifies random but irrelevant input that is consequently fixed to mean values. Response surfaces yield surrogate models for subsequent damage prediction via polynomial regression. As input, these surfaces employ ordinary distribution functions and extreme value distributions to ensure predictability at the tails. The inherent error of any prediction with response surfaces is first reduced by cross-validation and then comparatively rated with alternative forecasts through artificial neural networks. Finally, the mean probabilities of occurrence and standard deviations are determined considering the imperfection of the surrogate models for the classified damage events.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Financial support was provided by the German Research Foundation (DFG) in the framework of Project D3 of Collaborative Research Center SFB 837 “Interaction Modelling in Mechanized Tunneling.” This support is gratefully acknowledged.

References

Adeli, H. 2001. “Neural networks in civil engineering: 1989–2000.” Comput.-Aided Civ. Infrastruct. Eng. 16 (2): 126–142. https://doi.org/10.1111/0885-9507.00219.
Amari, S., N. Murata, K. R. Muller, M. Finke, and H. H. Yang. 1997. “Asymptotic statistical theory of overtraining and cross-validation.” IEEE Trans. Neural Networks 8 (5): 985–996. https://doi.org/10.1109/72.623200.
Backes, H.-P. 1985. “Zugfestigkeit von Mauerwerk und Verformungsverhalten unter Zugbeanspruchung.” In Mauerwerk Kalender, 719–725. Berlin: Ernst und Sohn.
Bedford, T., and R. Cooke. 2004. Probabilistic risk analysis: Foundations and methods. 3rd ed. Cambridge, UK: Cambridge University Press.
Bilotta, E., A. Paolillo, G. Russo, and S. Aversa. 2017. “Displacements induced by tunnelling under a historical building.” Tunnelling Underground Space Technol. 61 (Jan): 221–232. https://doi.org/10.1016/j.tust.2016.10.007.
Boscardin, M. D., and E. J. Cording. 1989. “Building response to excavation–induced settlement.” J. Geotech. Eng. 115 (1): 1–21. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(1).
Bucher, C. G., and U. Bourgund. 1990. “A fast and efficient response surface approach for structural reliability problems.” Struct. Saf. 7 (1): 57–66. https://doi.org/10.1016/0167-4730(90)90012-E.
Burd, H. K., G. T. Houslby, C. E. Augarde, and G. Liu. 2000. “Modelling tunnelling-induced settlement of masonry buildings.” Proc. Inst. Civ. Eng. Geotech. Eng. 143 (1): 17–29. https://doi.org/10.1680/geng.2000.143.1.17.
Burland, J. B., and C. P. Wroth. 1974. “Settlement of buildings and associated damage.” In Settlement of structures, 611–654. London: Pentech.
Campolongo, F., J. Cariboni, and A. Saltelli. 2007. “An effective screening design for sensitivity analysis of large models.” Environ. Modell. Software 22 (10): 1509–1518. https://doi.org/10.1016/j.envsoft.2006.10.004.
Campolongo, F., A. Saltelli, and J. Cariboni. 2011. “From screening to quantitative sensitivity analysis. A unified approach.” Comput. Phys. Commun. 182 (4): 978–988. https://doi.org/10.1016/j.cpc.2010.12.039.
Cardoso, J. B., J. R. de Almeida, J. M. Dias, and P. G. Coelho. 2008. “Structural reliability analysis using Monte Carlo simulation and neural networks.” Adv. Eng. Software 39 (6): 505–513. https://doi.org/10.1016/j.advengsoft.2007.03.015.
CEN (European Committee for Standardization). 2011. Eurocode 2: Design of concrete structures—Part 1-1: General rules and rules for buildings. DIN EN 1992-1-1. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2013. Toleranzen im Hochbau—Bauwerke. DIN 18202. Brussels, Belgium: CEN.
Clarke, J. A., and D. F. Laefer. 2014. “Evaluation of risk assessment procedures for buildings adjacent to tunnelling works.” Tunnelling Underground Space Technol. 40 (Feb): 333–342. https://doi.org/10.1016/j.tust.2013.10.014.
DAUB (Deutscher Ausschuss für unterirdisches Bauen e. V.). 2014. Recommendations for the design, production and installation of segmental rings. Cologne, Germany: DAUB.
Demuth, H., M. Beale, and M. Hagan. 2008. Neural network toolbox 6: User’s guide. Natick, MA: The MathWorks.
Dutta, S., and A. H. Gandomi. 2020. “Design of experiments for uncertainty quantification based on polynomial chaos expansion metamodels.” Chap. 15 in Handbook of probabilistic methods, 369–381. Amsterdam, Netherlands: Elsevier.
EAU (Empfehlungen des Arbeitsausschusses Ufereinfassungen). 1990. Empfehlungen des arbeitsausschusses ufereinfassungen: Häfen und wasserstraßen. 8th ed. Berlin: Ernst & Sohn.
Echard, B., N. Gayton, and M. Lemair. 2011. “AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation.” Struct. Saf. 33 (2): 145–154. https://doi.org/10.1016/j.strusafe.2011.01.002.
Efroymson, M. A. 1960. “Multiple regression analysis.” In Mathematical methods for digital computers, 191–203. New York: Wiley.
Faes, M., J. Sadeghi, M. Broggi, M. de Angelis, E. Patelli, M. Beer, and D. Moens. 2019. “On the robust estimation of small failure probabilities for strong nonlinear models.” ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng. 5 (4): 31–41. https://doi.org/10.1115/1.4044044.
Farrell, R., R. Mair, A. Sciotti, and A. Pigorini. 2014. “Building response to tunnelling.” Soils Found. 54 (3): 269–279. https://doi.org/10.1016/j.sandf.2014.04.003.
FIB (Fédération internationale du béton–International Federation for Structural Concrete). 2010. Model code 2010: First complete draft, Volume 55 of bulletin/international federation for structural concrete. Lausanne, Switzerland: fib.
Fillibeck, J. 2013. “Possibilities to predict the surface settlement during tunnelling in soil—Part 1: Empirical erediction method.” Geotechnik 36 (1): 30–39. https://doi.org/10.1002/gete.201200019.
Gaspar, B., C. Teiceira, and C. Guedes Soares. 2017. “Adaptive surrogate model with active refinement combining Kriging and a trust region method.” Struct. Saf. 165 (Sep): 277–291. https://doi.org/10.1016/j.ress.2017.03.035.
Hagan, M. T., H. B. Demuth, M. H. Beale, and O. de Jesus. 2014. Neural network design. 2nd ed. Boston: PWS Publishing.
Homma, T., and A. Saltelli. 1996. “Importance measures in global sensitivity analysis of nonlinear models.” Reliability Eng. Syst. Saf. 52 (1): 1–17. https://doi.org/10.1016/0951-8320(96)00002-6.
Jäger, W., T. Vassilev, and T. Pflücke. 2004. “Ein neues Materialgesetz zur wirklichkeitsnahen Beschreibung des Baustoffverhaltens von Mauerwerk.” Mauerwerk 8 (4): 159–165. https://doi.org/10.1002/dama.200490058.
JCSS (Joint Committee of Structural Safety). 2001. “Probabilistic model code.” Accessed January 2, 2020. https://www.jcss.ethz.ch.
Kämper, C., T. Putke, C. Zhao, A. A. Lavasan, T. Barciaga, P. Mark, and T. Schanz. 2016. “Comparative analyses of modeling alternatives of tunnels with concrete lining segments.” Bautechnik 93 (7): 421–432. https://doi.org/10.1002/bate.201500064.
Katebi, H., A. H. Rezaei, M. Hajialilue-Bonab, and A. Tarifard. 2015. “Assessment the influence of ground stratification, tunnel and surface buildings specifications on shield tunnel lining loads (by FEM).” Tunnelling Underground Space Technol. 49 (Jun): 67–78. https://doi.org/10.1016/j.tust.2015.04.004.
Kohavi, R. 1995. “A study of cross-validation and bootstrap for accuracy estimation and model selection.” In Vol. 2 of Proc., Int. Joint Conf. on Artificial Intelligence IJCAI-95, 1137–1145. Cambridge, MA: International Joint Conferences on Artificial Intelligence.
Levenberg, K. 1944. “A method for the solution of certain non-linear problems in least squares.” Q. J. Appl. Math. 2 (2): 164–168. https://doi.org/10.1090/qam/10666.
Maidl, B., M. Herrenknecht, U. Maidl, and G. Wehrmeyer. 2011. Maschineller tunnelbau im schildvortrieb. Berlin: Ernst.
Mair, R. J., R. N. Taylor, and J. B. Burland. 1996. “Prediction of ground movements and assessment of risk of building damage due to bored tunnelling.” In Proc., Geotechnical Aspects of Underground Construction in Soft Ground, edited by R. J. Mair, 713–718. Rotterdam, Netherlands: A.A. Balkema.
Marelli, S., and B. Sudret. 2013. “UQLAB: A framework for uncertainty quantification in MATLAB.” In Proc., 2nd Int. Conf. on Vulnerability, Risk Analysis and Management, edited by M. Beer, S.-K. Au, and J. W. Hall, 2554–2563. Liverpool, UK: Univ. of Liverpool.
Mark, P., W. Niemeier, S. Schindler, A. Blome, P. Heek, A. Krivenko, and E. Ziem. 2012. “Radar interferometry for monitoring of settlements in tunnelling.” Bautechnik 89 (11): 764–776. https://doi.org/10.1002/bate.201200035.
Mark, P., and B. Schnütgen. 2001. “Limits of elastic material behaviour of concrete.” Beton- Stahlbetonbau 96 (5): 373–378. https://doi.org/10.1002/best.200100400.
Marquardt, D. W. 1963. “An algorithm for least-squares estimation of nonlinear parameters.” J. Soc. Ind. Appl. Math. 11 (2): 431–441. https://doi.org/10.1137/0111030.
Mi, J., Y. Li, M. Beer, M. Broggi, and Y. Cheng. 2020. “Importance measure of probabilistic common cause failures under system hybrid uncertainty based on Bayesian network.” Maint. Reliab. 22 (1): 112–120. https://doi.org/10.17531/ein.2020.1.13.
Morris, M. D. 1991. “Factorial sampling plans for preliminary computational experiments.” Technometrics 33 (2): 161–174. https://doi.org/10.1080/00401706.1991.10484804.
Neuhausen, M., M. Obel, A. Martin, P. Mark, and M. König. 2018. “Window detection in facade images for risk assessment in tunneling.” Visualization Eng. 6 (1): 129. https://doi.org/10.1186/s40327-018-0062-9.
Obel, M., M. A. Ahrens, and P. Mark. 2017. “Settlement risk assessment for existent structures during mechanized tunneling based on uncertain data.” In Proc., European Community on Computational Methods in Applied Sciences: ECCOMAS Thematic Conf., edited by G. Hofstetter, K. Bergmeister, and J. Eberhardsteiner, 405–412. Innsbruck, Austria: Studia Universitätsverlag Innsbruck.
Obel, M., A. Marwan, A. Alsahly, S. Freitag, P. Mark, and G. Meschke. 2018. “Schadensbewertungskonzepte fuer innerstaedtische Bauwerke bei maschinellen Tunnelvortrieben” [Damage assessment concepts for urban structures during mechanized tunneling]. Bauingenieur 93 (12): 482–491.
Pasternak, P. L. 1954. Grundlagen einer neuen methode der berechnung von fundamentplatten mittels zwei bettungskoeffizienten, 7–20. Moscow: Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture.
Patelli, E. 2017. “COSSAN: A multidisciplinary software suite for uncertainty quantification and risk management.” In Handbook of uncertainty quantification, 1909–1977. New York: Springer.
Peck, R. B. 1969. “Deep excavations and tunneling in soft ground.” In Vol. 4 of Proc., 7th Int. Conf. on Soil Mechanics and Foundation Engineering, 225–290. London: International Society for Soil Mechanics and Geotechnical Engineering.
Rots, J. G. 1997. Structural masonry: An experimental/numerical basis for practical design rules. 1st ed. Rotterdam, Netherlands: A.A. Balkema.
Rüsch, H., R. Sell, and R. Rackwitz. 1969. Statistische analyse der betonfestigkeit. Berlin: Deutscher Ausschuss für Stahlbeton.
Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and Stefano Tarantola. 2008. Global sensitivity analysis: The primer. New York: Wiley.
Schindler, S. 2014. “Monitoringbasierte strukturmechanische Schadensanalyse von Bauwerken beim Tunnelbau.” Ph.D. thesis, Insitute of Concrete Structures, Ruhr-Universität Bochum.
Schindler, S., F. Hegemann, C. Koch, M. König, and P. Mark. 2016. “Radar interferometry based settlement monitoring in tunnelling: Visualization and accuracy analyses.” Visualization Eng. 4 (1): 7. https://doi.org/10.1186/s40327-016-0034-x.
Schindler, S., and P. Mark. 2013. “Evaluation of building stiffness in the risk-assessment of structures affected by settlements.” In Proc., European Community on Computational Methods in Applied Sciences: ECCOMAS Thematic Conf., edited by G. Meschke, J. Eberhardsteiner, T. Schanz, K. Soga, and M. Thewes, 477–486. Freiburg, Germany: Aedificatio Publishers.
Schmidt, H.-H., R. F. Buchmaier, and C. Vogt-Breyer. 2014. Grundlagen der geotechnik: Geotechnik nach eurocode. 4th ed. Wiesbaden, Germany: Springer.
Schöbi, R., B. Sudret, and S. Marelli. 2016. “Rare event estimation using Polynomial-Chaos-Kriging.” ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng. 3 (2): 31–41. https://doi.org/10.1061/AJRUA6.0000870.
Six, M. 2003. Sicherheitskonzept für nichtlineare Traglastverfahren im Betonbau. Berlin: Deutscher Ausschuss für Stahlbeton.
Strauss, A., K. Bergmeister, and S. März. 2007. “Reliability assessment of eccentric loaded columns.” Beton-Stahlbetonbau 102 (4): 223–230. https://doi.org/10.1002/best.200700537.
Wang, X., Z. Li, H. Wang, Q. Rong, and R. Y. Liang. 2016. “Probabilistic analysis of shield-driven tunnel in multiple strata considering stratigraphic uncertainty.” Struct. Saf. 62 (Sep): 88–100. https://doi.org/10.1016/j.strusafe.2016.06.007.
Xiao, L., H. Huang, and J. Zhang. 2017. “Effect of soil spatial variability on ground settlement induced by shield tunnelling.” In Proc., Geo-Risk 2017, edited by J. Huang, G. A. Fenton, L. Zhang, and D. V. Griffiths, 330–339. Reston, VA: ASCE. https://doi.org/10.1061/9780784480717.031.
Zhang, D.-M., K.-K. Phoon, Q.-F. Hu, and H.-W. Huang. 2018. “Nonlinear subgrade reaction solution for circular tunnel lining design based on mobilized strength of undrained clay.” Can. Geotech. J. 55 (2): 155–170. https://doi.org/10.1139/cgj-2017-0006.
Zhao, C., A. A. Lavasan, T. Barciaga, C. Kämper, P. Mark, and T. Schanz. 2017. “Prediction of tunnel lining forces and deformations using analytical and numerical solutions.” Tunnelling Underground Space Technol. 64 (Apr): 164–176. https://doi.org/10.1016/j.tust.2017.01.015.
ZTV-ING (Zusätzliche Technische Vertragsbedingungen und Richtlinien für Ingenieurbauten). 2014. Teil 5 ‘Tunnelbau’. Berlin: Bundesanstalt für Straßenwesen.

Information & Authors

Information

Published In

Go to ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 6Issue 4December 2020

History

Received: Mar 12, 2020
Accepted: Jun 22, 2020
Published online: Sep 21, 2020
Published in print: Dec 1, 2020
Discussion open until: Feb 21, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Markus Obel [email protected]
Institute of Concrete Structures, Ruhr Univ. Bochum, Bochum 44801, Germany (corresponding author). Email: [email protected]
Institute of Concrete Structures, Ruhr Univ. Bochum, Bochum 44801, Germany. ORCID: https://orcid.org/0000-0002-2337-1571. Email: [email protected]
Professor, Institute of Concrete Structures, Ruhr Univ. Bochum, Bochum 44801, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share