Technical Papers
Apr 22, 2020

Treatment of Organic Fraction of Municipal Solid Waste in Bioelectrochemical Systems: A Review

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 24, Issue 3

Abstract

The review discusses the transformation of waste to energy (WTE) through bioelectrochemical systems (BESs) treating organic waste, which makes up 47% of the total municipal solid waste generated. Emphasis is given to the intermediate step—use of a leach bed reactor—to successfully convert WTE by explaining the constructional elements and factors affecting the hydrolysis of organic waste. As hydrolysis is a rate-limiting step of anaerobic digestion (AD), operating parameters controlling solubilization of the readily degradable compounds are essential to obtain a volatile fatty acid and nutrient-rich leachate. The leachate treatment in BESs such as a microbial fuel cell, a microbial electrolysis cell, and a microbial desalination cell, along with factors that will affect the performance of these systems, is reviewed. Further, it describes the mechanisms involved to remove organics and nutrients, as well as the advantages, disadvantages, and challenges of individual systems. Finally, this review will aid future efforts to recover the energy present in organic waste with the help of BESs and to develop integrated solid waste management systems.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The grant (ECR/2016/002015) received from Science and Engineering Research Board, Department of Science and Technology, Government of India is duly acknowledged.

References

Albasha, M. O., P. Gupta, and P. W. Ramteke. 2015. “Management of kitchen waste by vermicomposting using earthworm, Eudrilus eugeniae.” In Proc., Int. Conf. on Advances in Agricultural, Biological and Environmental Sciences, 81–84. https://www.iicbe.org/index.php.
Almatouq, A., and A. O. Babatunde. 2017. “Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.” Bioresour. Technol. 237: 193–203. https://doi.org/10.1016/j.biortech.2017.02.043.
Altinbas, M., I. Ozturk, and A. F. Aydin. 2002. “Ammonia recovery from high strength agro industry effluents.” Water Sci. Technol. 45 (12): 189–196. https://doi.org/10.2166/wst.2002.0426.
Amokrane, A., C. Comel, and J. Veron. 1997. “Landfill leachates pretreatment by coagulation–flocculation.” Water Res. 31 (11): 2775–2782. https://doi.org/10.1016/S0043-1354(97)00147-4.
Battistoni, P., A. De Angelis, P. Pavan, M. Prisciandaro, and F. Cecchi. 2001. “Phosphorus removal from a real anaerobic supernatant by struvite crystallization.” Water Res. 35 (9): 2167–2178. https://doi.org/10.1016/S0043-1354(00)00498-X.
Bayu, S. 2011. “Intercomparability of isotropic and anisotropic solar radiation models for different climatic zones of India.” Environ. Prog. 30 (1): 925–932. https://doi.org/10.1002/ep.11838.
Behera, M., P. S. Jana, and M. M. Ghangrekar. 2010. “Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode.” Bioresour. Technol. 101 (4): 1183–1189. https://doi.org/10.1016/j.biortech.2009.07.089.
Ben Moussa, S., G. Maurin, C. Gabrielli, and M. Ben Amor. 2006. “Electrochemical precipitation of struvite.” Electrochem. Solid-State Lett. 9 (6): C97. https://doi.org/10.1149/1.2189222.
Brás, I., M. E. Silva, G. Lobo, A. Cordeiro, M. Faria, and L. T. De Lemos. 2017. “Refuse derived fuel from municipal solid waste rejected fractions—A case study.” Energy Procedia 120: 349–356. https://doi.org/10.1016/j.egypro.2017.07.227.
Bridier, A., E. Desmond-Le Quemener, C. Bureau, P. Champigneux, L. Renvoisé, J.-M. Audic, E. Blanchet, A. Bergel, and T. Bouchez. 2015. “Successive bioanode regenerations to maintain efficient current production from biowaste.” Bioelectrochemistry 106: 133–140. https://doi.org/10.1016/j.bioelechem.2015.05.007.
Cao, X., X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, and B. E. Logan. 2009. “A new method for water desalination using microbial desalination cells.” Environ. Sci. Technol. 43 (18): 7148–7152. https://doi.org/10.1021/es901950j.
Capson-Tojo, G., M. Rouez, M. Crest, J.-P. Steyer, J.-P. Delgenès, and R. Escudié. 2016. “Food waste valorization via anaerobic processes: A review.” Rev. Environ. Sci. Biotechnol. 15 (3): 499–547. https://doi.org/10.1007/s11157-016-9405-y.
Cavdar, P., E. Yilmaz, A. E. Tugtas, and B. Calli. 2011. “Acidogenic fermentation of municipal solid waste and its application to bio-electricity production via microbial fuel cells (MFCs).” Water Sci. Technol. 64 (4): 789–795. https://doi.org/10.2166/wst.2011.595.
Cavinato, C., F. Fatone, D. Bolzonella, and P. Pavan. 2010. “Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences.” Bioresour. Technol. 101 (2): 545–550. https://doi.org/10.1016/j.biortech.2009.08.043.
Chae, K. J., M. Choi, F. F. Ajayi, W. Park, I. S. Chang, and I. S. Kim. 2008. “Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells.” Energy Fuels 22 (1): 169–176. https://doi.org/10.1021/ef700308u.
Chen, Y., J. J. Cheng, and K. S. Creamer. 2008. “Inhibition of anaerobic digestion process: A review.” Bioresour. Technol. 99 (10): 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057.
Choi, J.-D.-R., H. N. Chang, and J.-I. Han. 2011. “Performance of microbial fuel cell with volatile fatty acids from food wastes.” Biotechnol. Lett. 33 (4): 705–714. https://doi.org/10.1007/s10529-010-0507-2.
Chugh, S., D. P. Chynoweth, W. Clarke, P. Pullammanappallil, and V. Rudolph. 1999. “Degradation of unsorted municipal solid waste by a leach-bed process.” Bioresour. Technol. 69 (2): 103–115. https://doi.org/10.1016/S0960-8524(98)00182-5.
Cohen, A. 1982. “Optimisation of anaerobic digestion of soluble carbohydrates containing wastewater by phase separation.” Ph.D. thesis, Laboratorium voor Microbiologie, Univ. of Amsterdam.
Contrera, R. C., K. C. da Cruz Silva, G. H. R. Silva, D. M. Morita, M. Zaiat, and V. Schalch. 2015. “The ‘chemical oxygen demand/total volatile acids’ ratio as an anaerobic treatability indicator for landfill leachates.” Braz. J. Chem. Eng. 32 (1): 73–86. https://doi.org/10.1590/0104-6632.20150321s00003024.
Cusick, R. D., and B. E. Logan. 2012. “Phosphate recovery as struvite within a single chamber microbial electrolysis cell.” Bioresour. Technol. 107: 110–115. https://doi.org/10.1016/j.biortech.2011.12.038.
Cusick, R. D., M. L. Ullery, B. A. Dempsey, and B. E. Logan. 2014. “Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.” Water Res. 54: 297–306. https://doi.org/10.1016/j.watres.2014.01.051.
Cysneiros, D., C. J. Banks, S. Heaven, and K.-A. G. Karatzas. 2011. “The role of phase separation and feed cycle length in leach beds coupled to methanogenic reactors for digestion of a solid substrate. Part 2: Hydrolysis, acidification and methanogenesis in a two-phase system.” Bioresour. Technol. 102 (16): 7393–7400. https://doi.org/10.1016/j.biortech.2011.05.042.
D’Addario, E., R. Pappa, B. Pietrangeli, and M. Valdiserri. 1993. “The acidogenic digestion of the organic fraction of municipal solid waste for the production of liquid fuels.” Water Sci. Technol. 27 (2): 183–192. https://doi.org/10.2166/wst.1993.0101.
Damiano, L., J. R. Jambeck, and D. B. Ringelberg. 2014. “Municipal solid waste landfill leachate treatment and electricity production using microbial fuel cells.” Appl. Biochem. Biotechnol. 173 (2): 472–485. https://doi.org/10.1007/s12010-014-0854-x.
Das, S., P. Chatterjee, and M. M. Ghangrekar. 2018. “Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis.” Water Sci. Technol. 77 (5): 1293–1302. https://doi.org/10.2166/wst.2018.002.
Deressa, L., S. Libsu, R. B. Chavan, D. Manaye, and A. Dabassa. 2015. “Production of biogas from fruit and vegetable wastes mixed with different wastes.” Environ. Ecol. Res. 3 (3): 65–71. https://doi.org/10.13189/eer.2015.030303.
Desikan, S. 2019. “Microbial fuel cell treats textile wastewater.” The Hindu. February 2, 2019.
Desmond-Le Quéméner, E., A. Bridier, J.-H. Tian, C. Madigou, C. Bureau, Y. Qi, and T. Bouchez. 2019. “Biorefinery for heterogeneous organic waste using microbial electrochemical technology.” Bioresour. Technol. 292: 121943. https://doi.org/10.1016/j.biortech.2019.121943.
Dhar, H., S. Kumar, and R. Kumar. 2017. “A review on organic waste to energy systems in India.” Bioresour. Technol. 245: 1229–1237. https://doi.org/10.1016/j.biortech.2017.08.159.
Ding, A., Y. Yang, G. Sun, and D. Wu. 2016. “Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC).” Chem. Eng. J. 283: 260–265. https://doi.org/10.1016/j.cej.2015.07.054.
Dinopoulou, G., and J. N. Lester. 1989. “Optimization of a two-phase anaerobic digestion system treating a complex wastewater.” Environ. Technol. Lett. 10 (9): 799–814. https://doi.org/10.1080/09593338909384800.
Dogan, E., T. Dunaev, T. H. Erguder, and G. N. Demirer. 2009. “Performance of leaching bed reactor converting the organic fraction of municipal solid waste to organic acids and alcohols.” Chemosphere 74 (6): 797–803. https://doi.org/10.1016/j.chemosphere.2008.10.028.
Dominguez, J., and C. A. Edwards. 2011. “Relationships between composting and vermicomposting.” In Vermiculture technology, edited by C. A. Edwards, N. Q. Arancon, and R. Sherman, 11–25. Boca Raton, FL: CRC Press.
Doyle, J. D., and S. A. Parsons. 2002. “Struvite formation, control and recovery.” Water Res. 36 (16): 3925–3940.
Drennan, M. F., and T. D. Distefano. 2014. “High solids co-digestion of food and landscape waste and the potential for ammonia toxicity.” Waste Manage. 34 (7): 1289–1298. https://doi.org/10.1016/j.wasman.2014.03.019.
Durruty, I., P. S. Bonanni, J. F. González, and J. P. Busalmen. 2012. “Evaluation of potato-processing wastewater treatment in a microbial fuel cell.” Bioresour. Technol. 105: 81–87. https://doi.org/10.1016/j.biortech.2011.11.095.
El-Chakhtoura, J., M. El-Fadel, H. A. Rao, D. Li, S. Ghanimeh, and P. E. Saikaly. 2014. “Electricity generation and microbial community structure of air-cathode microbial fuel cells powered with the organic fraction of municipal solid waste and inoculated with different seeds.” Biomass Bioenergy 67: 24–31. https://doi.org/10.1016/j.biombioe.2014.04.020.
Escapa, A., M. F. Manuel, A. Morán, X. Gómez, S. R. Guiot, and B. Tartakovsky. 2009. “Hydrogen production from glycerol in a membraneless microbial electrolysis cell.” Energy & Fuels 23 (9): 4612–4618. https://doi.org/10.1021/ef900357y.
Freguia, S., E. H. Teh, N. Boon, K. M. Leung, J. Keller, and K. Rabaey. 2010. “Microbial fuel cells operating on mixed fatty acids.” Bioresour. Technol. 101 (4): 1233–1238. https://doi.org/10.1016/j.biortech.2009.09.054.
Gabhane, J., S. P. William, R. Bidyadhar, P. Bhilawe, D. Anand, A. N. Vaidya, and S. R. Wate. 2012. “Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost.” Bioresour. Technol. 114: 382–388. https://doi.org/10.1016/j.biortech.2012.02.040.
Gerlagh, R., P. V. Beukering, M. Verma, P. P. Yadav, and P. Pandey. 1999. Integrated modelling of solid waste in India. London: International Institute for Environment and Development.
Ghanem, I. I. I., G. Guowei, and Z. Jinfu. 2001. “Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation.” Renewable Energy 23 (3–4): 673–684. https://doi.org/10.1016/S0960-1481(00)00152-X.
Ghosh, S. 1985. “Solid-phase methane fermentation of solid wastes.” J. Energy Resour. Technol. 107 (3): 402–405. https://doi.org/10.1115/1.3231209.
Goud, R. K., P. S. Babu, and S. V. Mohan. 2011. “Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): Bio-electrochemical evaluation under increasing substrate loading condition.” Int. J. Hydrogen Energy 36 (10): 6210–6218. https://doi.org/10.1016/j.ijhydene.2011.02.056.
Hassan, M., A. S. Fernandez, I. San Martin, B. Xie, and A. Moran. 2018. “Hydrogen evolution in microbial electrolysis cells treating landfill leachate: Dynamics of anodic biofilm.” Int. J. Hydrogen Energy 43 (29): 13051–13063. https://doi.org/10.1016/j.ijhydene.2018.05.055.
He, Z., J. Kan, Y. Wang, Y. Huang, F. Mansfeld, and K. H. Nealson. 2009. “Electricity production coupled to ammonium in a microbial fuel cell.” Environ. Sci. Technol. 43 (1): 3391–3397. https://doi.org/10.1021/es803492c.
Hill, D. T., and C. L. Barth. 1977. “A dynamic model for simulation of animal waste digestion.” J. Water Pollut. Control Fed. 49 (10): 2129–2143.
Hirooka, K., and O. Ichihashi. 2013. “Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation.” Bioresour. Technol. 137: 368–375. https://doi.org/10.1016/j.biortech.2013.03.067.
Huang, H., N. Qureshi, M.-H. Chen, W. Liu, and V. Singh. 2015. “Ethanol production from food waste at high solids content with vacuum recovery technology.” J. Agric. Food Chem. 63 (10): 2760–2766. https://doi.org/10.1021/jf5054029.
Hussain, A., F. M. Lebrun, and B. Tartakovsky. 2017. “Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.” Enzyme Microb. Technol. 102: 41–48. https://doi.org/10.1016/j.enzmictec.2017.03.013.
Ieropoulos, I., C. Melhuish, and J. Greenman. 2007. “Artificial gills for robots: MFC behaviour in water.” Bioinspiration Biomimetics 2 (3): S83–S93. https://doi.org/10.1088/1748-3182/2/3/S02.
Ieropoulos, I. A., A. Stinchcombe, I. Gajda, S. Forbes, I. Merino-Jimenez, G. Pasternak, D. Sanchez-Herranz, and J. Greenman. 2016. “Pee power urinal—Microbial fuel cell technology field trials in the context of sanitation.” Environ. Sci. Water Res. Technol. 2 (2): 336–343. https://doi.org/10.1039/c5ew00270b.
Iskander, S. M., J. T. Novak, and Z. He. 2018. “Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell.” Bioresour. Technol. 255: 76–82. https://doi.org/10.1016/j.biortech.2018.01.097.
Ismail, Z. Z., and A. A. Habeeb. 2017. “Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers.” Renewable Energy 101: 1256–1265. https://doi.org/10.1016/j.renene.2016.10.008.
Jagadabhi, P. S., P. Kaparaju, and J. Rintala. 2011. “Two-stage anaerobic digestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors.” Bioresour. Technol. 102 (7): 4726–4733. https://doi.org/10.1016/j.biortech.2011.01.052.
Jia, J., Y. Tang, B. Liu, D. Wu, N. Ren, and D. Xing. 2013. “Electricity generation from food wastes and microbial community structure in microbial fuel cells.” Bioresour. Technol. 144: 94–99. https://doi.org/10.1016/j.biortech.2013.06.072.
Karim, A. H. A. 2013. “Evaluation of a trickle flow leach bed reactor for anaerobic digestion of high solids cattle manure.” M.Sc. thesis, Dept. of Civil and Environmental Engineering, Colorado State Univ.
Kaza, S., L. Yao, P. Bhada-Tata, and F. Van Woerden. 2018. What a waste 2.0: A global snapshot of solid waste management to 2050. Washington, DC: World Bank Group. http://hdl.handle.net/10986/30317.
Kelly, P. T., and Z. He. 2014. “Nutrients removal and recovery in bioelectrochemical systems: A review.” Bioresour. Technol. 153: 351–360. https://doi.org/10.1016/j.biortech.2013.12.046.
Kjeldsen, P., M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen. 2002. “Present and long-term composition of MSW landfill leachate: A review.” Crit. Rev. Environ. Sci. Technol. 32 (4): 297–336. https://doi.org/10.1080/10643380290813462.
Krishna, D., and A. S. Kalamdhad. 2014. “Pre-treatment and anaerobic digestion of food waste for high rate methane production—A review.” J. Environ. Chem. Eng. 2 (3): 1821–1830. https://doi.org/10.1016/j.jece.2014.07.024.
Kumar, M., S. S. Adham, and W. R. Pearce. 2006. “Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type.” Environ. Sci. Technol. 40 (6): 2037–2044. https://doi.org/10.1021/es0512428.
Kumar, S., S. R. Smith, G. Fowler, C. Velis, S. J. Kumar, S. Arya, R. K. Rena, and C. Cheeseman. 2017. “Challenges and opportunities associated with waste management in India.” R. Soc. Open Sci. 4 (3): 160764, https://doi.org/10.1098/rsos.160764.
Kuntke, P., T. H. J. A. Sleutels, M. Saakes, and C. J. N. Buisman. 2014. “Hydrogen production and ammonium recovery from urine by a microbial electrolysis cell.” Int. J. Hydrogen Energy 39 (10): 4771–4778. https://doi.org/10.1016/j.ijhydene.2013.10.089.
Kuntke, P., K. Śmiech, H. Bruning, G. Zeeman, M. Saakes, T. H. J. A. Sleutels, H. V. M. Hamelers, and C. J. N. Buisman. 2012. “Ammonium recovery and energy production from urine by a microbial fuel cell.” Water Res. 46 (8): 2627–2636. https://doi.org/10.1016/j.watres.2012.02.025.
Lee, H.-S., P. Parameswaran, A. Kato-Marcus, C. I. Torres, and B. E. Rittmann. 2008a. “Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates.” Water Res. 42 (6–7): 1501–1510. https://doi.org/10.1016/j.watres.2007.10.036.
Lee, Z.-K., S.-L. Li, J.-S. Lin, Y.-H. Wang, P.-C. Kuo, and S.-S. Cheng. 2008b. “Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition.” Int. J. Hydrogen Energy 33 (19): 5234–5241. https://doi.org/10.1016/j.ijhydene.2008.05.006.
Li, W.-W., H.-Q. Yu, and Z. He. 2014. “Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies.” Energy Environ. Sci. 7 (3): 911–924. https://doi.org/10.1039/c3ee43106a.
Li, X. M., K. Y. Cheng, A. Selvam, and J. W. C. Wong. 2013. “Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula.” Process Biochem. 48 (2): 283–288. https://doi.org/10.1016/j.procbio.2012.10.001.
Li, Y., D. Hua, H. Mu, H. Xu, F. Jin, and X. Zhang. 2017. “Conversion of vegetable wastes to organic acids in leaching bed reactor: Performance and bacterial community analysis.” J. Biosci. Bioeng. 124 (2): 195–203. https://doi.org/10.1016/j.jbiosc.2017.02.020.
Lide, D. R. 1994. CRC handbook of chemistry and physics. 85th ed. Boca Raton, FL: CRC Press.
Lim, S.-J., D. W. Choi, W. G. Lee, S. Kwon, and H. N. Chang. 2000. “Volatile fatty acids production from food wastes and its application to biological nutrient removal.” Bioprocess Eng. 22 (6): 543–545. https://doi.org/10.1007/s004499900109.
Logan, B. E., D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiasse, and R. A. Rozendal. 2008. “Microbial electrolysis cells for high yield hydrogen gas production from organic matter.” Environ. Sci. Technol. 42 (23): 8630–8640. https://doi.org/10.1021/es801553z.
Luo, S., A. Jain, A. Aguilera, and Z. He. 2017. “Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell.” Appl. Energy 206: 879–886. https://doi.org/10.1016/j.apenergy.2017.08.241.
Ma, C., J. Liu, M. Ye, L. Zou, G. Qian, and Y.-Y. Li. 2018. “Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type.” Renewable Sustainable Energy Rev. 90: 700–709. https://doi.org/10.1016/j.rser.2018.03.110.
Ma, W., G. Hoffmann, M. Schirmer, G. Chen, and V. S. Rotter. 2010. “Chlorine characterization and thermal behavior in MSW and RDF.” J. Hazard. Mater. 178 (1–3): 489–498. https://doi.org/10.1016/j.jhazmat.2010.01.108.
Mahmoud, M., P. Parameswaran, C. I. Torres, and B. E. Rittmann. 2014. “Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.” Bioresour. Technol. 151: 151–158. https://doi.org/10.1016/j.biortech.2013.10.053.
Mahmoud, M., P. Parameswaran, C. I. Torres, and B. E. Rittmann. 2016. “Relieving the fermentation inhibition enables high electron recovery from landfill leachate in a microbial electrolysis cell.” RSC Adv. 6 (8): 6658–6664. https://doi.org/10.1039/c5ra25918e.
Manju, S., and N. Sagar. 2017. “Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India.” Renewable Sustainable Energy Rev. 73: 594–609. https://doi.org/10.1016/j.rser.2017.01.164.
Mata-Alvarez, J., S. Macé, and P. Llabrés. 2000. “Anaerobic digestion of organic solid wastes: An overview of research achievements and perspectives.” Bioresour. Technol. 74 (1): 3–16. https://doi.org/10.1016/S0960-8524(00)00023-7.
Matassa, S., D. J. Batstone, T. Hülsen, J. Schnoor, and W. Verstraete. 2015. “Can direct conversion of used nitrogen to new feed and protein help feed the world?” Environ. Sci. Technol. 49 (9): 5247–5254. https://doi.org/10.1021/es505432w.
Matsakas, L., Q. Gao, S. Jansson, U. Rova, and P. Christakopoulos. 2017. “Green conversion of municipal solid wastes into fuels and chemicals.” Electron. J. Biotechnol. 26: 69–83. https://doi.org/10.1016/j.ejbt.2017.01.004.
McInerney, M. L. 1988. “Anaerobic hydrolysis and fermentation of fats and proteins.” In Biology of anaerobic microorganisms, edited by A. J. B. Zehnder, 373–415. New York: Wiley.
McKendry, P. 2002. “Energy production from biomass. Part 3: Gasification technologies.” Bioresour. Technol. 83 (1): 55–63. https://doi.org/10.1016/S0960-8524(01)00120-1.
Metcalf & Eddy. 2003. Wastewater engineering: Treatment, disposal and reuse. 4th ed. New York: McGraw-Hill.
Mirzaienia, F., A. Asadipour, A. J. Jafari, and M. Malakootian. 2017. “Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell.” Appl. Water Sci. 7 (7): 3617–3624. https://doi.org/10.1007/s13201-016-0505-1.
Mohan, S. V., and K. Chandrasekhar. 2011. “Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: Influence of electrode assembly and buffering capacity.” Bioresour. Technol. 102 (14): 7077–7085. https://doi.org/10.1016/j.biortech.2011.04.039.
Mohanakrishna, G., S. Venkata Mohan, and P. N. Sarma. 2010. “Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: An integrative approach.” Int. J. Hydrogen Energy 35 (8): 3440–3449. https://doi.org/10.1016/j.ijhydene.2010.01.084.
Murto, M., L. Björnsson, and B. Mattiasson. 2004. “Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.” J. Environ. Manage. 70 (2): 101–107. https://doi.org/10.1016/j.jenvman.2003.11.001.
Nakanishi, A., W. Yoshida, and I. Karube. 2019. “Organic matter BOD biosensor monitoring.” In Handbook of cell biosensors, edited by G. Thouand, 1–17. Cham, Switzerland: Springer.
Namsree, P., W. Suvajittanont, C. Puttanlek, D. Uttapap, and V. Rungsardthong. 2012. “Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor.” J. Environ. Manage. 110: 40–47. https://doi.org/10.1016/j.jenvman.2012.05.017.
Narayan, M., P. Solanki, and R. K. Srivastava. 2018. “Treatment of sewage (domestic wastewater or municipal wastewater) and electricity production by integrating constructed wetland with microbial fuel cell.” Chap. 2 in Sewage, edited by I. X. Zhu, 17–32. London: IntechOpen.
Nizami, A. S., T. Thamsiriroj, A. Singh, and J. D. Murphy. 2010. “Role of leaching and hydrolysis in a two-phase grass digestion system.” Energy Fuels 24 (8): 4549–4559. https://doi.org/10.1021/ef100677s.
Novak, J. T., and D. A. Carlson. 1970. “Kinetics of anaerobic long chain fatty acid degradation.” J. Water Pollut. Control Fed. 42 (11): 1932–1943.
O’Keefe, D. M., and D. P. Chynoweth. 2000. “Influence of phase separation, leachate recycle and aeration on treatment of municipal solid waste in simulated landfill cells.” Bioresour. Technol. 72 (1): 55–66. https://doi.org/10.1016/S0960-8524(99)00089-9.
Özkaya, B., A. Y. Cetinkaya, M. Cakmakci, D. Karadaǧ, and E. Sahinkaya. 2013. “Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material.” Bioprocess Biosyst. Eng. 36 (4): 399–405. https://doi.org/10.1007/s00449-012-0796-z.
Pant, D., G. Van Bogaert, L. Diels, and K. Vanbroekhoven. 2010. “A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.” Bioresour. Technol. 101 (6): 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017.
Park, J., B. Lee, D. Tian, and H. Jun. 2018. “Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell.” Bioresour. Technol. 247: 226–233. https://doi.org/10.1016/j.biortech.2017.09.021.
Pavlostathis, S. G., and E. Giraldo-Gomez. 1991. “Kinetics of anaerobic treatment: A critical review.” J. Crit. Rev. Environ. Control 21 (5–6): 411–490. https://doi.org/10.1080/10643389109388424.
Pei, H., Z. Yang, C. Nie, Q. Hou, L. Zhang, Y. Wang, and S. Zhang. 2018. “Using a tubular photosynthetic microbial fuel cell to treat anaerobically digested effluent from kitchen waste: Mechanisms of organics and ammonium removal.” Bioresour. Technol. 256: 11–16. https://doi.org/10.1016/j.biortech.2018.01.144.
Poggi-Varaldo, H. M., R. Rodríguez-Vázquez, G. Fernández-Villagómez, and F. Esparza-García. 1997. “Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen.” Appl. Microbiol. Biotechnol. 47 (3): 284–291. https://doi.org/10.1007/s002530050928.
Pohland, F. G., and S. Ghosh. 1971. “Developments in anaerobic stabilization of organic wastes—The two-phase concept.” Environ. Lett. 1 (4): 255–266. https://doi.org/10.1080/00139307109434990.
Potter, M. C. 1911. “Electrical effects accompanying the decomposition of organic compounds.” Proc. R. Soc. B: Biol. Sci. 84 (571): 260–276. https://doi.org/10.1098/rspb.1911.0073.
Procházka, J., P. Dolejš, J. Máca, and M. Dohányos. 2012. “Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen.” Appl. Microbiol. Biotechnol. 93 (1): 439–447. https://doi.org/10.1007/s00253-011-3625-4.
Rabaey, K., and R. A. Rozendal. 2010. “Microbial electrosynthesis—Revisiting the electrical route for microbial production.” Nat. Rev. Microbiol. 8 (10): 706–716. https://doi.org/10.1038/nrmicro2422.
Raynal, J., J. P. Delgenès, and R. Moletta. 1998. “Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process.” Bioresour. Technol. 65 (1–2): 97–103. https://doi.org/10.1016/S0960-8524(98)00009-1.
Resource Futures. 2009. Municipal waste composition: A review of municipal waste component analyses. London: Department for Environment, Food and Rural Affairs.
Rozendal, R. A., A. W. Jeremiasse, H. V. M. Hamelers, and C. J. N. Buisman. 2008. “Hydrogen production with a microbial biocathode.” Environ. Sci. Technol. 42 (2): 629–634. https://doi.org/10.1021/es071720
Saeed, H. M., G. A. Husseini, S. Yousef, J. Saif, S. Al-Asheh, A. A. Fara, S. Azzam, R. Khawaga, and A. Aidan. 2015. “Microbial desalination cell technology: A review and a case study.” Desalination 359: 1–13. https://doi.org/10.1016/j.desal.2014.12.024.
Salomoni, C., A. Caputo, M. Bonoli, O. Francioso, M. T. Rodriguez-Estrada, and D. Palenzona. 2011. “Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes.” Bioresour. Technol. 102 (11): 6443–6448. https://doi.org/10.1016/j.biortech.2011.03.079.
Sen, B., J. Aravind, P. Kanmani, and C.-H. Lay. 2016. “State of the art and future concept of food waste fermentation to bioenergy.” Renewable Sustainable Energy Rev. 53: 547–557. https://doi.org/10.1016/j.rser.2015.08.065.
Siegert, I., and C. Banks. 2005. “The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors.” Process Biochem. 40 (11): 3412–3418. https://doi.org/10.1016/j.procbio.2005.01.025.
Sierra, J., L. Desfontaines, J. Faverial, G. Loranger-Merciris, and M. Boval. 2013. “Composting and vermicomposting of cattle manure and green wastes under tropical conditions: Carbon and nutrient balances and end-product quality.” Soil Res. 51 (2): 142–151. https://doi.org/10.1071/SR13031.
Soobhany, N., R. Mohee, and V. K. Garg. 2015. “Comparative assessment of heavy metals content during the composting and vermicomposting of municipal solid waste employing Eudrilus eugeniae.” Waste Manage. (Oxford) 39: 130–145. https://doi.org/10.1016/j.wasman.2015.02.003.
Svensson Myrin, E., P.-E. Persson, and S. Jansson. 2014. “The influence of food waste on dioxin formation during incineration of refuse-derived fuels.” Fuel 132: 165–169. https://doi.org/10.1016/j.fuel.2014.04.083.
Tang, Y.-Q., Y. Koike, K. Liu, M.-Z. An, S. Morimura, X.-L. Wu, and K. Kida. 2008. “Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7.” Biomass Bioenergy 32 (11): 1037–1045. https://doi.org/10.1016/j.biombioe.2008.01.027.
Tao, Q., S. Zhou, J. Luo, and J. Yuan. 2015. “Nutrient removal and electricity production from wastewater using microbial fuel cell technique.” Desalination 365: 92–98. https://doi.org/10.1016/j.desal.2015.02.021.
Tchobanoglous, G., H. Thesien, and S. A. Vigil. 2014. Integrated solid waste management: Engineering principles and management issues. New Delhi, India: McGraw-Hill.
Tremouli, A., I. Karydogiannis, P. K. Pandis, K. Papadopoulou, C. Argirusis, V. N. Stathopoulos, and G. Lyberatos. 2019. “Bioelectricity production from fermentable household waste extract using a single chamber microbial fuel cell.” Energy Procedia 161: 2–9. https://doi.org/10.1016/j.egypro.2019.02.051.
Van Der Bruggen, B., A. Koninckx, and C. Vandecasteele. 2004. “Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration.” Water Res. 38 (5): 1347–1353. https://doi.org/10.1016/j.watres.2003.11.008.
Vázquez-Larios, A. L., O. Solorza-Feria, H. M. Poggi-Varaldo, R. De Guadalupe González-Huerta, M. T. Ponce-Noyola, E. Ríos-Leal, and N. Rinderknecht-Seijas. 2014. “Bioelectricity production from municipal leachate in a microbial fuel cell: Effect of two cathodic catalysts.” Int. J. Hydrogen Energy 39 (29): 16667–16675. https://doi.org/10.1016/j.ijhydene.2014.05.178.
Veeken, A., S. Kalyuzhnyi, H. Scharff, and B. Hamelers. 2000. “Effect of pH and VFA on hydrolysis of organic solid waste.” J. Environ. Eng. 126 (12): 1076–1081. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:12(1076).
Vijayaraghavan, K., D. Ahmad, and C. Soning. 2007. “Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter.” Int. J. Hydrogen Energy 32 (18): 4754–4760. https://doi.org/10.1016/j.ijhydene.2007.07.001.
Viswanath, P., S. Sumithra Devi, and K. Nand. 1992. “Anaerobic digestion of fruit and vegetable processing wastes for biogas production.” Bioresour. Technol. 40 (1): 43–48. https://doi.org/10.1016/0960-8524(92)90117-G.
Viturtia, A. M., J. Mata-Alvarez, and F. Cecchi. 1995. “Two-phase continuous anaerobic digestion of fruit and vegetable wastes.” Resour. Conserv. Recycl. 13 (3–4): 257–267. https://doi.org/10.1016/0921-3449(94)00048-A
Watteau, F., and G. Villemin. 2011. “Characterization of organic matter microstructure dynamics during co-composting of sewage sludge, barks and green waste.” Bioresour. Technol. 102 (19): 9313–9317. https://doi.org/10.1016/j.biortech.2011.07.022.
Wu, X., W. Yao, and J. Zhu. 2010. “Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source.” Bioresour. Technol. 2 (11): 1091–1104. https://doi.org/10.1016/j.biortech.2010.01.052.
Xiao, K., Y. Zhou, C. Guo, Y. Maspolim, and W. J. Ng. 2016. “Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system.” J. Environ. Sci. 42: 196–201. https://doi.org/10.1016/j.jes.2015.06.015.
Xiao, K. K., C. H. Guo, Y. Zhou, Y. Maspolim, J. Y. Wang, and W. J. Ng. 2013. “Acetic acid inhibition on methanogens in a two-phase anaerobic process.” Biochem. Eng. J. 75: 1–7. https://doi.org/10.1016/j.bej.2013.03.011.
Xin, X., Y. Ma, and Y. Liu. 2018. “Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.” Bioresour. Technol. 255: 281–287. https://doi.org/10.1016/j.biortech.2018.01.099.
Xu, S. Y., H. P. Lam, O. P. Karthikeyan, and J. W. C. Wong. 2011. “Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: Effect of pH and bulking agent.” Bioresour. Technol. 102 (4): 3702–3708. https://doi.org/10.1016/j.biortech.2010.11.095.
Yan, S., X. Chen, J. Wu, and P. Wang. 2012. “Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk.” Appl. Microbiol. Biotechnol. 94 (3): 829–838. https://doi.org/10.1007/s00253-012-3990-7.
Yang, Z., C. Nie, Q. Hou, L. Zhang, S. Zhang, Z. Yu, and H. Pei. 2019. “Coupling a photosynthetic microbial fuel cell (PMFC) with photobioreactors (PBRs) for pollutant removal and bioenergy recovery from anaerobically digested effluent.” Chem. Eng. J. 359: 402–408. https://doi.org/10.1016/j.cej.2018.11.136.
Yap, H. Y., and J. D. Nixon. 2015. “A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.” Waste Manage. 46: 265–277. https://doi.org/10.1016/j.wasman.2015.08.002.
You, S. J., Q. L. Zhao, J. Q. Jiang, J. N. Zhang, and S. Q. Zhao. 2006. “Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell.” J. Environ. Sci. Health, Part A 41 (12): 2721–2734. https://doi.org/10.1080/10934520600966284.
Zhan, G., L. Zhang, D. Li, W. Su, Y. Tao, and J. Qian. 2012. “Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell.” Bioresour. Technol. 116: 271–277. https://doi.org/10.1016/j.biortech.2012.02.131.
Zhang, C. 2019. “Simulation analysis of bionic robot fish based on MFC materials.” Math. Probl. Eng. 2019: 2720873. https://doi.org/10.1155/2019/2720873.
Zhang, J. N., Q. L. Zhao, S. J. You, J. Q. Jiang, and N. Q. Ren. 2008. “Continuous electricity production from leachate in a novel upflow air-cathode membrane-free microbial fuel cell.” Water Sci. Technol. 57 (7): 1017–1021. https://doi.org/10.2166/wst.2008.063.
Zhao, L., A. Giannis, W.-Y. Lam, S.-X. Lin, K. Yin, G.-A. Yuan, and J.-Y. Wang. 2016. “Characterization of Singapore RDF resources and analysis of their heating value.” Sustainable Environ. Res. 26 (1): 51–54. https://doi.org/10.1016/j.serj.2015.09.003.
Zhao, N., I. Angelidaki, and Y. Zhang. 2018. “Current as an indicator of ammonia concentration during wastewater treatment in an integrated microbial electrolysis cell—Nitrification system.” Electrochim. Acta 281: 266–273. https://doi.org/10.1016/j.electacta.2018.05.187.
Zhen, G., et al. 2016. “Recovery of biohydrogen in a single-chamber microbial electrohydrogenesis cell using liquid fraction of pressed municipal solid waste (LPW) as substrate.” Int. J. Hydrogen Energy 41 (40): 17896–17906. https://doi.org/10.1016/j.ijhydene.2016.07.112.
Zou, S., M. Qin, Y. Moreau, and Z. He. 2017. “Nutrient-energy-water recovery from synthetic sidestream centrate using a microbial electrolysis cell—Forward osmosis hybrid system.” J. Cleaner Prod. 154: 16–25. https://doi.org/10.1016/j.jclepro.2017.03.199.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 24Issue 3July 2020

History

Received: Sep 6, 2019
Accepted: Dec 10, 2019
Published online: Apr 22, 2020
Published in print: Jul 1, 2020
Discussion open until: Sep 22, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Scholar, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Bhubaneswar, Odisha 752050, India. ORCID: https://orcid.org/0000-0002-8086-8744. Email: [email protected]
Assistant Professor, School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Bhubaneswar, Odisha 752050, India (corresponding author). ORCID: https://orcid.org/0000-0003-3829-4916. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share