State-of-the-Art Reviews
Feb 17, 2020

Bioelectrosynthesis of Organic and Inorganic Chemicals in Bioelectrochemical System

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 24, Issue 2

Abstract

Bioelectrochemical system (BES)–based microbial electrosynthesis is a viable production route for various industrial commodities. In the last decade, BES has emerged as a sustainable technology for treating wastewater and the simultaneous production of bioelectricity. Currently, more focus is being placed on producing high-value chemicals from these systems instead of wastewater. BES-based microbial electrosynthesis can also be utilized to produce different industrial commodities sustainably by replacing existing chemical-based production streams. Using the bioelectrochemical production route for useful industrial chemicals provides a new route of sustainable production. The present review puts forth the production strategies used for different industrial commodities along with the pitfalls of using CO2 as a substrate through BES-based microbial electrosynthesis. Moreover, particular emphasis is placed on a discussion of the technological enhancements in the commercialization of BES-based microbial electrosynthesis.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data taken from references are also listed at the end of the manuscript. Because this is a review article, no data were generated specifically for it.

References

Arredondo, M. R., P. Kuntke, A. W. Jeremiasse, T. H. J. A. Sleutels, C. J. N. Buisman, and A. ter Heijne. 2015. “Bioelectrochemical systems for nitrogen removal and recovery from wastewater.” Environ. Sci. Water Res. Technol. 1 (1): 22–33. https://doi.org/10.1039/C4EW00066H.
Bajracharya, S., M. Sharma, G. Mohanakrishna, X. D. Benneton, D. P. Strik, P. M. Sarma, and D. Pant. 2016. “An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond.” Renewable Energy 98 (Dec): 153–170. https://doi.org/10.1016/j.renene.2016.03.002.
Banerjee, R., J. S. P. Kumar, N. Mehendale, S. Sevda, and V. K. Garlapati. 2019. “Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects.” Renewable Sustainable Energy Rev. 101 (Mar): 548–558. https://doi.org/10.1016/j.rser.2018.11.040.
Burniol-Figols, A., C. Varrone, A. E. Daugaard, S. B. Le, I. V. Skiadas, and H. N. Gavala. 2018. “Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1, 3-propanediol to PHA in mixed microbial consortia.” Water Res. 128 (Jan): 255–266. https://doi.org/10.1016/j.watres.2017.10.046.
Butti, S. K., et al. 2016. “Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling.” Renewable Sustainable Energy Rev. 53 (Jan): 462–476. https://doi.org/10.1016/j.rser.2015.08.058.
Clauwaert, P., K. Rabaey, P. Aelterman, L. de Schamphelaire, T. H. Pham, P. Boeckx, and W. Boon NandVerstraete. 2007. “Biological denitrification in microbial fuel cells.” Environ. Sci. Technol. 41 (9): 3354–3360. https://doi.org/10.1021/es062580r.
Commault, A. S., G. Lear, and P. Novis. 2014. “Photosynthetic biocathode enhances the power output of a sediment-type microbial fuel cell.” N. Z. J. Botan. 52 (1): 48–59. https://doi.org/10.1080/0028825X.2013.870217.
Cusick, D. R., and B. E. Logan. 2012. “Phosphate recovery as struvite within a single chamber microbial electrolysis cell.” Bioresour. Technol. 107 (Mar): 110–115. https://doi.org/10.1016/j.biortech.2011.12.038.
Ditzig, J., H. Liu, and B. E. Logan. 2007. “Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR).” Int. J. Hydrogen Energy 32 (13): 2296–2304. https://doi.org/10.1016/j.ijhydene.2007.02.035.
Fischer, F., C. Bastian, M. Happe, E. Mabillard, and N. Schmidt. 2011. “Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite.” Bioresour. Technol. 102 (10): 5824–5830. https://doi.org/10.1016/j.biortech.2011.02.089.
Gajda, I., J. Greenman, C. Melhuish, C. Santoro, B. Li, P. Cristiani, and I. Ieropoulos. 2015. “Electro-osmotic-based catholyte production by microbial fuel cells for carbon capture.” Water Res. 86 (Dec): 108–115. https://doi.org/10.1016/j.watres.2015.08.014.
Gildemyn, S., R. A. Rozendal, and K. Rabaey. 2017. “A Gibbs free energy-based assessment of microbial electrocatalysis.” Trends Biotechnol. 35 (5): 393–406. https://doi.org/10.1016/j.tibtech.2017.02.005.
Guo, L. A., X. M. Li, G. M. Zeng, and Y. Zhou. 2010. “Effective hydrogen production using waste sludge and its filtrate.” Energy 35 (9): 3557–3562. https://doi.org/10.1016/j.energy.2010.04.005.
Hong, L., S. Grot, and B. E. Logan. 2005. “Electrochemically assisted microbial production of hydrogen from acetate.” Environ. Sci. Technol. 39 (11): 7380–7388. https://doi.org/10.1021/es050397c.
Ichihashi, O., and K. Hirooka. 2012. “Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell.” Bioresour. Technol. 114 (Jun): 303–307. https://doi.org/10.1016/j.biortech.2012.02.124.
Jeremiasse, A. W., H. V. M. Hamelers, E. Croese, and C. J. N. Buisman. 2012. “Acetate enhances startup of a H2-producing microbial biocathode.” Biotechnol. Bioeng. 109 (3): 657–664. https://doi.org/10.1002/bit.24338.
Jiang,Y., M. Su, G. Zhan, Y. Tao, and D. Li. 2013. “Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate.” Int. J. Hydrogen Energ. 38 (8): 3497–3502. https://doi.org/10.1016/j.ijhydene.2012.12.107.
Khalfbadam, H. M., K. Y. Cheng, R. Sarukkalige, A. S. Kayaalp, and M. P. Ginige. 2016. “Assessing the suitability of sediment-type bioelectrochemical systems for organic matter removal from municipal wastewater: A column study.” Water Sci. Technol. 74 (4): 974–984. https://doi.org/10.2166/wst.2016.263.
Kuntke, P., M. Geleji, H. Bruning, G. Zeeman, H. V. Hamelers, and C. J. Buisman. 2011. “Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell.” Bioresour. Technol. 102 (6): 4376–4382. https://doi.org/10.1016/j.biortech.2010.12.085.
LaBelle, E. V., C. W. Marshall, J. A. Gilbert, and H. D. May. 2014. “Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome.” PLoS One 9 (10): 1–10. https://doi.org/10.1371/journal.pone.0109935.
Li, N., J. An, L. Zhou, T. Li, J. Li, and C. Feng. 2016. “A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems.” J. Power Source 306 (Feb): 495–502. https://doi.org/10.1016/j.jpowsour.2015.12.078.
Lin, R., H. Liu, J. Hao, K. Cheng, and D. Liu. 2005. “Enhancement of 1,3-pro-panediol production by Klebsiella pneumoniae with fumarate addition.” Biotechnol. Lett. 27 (22): 1755–1759. https://doi.org/10.1007/s10529-005-3549-0.
Liu, H., J. Shi, X. Zhan, L. Zhang, B. Fu, and H. Liu. 2017. “Selective acetate production with CO2 sequestration through acetogen-enriched sludge inoculums in anaerobic digestion.” Biochem. Eng. 121: 163–170. https://doi.org/10.1016/j.bej.2017.02.008.
Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. “Microbial fuel cells: Methodology and technology.” Environ. Sci. Technol. 40 (17): 5181–5192. https://doi.org/10.1021/es0605016.
Logan, B. E., R. Rossi, A. Ragab, and P. E. Saikaly. 2019. “Electroactive microorganisms in bioelectrochemical systems.” Nat. Rev. Microbiol. 17 (5): 307–319. https://doi.org/10.1038/s41579-019-0173-x.
Lu, L., N. Ren, X. Zhao, H. Wang, D. Wu, and D. Xing. 2011. “Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells.” Energy Environ. Sci. 4 (4): 1329–1336. https://doi.org/10.1039/c0ee00588f.
Lu, L., D. Xing, B. Liu, and N. Ren. 2012. “Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.” Water Res. 46 (4): 1015–1026. https://doi.org/10.1016/j.watres.2011.11.073.
Lu, L., C. Zeng, L. Wang, X. Yin, S. Jin, A. Lu, and J. R. Zhiyong. 2015. “Graphene oxide and H2 production from bioelectrochemical graphite oxidation.” Sci. Rep. 5 (1): 16242. https://doi.org/10.1038/srep16242.
Lu, Y., M. Qin, H. Yuab, I. M. Abu-Reesh, and Z. He. 2014. “When bioelectrochemical system meet forward osmosis: Accomplishing wastewater treatment and reuse through synergy.” Water 7 (12): 38–50. https://doi.org/10.3390/w7010038.
Luo, X., F. Zhang, J. Liu, X. Zhang, X. Huang, and B. E. Logan. 2014. “Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMCs) using thermolytic solutions.” Environ. Sci. Technol. 48 (15): 8911–8918. https://doi.org/10.1021/es501979z.
Malaeb, L., K. P. Katuri, B. E. Logan, H. Maab, S. P. Nunes, and P. E. Saikaly. 2013. “A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.” Environ. Sci. Technol. 47 (20): 11821–11828. https://doi.org/10.1021/es4030113.
Mohan, V. S., S. Srikanth, P. Chiranjeevi, S. Arora, and R. Chandra. 2014. “Algal biocathode for in situ terminal electron acceptor (TEA) production: Synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell.” Bioresour. Technol. 166 (Aug): 566–574. https://doi.org/10.1016/j.biortech.2014.05.081.
Molognoni, D., S. Chiarolla, D. Cecconet, A. Callegari, and A. G. Capodaglio. 2018. “Industrial wastewater treatment with a bioelectrochemical process: Assessment of depuration efficiency and energy production.” Water Sci. Technol. 77 (1): 134–144. https://doi.org/10.2166/wst.2017.532.
Montpart, N., E. Ribot-Llobet, V. K. Garlapati, L. Rago, J. A. Baeza, and A. Guisasola. 2014. “Methanol opportunities for electricity and hydrogen production in bioelectrochemical systems.” Int. J. Hydrogen Energy 39 (2): 770–777. https://doi.org/10.1016/j.ijhydene.2013.10.151.
Nevin, K. P., T. L. Woodard, A. E. Franks, Z. M. Summers, and D. R. Lovley. 2010. “Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds.” MBio 1 (2): e00103–e00110. https://doi.org/10.1128/mBio.00103-10.
Nguyen, V. K., Y. Park, J. Yu, and T. Lee. 2016. “Bioelectrochemical denitrification on biocathode buried in simulated aquifer saturated with nitrate-contaminated groundwater.” Environ Sci Pollut Res Int. 23 (15): 1–9.
Oskar, M., and K. Fukushi. 2013. “Production of high concentrations of H2O2 in a bioelectrochemical reactor fed with real municipal wastewater.” Environ. Technol. 34 (19): 2737–2742. https://doi.org/10.1080/09593330.2013.788041.
Rabaey, K., P. Clauwaert, P. Aelterman, and W. Verstraete. 2005. “Tubular microbial fuel cells for efficient electricity generation.” Environ. Sci. Technol. 39 (20): 8077–8082. https://doi.org/10.1021/es050986i.
Rabaey, K., S. Utzer, S. Brown, J. Keller, and R. Rozendal. 2010. “High current generation coupled to caustic production using a lamellar bioelectrochemical system.” Environ. Sci. Technol. 44 (11): 4315–4321. https://doi.org/10.1021/es9037963.
Reddy, M. V., and S. V. Mohan. 2012. “Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment.” Bioresour. Technol. 114 (Jun): 573–582. https://doi.org/10.1016/j.biortech.2012.02.127.
Rosenbaum, M., Z. He, and L. T. Angenent. 2010. “Light energy to bioelectricity: Photosynthetic microbial fuel cells.” Curr. Opin. Biotechnol. 21 (3): 259–264. https://doi.org/10.1016/j.copbio.2010.03.010.
Rozendal, R. A., H. V. Hamelers, K. Rabaey, J. Keller, and C. J. Buisman. 2008. “Towards practical implementation of bioelectrochemical wastewater treatment.” Trends Biotechnol. 26 (8): 450–459. https://doi.org/10.1016/j.tibtech.2008.04.008.
Rozendal, R. A., E. Leone, J. Keller, and K. Rabaey. 2009. “Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system.” Electrochem. Commun. 11 (9): 1752–1755. https://doi.org/10.1016/j.elecom.2009.07.008.
Saba, B., A. D. Christy, and Z. Yu. 2017. “Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): An overview.” Renewable Sustainable Energy Rev. 73 (Jun): 75–84. https://doi.org/10.1016/j.rser.2017.01.115.
Sakai, S., and T. Yagishita. 2007. “Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine.” Biotechnol. Bioeng. 98 (2): 340–348. https://doi.org/10.1002/bit.21427.
Sevda, S., and I. A. Abu-Reesh. 2018. “Effect of organic load on salt removal efficiency of microbial desalination cell.” Desalin. Water Treat. 108: 112–118. https://doi.org/10.5004/dwt.2018.21903.
Sevda, S., and I. A. Abu-Reesh. 2019. “Improved petroleum refinery wastewater treatment and seawater desalination performance by combining osmotic microbial fuel cell and up-flow microbial desalination cell.” Environ. Technol. 40 (7): 888–895. https://doi.org/10.1080/09593330.2017.1410580.
Sevda, S., X. Dominguez-Benetton, K. Vanbroekhoven, H. D. Wever, T. R. Sreekrishnan, and D. Pant. 2013. “High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell.” Appl. Energy 105 (May): 194–206. https://doi.org/10.1016/j.apenergy.2012.12.037.
Sevda, S., V. K. Garlapati, S. Sharma, S. Bhattacharya, S. Mishra, T. R. Sreekrishnan, and D. Pant. 2019. “Microalgae at niches of bioelectrochemical systems: A new platform for sustainable energy production coupled industrial effluent treatment.” Bioresour. Technol. Rep. 7 (Sep): 100290. https://doi.org/10.1016/j.biteb.2019.100290.
Sevda, S., S. Sharma, C. Joshi, L. Pandey, N. Tyagi, I. A. Abu-Reesh, and T. R. Sreekrishnan. 2018. “Biofilm formation and electron transfer in bioelectrochemical system.” Environ. Technol. Rev. 7 (1): 220–234. https://doi.org/10.1080/21622515.2018.1486889.
Sevda, S., and T. R. Sreekrishnan. 2014. “Removal of organic matters and nitrogenous pollutants simultaneously from two different wastewaters using biocathode microbial fuel cell.” J. Environ. Sci. 49 (11): 1265–1275. https://doi.org/10.1080/10934529.2014.910064.
Sharma, S., T. Gyeltshen, S. Sevda, and V. K. Garlapati. 2019. “Microalgae in bioelectrochemical systems: Technological interventions.” In Biovalorisation of wastes to renewable chemicals and biofuels, edited by R. NavaniethaKrishnaraj and R. Sani, 361–371. Cambridge, MA: Elsevier.
Shemfe, M., S. Gadkari, E. Yu, S. Rasul, K. Scott, I. Head, and J. Sadhukhan. 2018. “Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis.” Bioresour. Technol. 255 (May): 39–49. https://doi.org/10.1016/j.biortech.2018.01.071.
Sleutels, T. H., A. Heijne, P. Kuntke, C. J. Buisman, and H. V. Hamelers. 2017. “Membrane selectivity determines energetic losses for ion transport in bioelectrochemical systems.” ChemistrySelect 2 (12): 3462–3470. https://doi.org/10.1002/slct.201700064.
Sotres, A., M. Cerrillo, M. Viñas, and A. Bonmatí. 2015. “Nitrogen recovery from pig slurry in a two-chambered bioelectrochemical system.” Bioresour. Technol. 194 (Oct): 373–382. https://doi.org/10.1016/j.biortech.2015.07.036.
Sotres, A., M. Cerrillo, M. Viñas, and A. Bonmatí. 2016. “Nitrogen removal in a two-chambered microbial fuel cell: Establishment of a nitrifying—Denitrifying microbial community on an intermittent aerated cathode.” Chem. Eng. J. 284 (Jan): 905–916. https://doi.org/10.1016/j.cej.2015.08.100.
Srikanth, S., M. Maesen, X. Dominguez-Benetton, K. Vanbroekhoven, and D. Pant. 2014. “Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).” Bioresour. Technol. 165: 350–354. https://doi.org/10.1016/j.biortech.2014.01.129.
Srikanth, S., M. V. Reddy, and S. V. Mohan. 2012. “Microaerophilic microenvironment at biocathode enhances electrogenesis with simultaneous synthesis of polyhydroxyalkanoates (PHA) in bioelectrochemical system (BES).” Bioresour. Technol. 125 (Dec): 291–299. https://doi.org/10.1016/j.biortech.2012.08.060.
Steinbusch, K. J. J., S. V. Hubertu, M. Hamelers, J. Schaap, C. Kampman, S. Cee, and N. Buisman. 2010. “Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.” Environ. Sci. Technol. 44 (1): 513–517. https://doi.org/10.1021/es902371e.
Su, M., Y. Jiang, and D. Li. 2013. “Production of acetate from carbon dioxide in bioelectrochemical systems based on autotrophic mixed culture.” J. Microbiol. Biotechnol. 23 (8): 1140–1146. https://doi.org/10.4014/jmb.1304.04039.
Sun, M., G. P. Sheng, Z. X. Mu, X. W. Liu, Y. Z. Chen, H. L. Wang, and H. Q. Yu. 2009. “Manipulating the hydrogen production from acetate in a microbial electrolysis cell—Microbial fuel cell-coupled system.” J. Power Source 191 (2): 338–343. https://doi.org/10.1016/j.jpowsour.2009.01.087.
Sun, M., G. P. Sheng, L. Zhang, C. R. Xia, Z. X. Mu, X. W. Liu, H. L. Wang, H. Q. Yu, R. Qi, T. Yu, and M. Yang. 2008. “An MEC-MFC-coupled system for biohydrogen production from acetate.” Environ. Sci. Technol. 42 (21): 8095–8100. https://doi.org/10.1021/es801513c.
Tayà, C., V. K. Garlapati, A. Guisasola, and J. A. Baeza. 2013. “The selective role of nitrite in the PAO/GAO competition.” Chemosphere 93 (4): 612–618. https://doi.org/10.1016/j.chemosphere.2013.06.006.
Van Eerten-Jansen, M. C., A. B. Veldhoen, C. M. Plugge, A. J. M. Stams, C. J. N. Buisman, and A. T. Heijne. 2013. “Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system.” Archaea 2013: 1–12. https://doi.org/10.1155/2013/481784.
Villano, M., L. D. Bonis, S. Rossetti, F. Aulenta, and M. Majone. 2011. “Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents.” Bioresour. Technol. 102 (3): 3193–3199. https://doi.org/10.1016/j.biortech.2010.10.146.
Virdis, B., K. Rabaey, R. A. Rozendal, Z. Yuan, and J. Keller. 2010. “Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells.” Water Res. 44 (9): 2970–2980. https://doi.org/10.1016/j.watres.2010.02.022.
Virdis, B., K. Rabaey, Z. Yuan, and J. Keller. 2008. “Microbial fuel cells for simultaneous carbon and nitrogen removal.” Water Res. 42 (12): 3013–3024. https://doi.org/10.1016/j.watres.2008.03.017.
Wagner, R. C., J. M. Regan, S. E. Oh, Y. Zuo, and B. E. Logan. 2009. “Hydrogen and methane production from swine wastewater using microbial electrolysis cells.” Water Res. 43 (5): 1480–1488. https://doi.org/10.1016/j.watres.2008.12.037.
Werner, C. M., B. E. Logan, P. E. Saikaly, and G. L. Amy. 2013. “Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell.” J. Membr. Sci. 428 (Feb): 116–122. https://doi.org/10.1016/j.memsci.2012.10.031.
Wu, X. Y., T. S. Song, X. J. Zhu, P. Wei, and C. Zhou. 2013. “Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.” Appl. Biochem. Biotechnol. 171 (8): 2082–2092. https://doi.org/10.1007/s12010-013-0476-8.
Xafenias, N., and V. Mapelli. 2014. “Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production.” Int. J. Hydrogen Energy 39 (36): 21864–21875. https://doi.org/10.1016/j.ijhydene.2014.05.038.
Xu, L., Y. Zhao, and L. Doherty. 2016. “The integrated processes for wastewater treatment based on the principle of microbial fuel cells: A review.” Crit. Rev. Env. Sci. Technol. 46 (1): 60–91. https://doi.org/10.1080/10643389.2015.1061884.
Yuan, H., and Z. He. 2015. “Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.” Bioresour. Technol. 195 (Nov): 202–209. https://doi.org/10.1016/j.biortech.2015.05.058.
Zamanpour, M. K., H. R. Kariminia, and M. Vosoughi. 2016. “Electricity generation, desalination and microalgae cultivation in a biocathode-microbial desalination cell.” J. Environ. Chem. Eng. 5 (1): 843–848. https://doi.org/10.1016/j.jece.2016.12.045.
Zeng, K., and D. Zhang. 2010. “Recent progress in alkaline water electrolysis for hydrogen production and applications.” Prog. Energy Combust. Sci. 36 (3): 307–326. https://doi.org/10.1016/j.pecs.2009.11.002.
Zhang, F., K. S. Brastad, and Z. He. 2011. “Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation.” Environ. Sci. Technol. 45 (15): 6690–6696. https://doi.org/10.1021/es201505t.
Zhang, F., and Z. He. 2012. “Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell.” Process Biochem. 47 (12): 2146–2151. https://doi.org/10.1016/j.procbio.2012.08.002.
Zhang, L., J. Ong, J. Liu, S. Fong, and Y. Li. 2017. “Enzymatic electrosynthesis of formate from CO2 reduction in a hybrid biofuel cell system.” Renewable Energy 108 (Aug): 581–588. https://doi.org/10.1016/j.renene.2017.03.009.
Zhao, Y., Y. Chen, D. Zhang, and X. Zhu. 2010. “Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: The role of fermentation pH.” Environ. Sci. Technol. 44 (9): 3317–3323. https://doi.org/10.1021/es902958c.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 24Issue 2April 2020

History

Published online: Feb 17, 2020
Published in print: Apr 1, 2020
Discussion open until: Jul 17, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Sunandan Naha [email protected]
Research Scholar, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. Email: [email protected]
Chetan Joshi [email protected]
Research Scientist, Dept. of Food Engineering, Univ. Institute of Chemical Technology, Mumbai, Maharashtra 40009, India. Email: [email protected]
B. Chandrashekhar [email protected]
Research Scientist, Environmental Biotechnology Div., Council of Scientific and Industrial Research (CSIR)-National Environmental Engineering Research Institute, Nagpur, Maharashtra 440020, India. Email: [email protected]
T. R. Sreekrishnan [email protected]
Professor, Dept. of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India. Email: [email protected]
Pranab Goswami [email protected]
Professor, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India. Email: [email protected]
Assistant Professor, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; Dept. of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India (corresponding author). ORCID: https://orcid.org/0000-0002-8471-5681. Email: [email protected]; [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share