Technical Papers
May 14, 2019

Sustainability of Column-Supported RC Slabs: Fiber Reinforcement as an Alternative

Publication: Journal of Construction Engineering and Management
Volume 145, Issue 7

Abstract

Fiber-reinforced concrete has been used in structures without any additional reinforcement when the design is determined by transient load stages (precast segments for tunnels), in elements with favorable boundary conditions, and in structures subjected to low load levels (pavements or pipes). Recently, the material has been used as the primary reinforcement in elements with greater structural responsibility, such as building column-supported slabs. Several dozen buildings have incorporated this new technology, and research is being conducted on how to optimize the design while guaranteeing the required reliability levels. However, in some cases, fibers have not been used as the primary reinforcement in concrete slabs for economic reasons. In most cases, the solution is compared with existing alternatives (traditionally reinforced concrete) considering only the direct material costs and disregarding indirect costs, social aspects, and environmental factors. The building construction sector lacks sustainability rating tools to assess structural components separately (e.g., columns, floors, panels, and façades). This paper presents a new method that can be used to assess the sustainability of concrete slabs by means of a multicriteria decision-making approach including fiber-reinforced concrete. It used rigorous analyses of current concrete slab technologies and sustainability assessment tools. Criteria, indicators, weights, and value functions were specifically selected, defined, and calibrated for this research.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Data generated or analyzed during the study are available from the corresponding author by request. Information about the Journal’s data-sharing policy can be found here: http://ascelibrary.org/doi/10.1061/(ASCE)CO.1943-7862.0001263.

Acknowledgments

The authors thank Dr. Aitor Maturana, Associate Professor at the University of the Basque Country, for his consent to use data from his research to conduct the present study. They also thank José Hernández for his revision of the occupational risks, and Ariadna Moreno from Precon and the engineers from Copcisa, Dragados, and Sacyr for sharing data and knowledge of construction processes. This research was made possible through funding under the SAES project (BIA2016-78742-C2-1-R) of the Spanish Ministry of Economy, Industry and Competitiveness.

References

ACI (American Concrete Institute). 2015. Report on design and construction of steel fiber-reinforced concrete elevated slabs. ACI 544.6R. Farmington Hills, MI: ACI.
Aguado, A., A. del Caño, M. de la Cruz, D. Gómez, and A. Josa. 2012. “Sustainability assessment of concrete structures within the Spanish structural concrete code.” J. Constr. Eng. Manage. 138 (2): 268–276. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000419.
Akadiri, P. O., P. O. Olomolaiye, and E. A. Chinyio. 2013. “Multi-criteria evaluation model for the selection of sustainable materials for building projects.” Autom. Constr. 30: 113–125. https://doi.org/10.1016/j.autcon.2012.10.004.
Alarcon, B., A. Aguado, R. Manga, and A. Josa. 2011. “A value function for assessing sustainability: Application to industrial buildings.” Sustainability 3 (1): 35–50. https://doi.org/10.3390/su3010035.
Awadh, O. 2017. “Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis.” J. Build. Eng. 11: 25–29. https://doi.org/10.1016/j.jobe.2017.03.010.
AWC (American Wood Council). 2015. Wood frame construction manual for one-and two-family dwellings. 2015 ed. Leesburg, VA: AWC.
Blanco, A., S. Cavalaro, A. de la Fuente, S. Grünewald, C. B. M. Blom, and J. C. Walraven. 2015a. “Application of FRC constitutive models to the modelling of slabs.” Mater. Struct. 48 (9): 2943–2959. https://doi.org/10.1617/s11527-014-0369-5.
Blanco, A., P. Pujadas, A. de la Fuente, S. H. P. Cavalaro, and A. Aguado. 2015b. Assessment of the fibre orientation factor in SFRC slabs. Compos. Part B 68: 343–354. https://doi.org/10.1016/j.compositesb.2014.09.001.
BREEAM. 2016. “BREAM international new construction 2016. Technical manual SD233-2.0.” Accessed April 15, 2019. https://www.breeam.com/BREEAMInt2016SchemeDocument/.
Calavera, J. 2003. Cálculo, construcción, patología y rehabilitación de forjados de edificación: unidireccionales y sin vigas–hormigón, metálicos y mixtos. 5th ed. Madrid, España: Intemac Ediciones.
Cartelle, J. J., M. Lara, M. P. de la Cruz, and A. del Caño. 2015. “Assessing the global sustainability of different electricity generation systems.” Energy 89: 473–489. https://doi.org/10.1016/j.energy.2015.05.110.
Casanovas, M., J. Armengou, and G. Ramos. 2014. “Occupational risk index for assessment of risk in construction work by activity.” J. Constr. Eng. Manage. 140 (1): 04013035. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000785.
Casanovas-Rubio, M., A. Ahearn, G. Ramos, and S. Popo-Ola. 2016. “The research–teaching nexus: Using a construction teaching event as a research tool.” Innovations Educ. Teach. Int. 53 (1): 104–118. https://doi.org/10.1080/14703297.2014.943787.
Casanovas-Rubio, M., and J. Armengou. 2018. “Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain).” Renewable and Sustainable Energy Rev. 91: 741–753. https://doi.org/10.1016/j.rser.2018.04.040.
Casanovas-Rubio, M., and G. Ramos. 2017. “Decision-making tool for the assessment and selection of construction processes based on environmental criteria: Application to precast and cast-in-situ alternatives.” Resour. Conserv. Recycl. 126: 107–117. https://doi.org/10.1016/j.resconrec.2017.07.035.
Chiaia, B., A. F. Fantilli, and P. Vallini. 2009. “Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings.” Eng. Struct. 31 (7): 1600–1606. https://doi.org/10.1016/j.engstruct.2009.02.037.
CPH (Comisión Permanente del Hormigón). 2008. “Anejo 14 Recomendaciones para la utilización de hormigón con fibras [Annex 14 Recommendations for the use of fibre reinforced concrete].” In Instrucción de Hormigón Estructural (EHE-08) [Spanish structural concrete standard], 505–525. Madrid, Spain: Comisión Permanente del Hormigón, Ministerio de Fomento.
de la Fuente, A., A. Aguado, C. Molins, and J. Armengou. 2011. “Innovations on components and testing for precast panels to be used in reinforced earth retaining walls.” Constr. Build. Mater. 25 (5): 2198–2205. https://doi.org/10.1016/j.conbuildmat.2010.11.003.
de la Fuente, A., J. Armengou, O. Pons, and A. Aguado. 2017a. “New precast concrete tower system for wind—Turbine support tool to assess and its sustainability index.” Civ. Eng. Manage. 23 (2): 194–203. https://doi.org/10.3846/13923730.2015.1023347.
de la Fuente, A., A. Blanco, J. Armengou, and A. Aguado. 2017b. “Sustainability based-approach to determine the concrete type and reinforcement configuration of TBM tunnels linings. Case study: Extension line to Barcelona Airport T1.” Tunnelling Underground Space Technol. 61: 179–188. https://doi.org/10.1016/j.tust.2016.10.008.
de la Fuente, A., A. Blanco, P. Pujadas, and A. Aguado. 2012b. “Experiences in Barcelona with the use of fibres in segmental linings.” Tunnelling Underground Space Technol. 27 (1): 60–71. https://doi.org/10.1016/j.tust.2011.07.001.
de la Fuente, A., R. Campos, A. Figueiredo, C. Molins, and A. Aguado. 2012a. “A new design method for steel fiber reinforced concrete pipes.” Constr. Build. Mater. 30: 547–555. https://doi.org/10.1016/j.conbuildmat.2011.12.015.
de la Fuente, A., R. C. Escariz, A. D. de Figueiredo, and A. Aguado. 2013. “Design of macro synthetic fiber reinforced concrete pipes.” Constr. Build. Mater. 43: 523–532. https://doi.org/10.1016/j.conbuildmat.2013.02.036.
de la Fuente, A., O. Pons, A. Josa, and A. Aguado. 2016. “Multi-criteria decision making in the sustainability assessment of sewerage pipe systems. J. Cleaner Prod. 116 (5): 4762–4770. https://doi.org/10.1016/j.jclepro.2015.07.002.
del Caño, A., P. de la Cruz, D. Gómez, and M. Pérez. 2016. “Fuzzy method for analysing uncertainty in the sustainable design of concrete structures.” J. Civ. Eng. Manage. 22 (8): 924–935. https://doi.org/10.3846/13923730.2014.928361.
del Caño, A., D. Gómez, and M. de la Cruz. 2012. “Uncertainty analysis in the sustainable design of concrete structures: A probabilistic method.” Constr. Build. Mater. 37: 865–873. https://doi.org/10.1016/j.conbuildmat.2012.04.020.
Destrée, X. 2004. “Structural application of steel fibers as only reinforcing in free suspended elevated slabs: Conditions—Design—Examples.” In Proc., pro039: 6th Int. RILEM Symp. on Fibre-Reinforced Concrete (BEFIB’2004), edited by M. di Prisco, R. Felicetti, and G. A. Plizzari, 1073–1082. Varenna, Italy: RILEM.
Destrée, X., and J. Mandl. 2008. “Steel fibre only reinforced concrete in free suspended elevated slabs: Case studies, design assisted by testing route, comparison to the latest SFRC standard documents.” In Proc., fib Symp. Taylor Made Concrete Structures, edited by J. C. Walraven and D. Stoelhost, 437–443. London: Taylor & Francis.
DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen). 2018. “DGNB system version 2018.” Accessed April 15, 2019. https://www.dgnb-system.de/en/system/version2018/.
Diaz-Sarachaga, J. M., D. Jato-Espino, B. Alsulami, and D. Castro-Fresno. 2016. “Evaluation of existing sustainable infrastructure rating systems for their application in developing countries.” Ecol. Indic. 71: 491–502. https://doi.org/10.1016/j.ecolind.2016.07.033.
Døssland, Å. L. 2008. “Fibre reinforcement in load carrying concrete structures: laboratory and field investigations compared with theory and finite element analysis.” Ph.D. dissertation, Dept. of Structural Engineering, Norwegian Univ. of Science and Technology.
Ellouze, A., B. Ouezdou, and M. A. Karray. 2010. “Experimental study of steel fibre reinforced concrete slabs Part 1: Behaviour under uniformly distributed loads.” Int. J. Concr. Struct. Mater. 4 (2): 113–118. https://doi.org/10.4334/IJCSM.2010.4.2.113.
European Commission. 2016. “The European construction sector: A global partner.” Accessed April 15, 2019. https://www.ec.europa.eu/DocsRoom/documents/15866/attachments/1/translations/en/renditions/native.
Falkner, H. 2007. “Steel fibre and polymer concrete—Basics, model code 2007 and applications.” In Proc., Int. Conf. Evoluzione nella sperimentazione per le costruzione, 381–400. Bolzano, Italy: Centro Internazionale di Aggiornamento Sperimentale-Scientifico.
fib (International Federation for Structural Concrete). 2013. fib model code for concrete structures 2010. Berlin: Ernst & Sohn.
Fine, W. T. 1971. “Mathematical evaluation for controlling hazards.” J. Saf. Res. 3 (4): 157–166.
Gödde, L., and P. Mark. 2015. “Numerical simulation of the structural behaviour of SFRC slabs with or without rebar and prestressing.” Mater. Struct. 48 (6): 1689–1701. https://doi.org/10.1617/s11527-014-0265-z.
Gossla, U. 2005. Development of SFRC free suspended elevated flat slabs, test report. Aachen, Germany: Aachen Univ. of Applied Science.
Hammond, G., and C. Jones. 2011. Inventory of carbon and energy (ICE), version 2.0. Bath, UK: Dept. of Mechanical Engineering, Univ. of Bath.
Hedebratt, J., and J. Silfwerbrand. 2014. “Full-scale test of a pile supported steel fibre concrete slab.” Mater. Struct. 47 (4): 647–666. https://doi.org/10.1617/s11527-013-0086-5.
Hosseini, S. M. A., A. de la Fuente, and O. Pons. 2015. “Multi-criteria decision-making method for assessing the sustainability of post-disaster temporary housing units technologies: A case study in Bam, 2003.” Sustainable Cities Soc. 20: 38–51. https://doi.org/10.1016/j.scs.2015.09.012.
Hosseini, S. M. A., A. de la Fuente, and O. Pons. 2016. “Multicriteria decision-making method for sustainable site location of post-disaster temporary housing in urban areas.” J. Constr. Eng. Manage. 142 (9): 04016036. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001137.
ITAtech. 2016. ITAtech guidance for precast fiber reinforced concrete segments—Vol. 1: Design aspects. ITAtech activity group support. Longrine, France: International Tunnelling and Underground Space Association.
Johansen, K. W. 1962. Yield-line theory. London: Cement and Concrete Association.
John, S., B. Nebel, N. Perez, and A. Buchanan. 2009. Environmental impacts of multi-storey buildings using different construction materials.. Christchurch, NZ: Univ. of Canterbury.
Kind-Barkauskas, F., B. Kauhsen, S. Polonyi, and J. Brandt. 2002. Concrete construction manual. Munich, Germany: Birkhäuser.
Liao, L., A. de la Fuente, S. Cavalaro, and A. Aguado. 2015a. “Design of FRC tunnel segments ductility considering the requirements of the MC 2010.” Tunnelling Underground Space Technol. 47 (3): 200–210. https://doi.org/10.1016/j.tust.2015.01.006.
Liao, L., A. de la Fuente, S. Cavalaro, A. Aguado, and G. Carbonari. 2015b. “Experimental and analytical study of concrete blocks subjected to loads concentrated with an application to TBM-constructed tunnels.” Tunnelling Underground Space Technol. 49 (1): 295–306. https://doi.org/10.1016/j.tust.2015.04.020.
Macías, M., and J. García Navarro. 2010. “Metodología y herramienta VERDE para la evaluación de la sostenibilidad en edificios [VERDE, a methodology and tool for a sustainable building assessment].” Informes de la Construcción 62 (517): 87–100. https://doi.org/10.3989/ic.08.056.
Maturana, A. 2013. “Estudio teórico-experimental de la aplicabilidad del hormigón reforzado con fibras de acero a losas de forjado multidireccionales.” Ph.D. dissertation, Departamento de Ingeniería Mecánica, Universidad del País Vasco.
Maturana, A., J. Canales, A. Orbe, and J. Cuadrado. 2014. “Análisis plástico y ensayos de losas multidireccionales de HRFA [Plastic analysis and testing of multidirectional SFRC flag slabs].” Informes de la Construcción 66 (535): e031. https://doi.org/10.3989/ic.13.021.
Maturana, A., R. Sanchez, J. Canales, A. Orbe, R. Ansola, and E. Veguería. 2010. “Technical economic analysis of steel fibre reinforced concrete flat slabs.” In Proc., XXXVII IAHS World Congress on Housing. Miami, FL: International Association for Housing Science.
Meda, A., G. A. Plizzari, and P. Riva. 2004. “Fracture behaviour of SFRC slabs on grade.” Mater. Struct. 37 (6): 405–411. https://doi.org/10.1007/BF02479637.
Meda, A., and Z. Rinaldi. 2014. “Steel reinforcement fibers for precast lining in tunnels with different diameters.” In Proc., FRC 2014 Joint ACI-fib Int. Workshop. Fibre Reinforced Concrete Applications, 522–531. Farmington Hills, MI: ACI.
Michels, J., D. Waldmann, S. Mass, and A. Zürbes. 2012. “Steel fibers as only reinforcement for flat slab construction—Experimental investigation and design.” Constr. Build. Mater. 26 (1): 145–155. https://doi.org/10.1016/j.conbuildmat.2011.06.004.
Mitchell, D., and W. D. Cook. 1984. “Preventing progressive collapse of slab structures.” J. Struct. Eng. 110 (7): 1513–1532. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:7(1513).
Ormazabal, G., B. Viñolas, and A. Aguado. 2008. “Enhancing value in crucial decisions: Line 9 of the Barcelona subway.” J. Manage. Eng. 24 (4): 265–272. https://doi.org/10.1061/(ASCE)0742-597X(2008)24:4(265).
Ortiz, J. A., A. de la Fuente, F. Mena-Sebastià, I. Segura, and A. Aguado. 2017. “Steel-fibre-reinforced self-compacting concrete with 100% recycled mixed aggregates suitable for structural applications.” Constr. Build. Mater. 156: 230–241. https://doi.org/10.1016/j.conbuildmat.2017.08.188.
Öšlejs, J. 2008. “New frontiers for steel fiber-reinforced concrete: Experience from the Baltics and Scandinavia.” Concr. Int. 30 (5): 45–50.
Pardo, F., and A. Aguado. 2014. “Investment priorities for the management of hydraulic structures.” Struct. Infrastruct. Eng. 11 (10): 1338–1351. https://doi.org/10.1080/15732479.2014.964267.
Politi, S., and E. Antonini. 2017. “An expeditious method for comparing sustainable rating systems for residential buildings.” Energy Procedia 111: 41–50. https://doi.org/10.1016/j.egypro.2017.03.006.
Pons, O. 2009. “Arquitectura escolar prefabricada a Catalunya [Prefabricated school buildings in Catalonia].” Ph.D. dissertation, Universitat Politècnica de Catalunya. http://hdl.handle.net/10803/6133.
Pons, O., and A. Aguado. 2012. “Integrated model for sustainable value assessment applied to technologies used to build schools in Catalonia, Spain.” Build. Environ. 53: 49–58. https://doi.org/10.1016/j.buildenv.2012.01.007.
Pons, O., and A. de la Fuente. 2013. “Integrated sustainability assessment method applied to structural concrete columns.” Constr. Build. Mater. 49: 882–893. https://doi.org/10.1016/j.conbuildmat.2013.09.009.
Pons, O., A. de la Fuente, and A. Aguado. 2016. “The use of MIVES as a sustainability assessment MCDM method for architecture and civil engineering applications.” Sustainability 8 (5): 460. https://doi.org/10.3390/su8050460.
Pujadas, P., A. Blanco, S. H. P. Cavalaro, A. Aguado, S. Grunewald, K. Blom, and J. Walraven. 2014. “Plastic fibers as the only reinforcement for flat slabs suspended: parametric study and design considerations.” Constr. Build. Mater. 70: 88–96. https://doi.org/10.1016/j.conbuildmat.2014.07.091.
Pujadas, P., A. Blanco, S. H. P. Cavalaro, A. la Fuente, and A. Aguado. 2017. “The need to consider flexural post-cracking creep behavior of macro-synthetic fiber reinforced concrete.” Constr. Build. Mater. 149: 790–800. https://doi.org/10.1016/j.conbuildmat.2017.05.166.
Pujadas, P., A. Blanco, A. de la Fuente, and A. Aguado. 2012. “Cracking behaviour of FRC slabs with traditional reinforcement.” Mater. Struct. 45 (5): 707–725. https://doi.org/10.1617/s11527-011-9791-0.
Regalado, F. 1999. Los forjados de los edificios: pasado, presente y futuro. Alicante, Spain: Cype Ingenieros.
Reyes, J. P., J. T. San-Jose, J. Cuadrado, and R. Sancibrian. 2014. “Health & safety criteria for determining the value of sustainable construction projects.” Saf. Sci. 62: 221–232. https://doi.org/10.1016/j.ssci.2013.08.023.
Saaty, T. L. 1990. “How to make a decision: The analytic hierarchy process.” Eur. J. Oper. Res. 48 (1): 9–26. https://doi.org/10.1016/0377-2217(90)90057-I.
Salehian, H., and J. A. O. Barros. 2015. “Assessment of the performance of steel fibre reinforced self-compacting concrete elevated slabs.” Cem. Concr. Compos. 55: 268–280. https://doi.org/10.1016/j.cemconcomp.2014.09.016.
San-Jose, J. T., and J. Cuadrado. 2010. “Industrial building design stage based on a system approach to their environmental sustainability.” Constr. Build. Mater. 24 (4): 438–447. https://doi.org/10.1016/j.conbuildmat.2009.10.019.
San-Jose, J. T., and I. Garrucho. 2010. “A system approach to the environmental analysis industry of buildings.” Build. Environ. 45 (3): 673–683. https://doi.org/10.1016/j.buildenv.2009.08.012.
SDI (Steel Deck Institute). 2017. Standard for composite steel floor deck-slabs. SDI C-2017. Allison Park, PA: American National Standards Institute/Steel Deck Institute.
Terracciano, G., G. Di Lorenzo, A. Formisiano, and R. Landolfo. 2015. “Cold-formed thin-walled steel structures as vertical addition and energetic retrofitting systems of existing masonry buildings.” Eur. J. Environ. Civ. Eng. 19 (7): 850–866. https://doi.org/10.1080/19648189.2014.974832.
UN General Assembly. 2005. “Resolution/adopted by the general assembly: 2005 World Summit outcome.” Accessed October 24, 2005. https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_60_1.pdf.
USGBC (US Green Building Council). 2015. “LEED v4 for building design and construction.” Accessed April 15, 2019. http://greenguard.org/uploads/images/LEEDv4forBuildingDesignandConstructionBallotVersion.pdf.
USGBC (US Green Building Council). n.d. “LEED.” Accessed April 15, 2019. https://www.usgbc.org/leed.
Villegas, N., B. los Ríos, and A. Aguado. 2010. “Value rate in highway cross-sections during its life cycle.” Int. Re. Civ. Eng. 1 (1): 100–109.

Information & Authors

Information

Published In

Go to Journal of Construction Engineering and Management
Journal of Construction Engineering and Management
Volume 145Issue 7July 2019

History

Received: Apr 13, 2018
Accepted: Dec 11, 2018
Published online: May 14, 2019
Published in print: Jul 1, 2019
Discussion open until: Oct 14, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Albert de la Fuente
Associate Professor, Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.
Maria del Mar Casanovas-Rubio [email protected]
Postdoctoral Researcher, Dept. of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi Girona 1-3, Barcelona 08034, Spain (corresponding author). Email: [email protected]
Oriol Pons
Serra Húnter Professor, Dept. of Architectural Technology, Universitat Politècnica de Catalunya, Barcelona 08028, Spain
Jaume Armengou
Secretary General, IESE Business School, Univ. of Navarra, Barcelona 08034, Spain

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share