TECHNICAL PAPERS
Jun 1, 2001

Role of Air Pressure in Drying of Weakly Permeable Materials

Publication: Journal of Engineering Mechanics
Volume 127, Issue 6

Abstract

Modeling of the drying of porous materials is often approached by assuming that the gas pressure of the vapor-air mixture remains constantly equal to the outer atmospheric pressure. Use of both experimental and theoretical results reveals that such an assumption is inadequate to account for the weight loss observed during the drying of weakly permeable materials. For such materials, the gas pressure cannot remain constant because no significant convective Darcean transport of the gas can actually occur. In contrast, the evaporation coupled with the diffusion of dry air generates a gas overpressure that propagates within the material and works actively toward a uniform vapor molar concentration. As a consequence, the diffusion of vapor becomes rapidly nonactive as a driving force of moisture transport. Paradoxically, the drying of weakly permeable materials is eventually achieved by the transport of moisture in its liquid form and its evaporation at the sample boundary in contact with the surrounding air. The analysis is carried out through a modeling of which the formulation is based upon macroscopic thermodynamic considerations. It involves a dry-air component and a water component, the liquid and the water-vapor phases being addressed separately.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Adenekan, A. E., Patzek, T., and Pruess, K. ( 1993). “Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: Numerical model formulation.” Water Resour. Res., 29(11), 3727–3740.
2.
Baggio, P., Bonacina, C., and Schrefler, B. A. ( 1997). “Some considerations on modeling heat and mass transfer in porous media.” Transport in Porous Media, 28, 233–251.
3.
Baroghel-Bouny, V. ( 1994). “Caractérisation des pâtes de ciment. Méthodes, analyse, interprétation.” PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris (in French).
4.
Baroghel-Bouny, V., Mainguy, M., and Coussy, O. ( 2001). “Isothermal drying process in weakly permeable cementitious materials. Assessment of water permeability.” ACI Mat. J.
5.
Baroghel-Bouny, V., Mainguy, M., Lassabatère, T., and Coussy, O. ( 1999). “Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials.” Cement and Concrete Res., 29(8), 1225–1238.
6.
Bažant, Z. P. ( 1972). “Thermodynamics of hindered adsorption and its implications for hardened cement paste and concrete.” Cement and Concrete Res., 2(1), 1–16.
7.
Bažant, Z. P., and Najjar, L. N. ( 1972). “Nonlinear water diffusion in nonsaturated concrete.” Matériaux et Constructions, 5(25), 3–20.
8.
Bear, J. ( 1991). “Mathematical modelling of transport in porous media.” Modelling and applications of transport phenomena in porous media, J. Bear and J.-M. Buchlin, eds., Kluwer Academic, Boston, 1–190.
9.
Chaussadent, T. ( 1999). “Etat des lieux et réflexions sur la carbonatation du béton armé.” Rapport Etudes et Recherches LCPC, Laboratoire Central des Ponts et Chaussées, Paris (in French).
10.
Coussy, O. ( 1995). Mechanics of porous continua, Wiley, New York.
11.
Coussy, O., Eymard, R., and Lassabatère, T. (1998). “Constitutive modelling of unsaturated drying deformable materials.”J. Engrg. Mech., ASCE, 124(6), 658–667.
12.
Däıan, J.-F. ( 1986). “Processus de condensation et de transfert d'eau dans un matériau meso et macro-poreux. Etude expérimentale du mortier de ciment.” PhD thesis, Institut National Polytechnique de Grenoble, Grenoble, France (in French).
13.
Däıan, J.-F. ( 1986). “Condensation and isothermal water transfer in cement mortar. Part I. Pore size distribution, equilibrium water condensation and imbibition.” Transport in Porous Media, 3, 563–589.
14.
Dangla, P., and Coussy, O. ( 1997). “Drainage and drying of deformable porous materials: One dimensional case study.” Proc., IUTAM, Symp. on Mech. of Granular and Porous Mat., N. A. Fleck and A. C. F. Cocks, eds., Kluwer, Dordrecht, The Netherlands.
15.
Dangla, P., and Coussy, O. ( 1998). “Non-linear poroelasticity for unsaturated porous materials: An energy approach.” Proc., Biot Conf. on Poromechanics, Balkema, Louvain-la Neuve, Belgium, 53–64.
16.
Degiovanni, A., and Moyne, C. ( 1987). “Conductivité thermique de matériaux poreux humides: Évaluation théorique et possibilité de mesure.” Int. J. Heat Mass Transfer, 30(11), 2225–2245 (in French).
17.
de Groot, S. R., and Mazur, P. ( 1984). Non-equilibrium thermodynamics, Dover, New York.
18.
de Vries, D. A., and Kruger, A. J. ( 1966). “On the value of the diffusion coefficient of water vapour in air.” Proc., Colloque Int. du CNRS no 160: Phénomènes de transport avec changement de phase dans les milieux poreux ou collöıdaux, CNRS, Paris, 61–72.
19.
Dullien, F. A. L. ( 1979). Porous media: Fluid transport and pore structure, Academic, San Diego.
20.
Eymard, R., Gallouët, T., and Herbin, R. ( 2000). “The finite volume methods.” Handbook of numerical analysis, P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam.
21.
Garboczi, E. J. ( 1990). “Permeability, diffusivity and microstructural parameters: A critical review.” Cement and Concrete Res., 20(4), 591–601.
22.
Hassanizadeh, S. M., and Gray, W. H. ( 1993). “Thermodynamic basis of capillary pressure in porous media.” Water Resour. Res., 29(10), 3389–3405.
23.
Hausmann, D. A. ( 1967). “Steel corrosion in concrete: How does it occur?” Mat. Protection, 4(11), 19–22.
24.
Lassabatère, T. ( 1994). “Couplages hydromécaniques en milieux poreux non saturés avec changement de phase. Application au retrait de dessiccation.” PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris (in French).
25.
Lichtner, P. C. ( 1996). “Continuum formulation of multicomponent-multiphase reactive transport.” Reactive Transport in Porous Media, Rev. in Mineralogy, P. C. Lichtner, C. I. Sveelep, and E. H. Oepkers, eds., 34, 1–81.
26.
Luckner, L., van Genuchten, M. Th., and Nielsen, D. R. ( 1989). “A consistent set of parametric models for the two-phase-flow of immiscible fluids in the subsurface.” Water Resour. Res., 25(10), 2187–2193.
27.
Mainguy, M. ( 1999). “Modèles de diffusion non-linéaires en milieux poreux. Applications à la dissolution et au séchage des matériaux cimentaires.” PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris (in French).
28.
Millington, R. J. ( 1959). “Gas diffusion in porous media.” Sci, 130, 100–102.
29.
Nitao J. J., and Bear, J. ( 1996). “Potentials and their role in transport in porous media.” Water Resour. Res., 32(2), 225–250.
30.
Page, C. L., and Treadaway, K. W. J. ( 1982). “Aspect of the electrochemistry of steel in concrete.” Nature, 297(5), 109–115.
31.
Papadakis, V. G., Vayenas, C. G., and Fardis, M. N. ( 1991). “Fundamental modeling and experimental investigation of concrete carbonation.” ACI Mat. J., 88(4), 363–373.
32.
Parker, J. C., Lenhard, R. J., and Kuppusamy, T. ( 1987). “A parametric model for constitutive properties governing multiphase flow in porous media.” Water Resour. Res., 23(4), 618–624.
33.
Perré, P., and Degiovanni, A. ( 1990). “Simulation par volumes finis des transferts couplés en milieux poreux anisotropes: Séchage du bois à basse et à haute température.” Int. J. Heat Mass Transfer, 33(11), 2463–2478.
34.
Perrin, B., Baroghel-Bouny, V., and Chemloul, L. ( 1998). “Methods of determination of the hydric diffusivity of hardened cement pastes.” Mat. and Struct., Paris, 31, 235–241.
35.
Philip, J. R. ( 1958). “Physics of water movement in porous solids.” Spec. Rep. No. 40, Highway Research Board, Washington, D.C., 147–163.
36.
Plumb, O. A., and Whitaker, S. ( 1988). “Dispersion in heterogeneous porous media. I. Local volume averaging and large-scale averaging.” Water Resour. Res., 24(7), 913–926.
37.
Raharinaivo, R., Arliguie, G., Chaussadent, T., Grimaldi, G., Pollet, V., and Taché, G. ( 1998). La corrosion et la protection des aciers dans le béton, Presses de l'Ecole Nationale de Ponts et Chaussées, Paris (in French).
38.
Reid, R. C., Prausnitz, J. M., and Poling, B. E. ( 1987). The properties of gases and liquids, 4th Ed., McGraw-Hill International Editions, New York.
39.
Saetta, A. V., Schrefler, B. A., and Vitaliani, R. V. ( 1993). “The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials.” Cement and Concrete Res., 23(4), 761–772.
40.
Sakata, K. ( 1983). “A study on moisture diffusion in drying and drying shrinkage of concrete.” Cement and Concrete Res., 13(2), 216–224.
41.
Savage, B. M., and Janssen, D. J. ( 1997). “Soil physics principles validated for use in predicting unsaturated moisture movement in Portland cement concrete.” ACI Mat. J., 94(1), 63–70.
42.
Sleep, B. E., and Sykes, J. F. ( 1993). “Compositional simulation of groundwater contamination by organic compounds. 1. Model development and verification.” Water Resour. Res., 29(6), 1697–1708.
43.
Taylor, R., and Krishna, R. ( 1993). Multicomponent mass transfer, Wiley, New York.
44.
van Genuchten, M. Th. ( 1980). “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. Proc., 44, 892–898.
45.
Wang, C. Y., and Cheng, P. ( 1996). “A multiphase mixture model for multiphase, multicomponent transport in capillary porous media. I. Model development.” Int. J. Heat Mass Transfer, 39(17), 3607–3618.
46.
Wittmann, F. H. ( 1973). “Interaction of hardened cement paste and water.” J. Am. Ceramic Soc., 56(8), 409–415.
47.
Xi, Y., Bažant, Z. P., and Jennings, H. M. ( 1994a). “Moisture diffusion in cementitious materials. Moisture capacity and diffusivity.” Advanced Cement Based Mat., 1, 258–266.
48.
Xi, Y., Bažant, Z. P., Molina, L., and Jennings, H. M. ( 1994b). “Moisture diffusion in cementitious materials. Adsorption isotherms.” Advanced Cement Based Mat., 1, 248–257.
49.
Xin, D., Zollinger, D. G., and Allen, G. D. ( 1995). “An approach to determine diffusivity in hardening concrete based on measured humidity profiles.” Advanced Cement Based Mat., 2, 138–144.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 127Issue 6June 2001
Pages: 582 - 592

History

Received: Dec 12, 1999
Published online: Jun 1, 2001
Published in print: Jun 2001

Permissions

Request permissions for this article.

Authors

Affiliations

Véronique Baroghel-Bouny
Res. Engr., Institut Français du Pétrole, 92852 Rueil-Malmaison Cedex, France. E-mail: [email protected]
Res. Dir., Laboratoire Central des Ponts et Chaussées, 75732 Paris Cedex 15, France.
Res. Engr., Laboratoire Central des Ponts et Chaussées, 75732 Paris Cedex 15, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share