CONTENTS

Papers	Page
TORSION, SHEAR, AND BENDING ON STIRRUPED L-BEAMS by Umakanta Behera and Phil M. Ferguson	1271
SHAKEDOWN TESTS ON STEEL BARS AND BEAMS by Dale G. Eyre and T. V. Galambos	1287
EXPERIMENTAL STRESSES AND STRAINS FROM HEAT CURVING by Roger L. Brockenbrough and Kenneth D. Ives	1305
SHRINKAGE AND SHRINKAGE RESTRAINTS IN CONCRETE PAVEMENTS by Shigeyoshi Nagataki	1333
DEFLECTION ANALYSIS FOR SHAKEDOWN by Dale G. Eyre and Theodore V. Galambos	1359
BEHAVIOR OF LACED AND BATTENED STRUCTURAL MEMBERS by Fung J. Lin, Ernst C. Glauser, and Bruce G. Johnston	1377
SHEAR LAG IN STIFFENED BOX GIRDERS by David J. Malcolm and Richard G. Redwood	1403
THEORETICAL STRESSES AND STRAINS FROM HEAT CURVING by Roger L. Brockenbrough	1421
CONCRETE BEAMS WITH PRESTRESSED REINFORCEMENT by Alfred Bishara and Filomeno N. Almeida	1445

(over)

This Journal is published monthly by the American Society of Civil Engineers. Publications office is at 2500 South State Street, Ann Arbor, Michigan 48104. Address all ASCE correspondence to the Editorial and General Offices at 345 East 47th Street, New York, N.Y. 10017. Allow six weeks for change of address to become effective. Subscription price is \$20.00 per year with discounts to members and libraries. Secondclass postage paid at Ann Arbor, Michigan. ST.

Page

WIND DEFLECTIONS OF TALL CONCRETE FRAME BUILDINGS by John F. Wiss and Otto E. Curth	1461
EXPERIMENTAL STUDY OF FLEXURAL-TORSIONAL	
by Alois J. Hartmann	1481
COMPRESSION TESTS ON HOOP-REINFORCED CONCRETE by Norman F. Somes	1495
BEHAVIOR OF SINGLE HORIZONTALLY CURVED GIRDER by Conrad P. Heins, Jr. and Kenneth R. Spates	1511
OPTIMUM DESIGN OF PRESTRESSED CONCRETE MEMBERS by Chen H. Wang	1525
RATIONAL DESIGN OF LIGHT GAGE BEAMS by Jeffrey L. Bleustein and Atle Gjelsvik	1535
CONCRETE CONTAINMENTS FOR REACTORS-STATE OF ART by Chen Pang Tan	1543
FATIGUE CHARACTERISTICS OF SELECTED PLASTICS by the Task Committee on Properties of Selected Structural	
Structural Division	1567
TWO-DIMENSIONAL CABLE ANALYSIS by George R. Buchanan	1581

DISCUSSION

Proc. Paper 7386

LATERAL BUCKLING OF BRACED MULTISTORY FRAMES, by John E. Goldberg (Dec., 1968. Prior Discussions: June, Aug., 1969). closure	1591
LOAD CARRYING CAPACITY OF SIMPLE COMPOSITE COLUMNS, by J. W. Roderick and D. F. Rogers (Feb., 1969. Prior Discussion: Dec., 1969). closure	1593
STABILITY BEHAVIOR ILLUSTRATED BY SIMPLE MODELS, by Alexander Chajes (June, 1969. Prior Discussion: Dec., 1969). closure	1594
BUCKLING OF RIGIDLY-JOINTED PLANE TRUSSES, by Adel Helmy Salem (June, 1969. Prior Discussion: Jan., 1970). closure	1595

Page

ULTIMATE CAPACITY OF SINGLE BOLTED ANGLE CONNECTIONS, by John B. Kennedy and George R. Sinclair (Aug., 1969. Prior Discussion: Jan., 1970). closure	1596
FATIGUE DAMAGE IN SEISMIC STRUCTURES, by Iyadurai Kasiraj and James T. P. Yao (Aug., 1969). errata	1597
LIMIT ANALYSIS OF STRUCTURES, by Dusan Krajcinovic (Sept., 1969. Prior Discussions: Jan., Apr., 1970). closure	1599
RECENT DEVELOPMENTS IN PLASTIC DESIGN PRACTICE, by Lynn S. Beedle, LE-Wu Lu and Lee Chong Lim (Sept., 1969). errata	1602
BUCKLING OF ANISOTROPIC COMPOSITE PLATES, ^a by Christos C. Chamis (Oct., 1969). by T. M. Hsu and errata	1604
ANALYSIS OF SHEAR WALLS WITH OPENINGS, ^a by Chiyyarath V. Girijavallabhan (Oct., 1969. Prior Discussion: Apr., 1970).	1001
by David G. Elms	1606 1607 1608 1609
EFFECTIVE WIDTH OF THIN PLATES IN COMPRESSION, ^a by George Abdel-Sayed (Oct., 1969. Prior Discussions: Apr., June, 1970).	1.010
BUCKLING LOADS OF NONUNIFORM COLUMNS, ^a by Chiyyarath V. Girijavallabhan (Nov., 1969. Prior Discussions: May, 1970).	1610
by P. Paramasivam FIELD TESTS OF ALUMINUM ORTHOTROPIC BRIDGE DECK, ^a by Maurice L. Sharp (Nov., 1969). by Harvey A. Kagan	1613
INELASTIC ANALYSIS OF MULTISTORY MULTIBAY FRAMES, ^a by Ronald J. Alvarez and Charles Birnstiel (Nov., 1969). by Kurt Klöppel and Wolfhart Uhlmann	1617
BEHAVIOR OF CONCRETE UNDER COMPRESSIVE LOADINGS, ^a by I. Demir Karsan and James O. Jirsa (Dec., 1969. Prior Discussion: June, 1970).	
by N. K. Raju	1618

a Discussion period closed for this paper. Any other discussion received during this discussion period will be published in subsequent Journals.

Page

BUCKLING OF TRAPEZOIDAL FRAMES PERMITTED TO SWAY, by Adel Helmy Salem (Dec., 1969). errata	1619
STRUCTURAL BEHAVIOR OF CONCRETE ARCH CULVERT, ^a by Raymond Eugene Davis (Dec., 1969). by Pablo Girault	1620
THEORY OF NONLINEAR ELASTIC STRUCTURES, ^a by Graham H. Powell (Dec., 1969). by Robert D. Cook	1621
 FOLDED PLATE STRUCTURES BY FINITE STRIP METHOD,^a by Yau-kai Cheung (Dec., 1969). by Alexander C. Scordelis and Kaspar J. William 	1622
STABILITY PROBLEMS OF WOOD TRUSS BRIDGE,^a by OscarM. Hahn (Feb., 1970).by George H. Kyanka	1624

INFORMATION RETRIEVAL

The key words, abstract, and reference "cards" for each article in this Journal represent part of the ASCE participation in the EJC information retrieval plan. The retrieval data are placed herein so that each can be cut out, placed on a 3×5 card and given an accession number for the user's file. The accession number is then entered on key word cards so that the user can subsequently match key words to choose the articles he wishes. Details of this program were given in an August, 1962 article in CIVIL ENGINEERING, reprints of which are available on request to ASCE headquarters.

^a Discussion period closed for this paper. Any other discussion received during this discussion period will be published in subsequent Journals.

7419 TORSION, SHEAR, AND BENDING ON STIRRUPED L-BEAMS

KEY WORDS: <u>beams (supports);</u> bending; <u>concrete (reinforced);</u> interactions; L-beams; <u>moments; shear stress;</u> stiffness; stresses; <u>structural</u> engineering; <u>torsion</u>

ABSTRACT: Test results on reinforced concrete L-beams with closed stirrups under combined torsion, shear, and flexure are reported. Emphasis is placed on beams having less longitudinal steel than required to develop the full potential shear strength of the beams, that is, beams which in the absence of torsion would fail in flexure. Based on test data an interaction surface is defined for L-beams with symmetrical top and bottom steel which checks test results closely. Stiffness in torsion before and after diagonal cracking is examined. The large drop in stiffness after initial diagonal cracking under combined loadings is examined. Measurements of strain show additional stresses in longitudinal bars resulting from torsion, but stresses of significance only after diagonal cracking. The total demand for longitudinal steel is perhaps not as great as the sum of that required for moment and torsion calculated separately.

REFERENCE: Behera, Umakanta, and Ferguson, Phil M., "Torsion, Shear, and Bending on Stirruped L-Beams," <u>Journal of the Structural Division</u>, ASCE, Vol. 96, No. ST7, Proc. Paper 7419, July, 1970, pp.1271-1286.

7395 SHAKEDOWN TESTS ON STEEL BARS AND BEAMS

KEY WORDS: <u>beams (supports); bridges;</u> deflection; <u>plastic design;</u> steels; <u>structural engineering;</u> testing

ABSTRACT: The results of experiments on two-span continuous beams subjected to various programs of variable repeated loading are reported and analyzed. The loading program was designed to simulate the effects of a one and two point heavy load moving slowly across the beam. The experiments were performed on 1.5 in. by 0.75 in. rec-tangular, heat treated, steel bars and on as-rolled, wide-flange, two-span steel beams. The test results are examined in accordance with a shakedown analysis based on the "simple" plastic theory. Design implications with special reference to bridges are also considered.

REFERENCE: Eyre, Dale, G., and Galambos, T. V., "Shakedown Tests on Steel Bars and Beams," <u>Journal of the Structural Division</u>, ASCE, Vol. 96, ST7, Proc. Paper 7395, July, 1970, pp. 1287-1304.

7400 EXPERIMENTAL STRESSES AND STRAINS FROM HEAT

KEY WORDS: <u>bridges</u>; <u>curved beams</u>; <u>curves</u>; fabrication; girders; <u>heat-</u> ing; highways; strains; stresses; structural engineering

ABSTRACT: To obtain information on the heat curving process for the fabrication of horizontally curved highway bridges, an analytical and experimental investigation was conducted to determine the residual stresses, strains, and curvature in a typical heat-curved girder. The analytical results were reported separately. The 52-ft-long test girder was a typical welded, A36 steel, plate girder. Residual stresses before heat curving were determined by sectioning. The remaining 46-ft-long girder was curved to a radius of 397 ft in six successive runs by using a continuous heat-curving process. Strains and temperatures were recorded during each run, and the residual stress, strain, and curvature after each run were determined. The behavior of the girder was in agreement with the analytical investigation. When compared with the experimental values, the analytical solution satisfactorily predicted the residual stresses but underestimated the residual curvature.

REFERENCE: Brockenbrough, Roger L., and Ives, Kenneth D., "Experimental Stresses and Strains from Heat Curving," <u>Journal of the Structural Division</u>, ASCE, Vol. 96, No. ST7, Proc. Paper 7400, July, <u>1970</u>, pp. 1305-1331.