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Introduction

Water distribution networks (WDNs) play a fundamental role as
critical infrastructure systems in providing reliable and safe water
supply to communities worldwide. Water pipes failure can cause a
disruption in WDN serviceability, and can have consequences for
water utility companies, customers, and the environment. Dealing
with failures has always been a challenge for water utilities, due to
loss of water, intrusion of pollution into pipes, and possible fines by
the regulators. Interruptions in water supply dissatisfies the custom-
ers and downgrades the reliability of the network. Each burst event
and the subsequent operations have an impact on the environment,
which is not easy to estimate (Nunes et al. 2023). Conversely,
wastewater and sewer breaks can cause significantly greater envi-
ronmental and hygiene impacts than water pipe failures. As the
pipes age, the issue of failure becomes more serious, particularly
in developed countries where the infrastructure is older compared
to developing countries.

In the past, pipe failures were addressed only after they oc-
curred (reactive maintenance). Although this approach can tackle

immediate issues, it often comes at high cost and prolonged
periods of system downtime. Conversely, adopting a predictive
maintenance strategy involves utilizing data analysis and in situ
measurements, e.g., pressure, flow, strain, etc., to predict and pre-
vent failures before they occur. By leveraging real-time monitoring
systems and advanced analytics, predictive maintenance can iden-
tify patterns and trends that may indicate an impending failure,
enabling operators to take proactive measures to prevent it. This
approach can reduce the frequency and severity of breakdowns,
lower maintenance costs, and improve overall system efficiency
(Selcuk 2016). Given the significance of failures in WDNs,
decision makers in the water sector are increasingly recognizing
the need to move from reactive maintenance to predictive
maintenance.

Predictive maintenance approaches can be categorized into three
main types: heuristic (simplistic) approaches, physical approaches,
and statistical approaches (Fig. 1). Heuristic approaches were the
earliest failure prediction models, in which a simple variable was
used to prioritize pipe rehabilitation. For example, the age of the
pipes or the number of previous failures could be used to rank the
pipes for replacement (Kirmeyer et al. 1994). However, these meth-
ods do not consider the complex relationship between pipe intrinsic
features, environmental conditions, operational factors, and failure
in water pipes (Snider and McBean 2020), making them sub-
optimal in comparison with other approaches (St. Clair and Sinha
2012).

Physical models consider the underlying physical mechanisms
and mechanical processes that contribute to pipe failure (Rajani
and Kleiner 2001). For example, soil-pipe interaction models are
used to estimate the stresses and strains on pipe walls and compare
them with the remaining strength of the pipes (Rajani et al. 1996;
Rajani and Makar 2000; Seica and Packer 2004; Tesfamariam et al.
2006; Farhadi and Wong 2014; Murugathasan et al. 2021). Addi-
tionally, some physical models investigate the corrosion and struc-
tural deterioration to estimate the remaining lifespan of the pipes
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Fig. 1. Categories of failure prediction models.
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(Zhou et al. 2012; Larin et al. 2016; Mahmoodian and Li 2015;
Wasim et al. 2018; Wang et al. 2023). These models are particularly
efficient when the main causes of failures are well understood.
Although physical models yield accurate results, their applicability
is limited to the specific pipes studied and cannot be easily gener-
alized to other parts of the network. Consequently, these models
are best suited for analyzing large-diameter pipes, which are of
greater importance to asset managers due to their critical role in
the infrastructure.

Statistical models utilize mathematical and statistical concepts
to identify trends and relationships between independent covariates
and failure parameters, such as the number of failures, failure rate,
time-to-failure, and probability of failure (Kleiner and Rajani
2001). They employ pipes (assets) data and historical failure data
to establish correlations between failure occurrences and contrib-
uting factors. To enhance their prediction capability, other data
sources, such as pressure records, soil type data, and weather data,
can be introduced to the models. The data used can be numerical
(e.g., pipe length, diameter, and age) or categorical (e.g., soil type,
and pipe material), each requiring appropriate handling to suit the
model’s requirements (Konstantinou and Stoianov 2020). Statistical
models fall into three categories: deterministic, probabilistic, and
machine learning models (Nishiyama and Filion 2014; Scheidegger
et al. 2015; Snider and McBean 2020; Barton et al. 2022a).

Deterministic and probabilistic models have been reviewed in
detail by Scheidegger et al. (2015). These were initially developed as
simple models to predict the number of failures and failure rate.
Single-variate regression (Kettler and Goulter 1985), multi-variate re-
gression (Asnaashari et al. 2009), generalized linear models (GLM)
(Yamijala et al. 2009), and zero-inflated models (Konstantinou and
Stoianov 2020) are examples of deterministic approaches. Time-
linear (Kettler and Goulter 1985) and time-exponential (Shamir
and Howard 1979) models have been used for temporal predic-
tion of failures, wherein they are trained using past failure data
to predict future failures. The use of deterministic models has
been popular among water companies due to their simplistic math-
ematical framework and ease of interpretation. However, these
models have limitations in providing comprehensive information
about pipe failures, as they may not account for all relevant varia-
bles. Moreover, deterministic models are more appropriate for pipe
groups. As an example, in most of the case studies, it is not easy to
find a large number of pipes withmultiple failures, so developing an
accurate deterministic model to predict the number of failures
in each pipe becomes challenging. However, deterministic models
can be used to predict the number of failures in a given group
of pipes.

Probabilistic models often use statistical concepts to predict
the probability of failure or time-to-failure in pipes. While the
deterministic models are suitable for assessing a cohort of pipes,
probabilistic models are easy to apply at the asset level. Cox
proportional hazard (CoxPH) models, Survival analysis (Røstum
2000; Debón et al. 2010), non-homogeneous Poisson process
(NHPP) (Economou et al. 2012), Zero-inflated nonhomogeneous
Poisson process (ZINHPP) (Kleiner and Rajani 2010), Weibull
proportional hazard (WPH) models (Alvisi and Franchini 2010),
Weibull accelerated lifetime (WAL) (Debón et al. 2010), logistic
regression (LR) (Yamijala et al. 2009), and Bayesian and Naïve
Bayes models (Francis et al. 2014; Tang et al. 2019) are common
examples of probabilistic models. These models are flexible,
can accommodate randomness, and effectively capture the com-
plexity arising from multiple variables, making them suitable for
providing valuable insight to aid in rehabilitation and replace-
ment decisions. However, some probabilistic models, such as sur-
vival models and Bayesian models, have complex mathematical

frameworks, which makes them difficult for water companies to
implement as they require specialized expertise and knowledge
(Barton et al. 2022a).

Machine learning (ML) models have made remarkable strides in
recent years, surpassing traditional statistical models by offering
enhanced predictive accuracy and expanded capabilities. Using
ML algorithms, these models learn the relationships and trends
by utilizing a significant portion of the data for training (train
set), while the remaining data set is used to evaluate the trained
model (test set). The flexibility of ML models allows them to
be used for predicting number of failures, rate of failure, probability
of failure, and time-to-failure. They have been effectively used for
regression, classification, or as probabilistic classifiers. The pre-
vious computational challenges associated with ML models have
been overcome thanks to continuous advancements in computing
power. These models are capable of learning and capturing the
complex correlations and trends in high-dimensional problems
and large databases. ML models are particularly well-suited for ap-
plication at the asset level. While they are capable of predicting the
number of failures, rate of failure, time-to-failure, and probability
of failure, they exhibit greater accuracy in predicting the latter.
Also, tuning the hyperparameters of these models has been simpli-
fied, as it can now be carried out within the model itself for the
user’s convenience.

The main ML models which have been used in the literature
for pipe failure prediction are clustering (Farmani et al. 2017;
Kakoudakis et al. 2017), artificial neural networks (ANN) (Tabesh
et al. 2009; Kerwin et al. 2020), k-nearest neighbors (KNN)
(Kutyłowska 2018), evolutionary polynomial regression (Berardi
et al. 2008; Kakoudakis et al. 2018; Giraldo-González and
Rodríguez 2020), support vector machines (SVM) (Kutyłowska
2019; Robles-Velasco et al. 2020), and tree-based models.

Tree-based models are a category of machine learning models
which can be used for regression, classification, and even for prob-
abilistic classification. Although they are computationally expen-
sive, according to the literature, they have outperformed other
commonMLmodels in terms of accuracy and prediction capability.
The fundamentals of these approaches are simple, and they do not
require complex pre-processing, e.g., data normalization. This
paper reviews various tree-based models and their application in
failure prediction of water pipes. Some of the tree-based models
are well known and have already been employed in this field,
e.g., decision trees, random forest, gradient boosting, AdaBoost,
and Catboost. Nevertheless, there are some other models which
are not very known to water sector, but could be useful in overcom-
ing the common challenges in this area such as imbalanced data,
censored data, high-dimensional and complex data sets, etc.

Tree-Based Models

ML algorithms can be broadly categorized into two main types:
supervised and unsupervised learning (Kim et al. 2021). Super-
vised ML learns from labeled data, where the algorithm is trained
on previously categorized input data to make predictions for the
output variables (Huang et al. 2014; Ono and Goto 2022). Super-
vised ML algorithms have found widespread applications in
various fields. Particularly in the water sector, they have been em-
ployed for failure prediction and asset condition assessment in
WDNs (Dawood et al. 2020; Barton et al. 2022b; Delnaz et al.
2023). Unsupervised ML algorithms are commonly used in clus-
tering and anomaly detection. Clustering involves grouping related
data based on shared characteristics, while anomaly detection
focusses on identifying data points that deviate significantly from

© ASCE 03124001-3 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2024, 150(7): 03124001 

 T
hi

s 
w

or
k 

is
 m

ad
e 

av
ai

la
bl

e 
un

de
r 

th
e 

te
rm

s 
of

 th
e 

C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

4.
0 

In
te

rn
at

io
na

l l
ic

en
se

. 



the rest of the data (Ono and Goto 2022). Unsupervised algorithms
can learn to find patterns and relationships in data without any prior
knowledge of output variable(s) (Laskov et al. 2005; Usama et al.
2019; Zoppi et al. 2021). Unsupervised learning has been mostly
used to improve water pipe failure predictions (Kakoudakis
et al. 2017).

Tree-based machine learning models, a subset of supervised
learning algorithms, utilize decision trees to make predictions. Their
popularity has grown significantly in recent years due to their ex-
ceptional accuracy, robustness, and interpretability (Kumar 2019).
These models can be categorized into two main groups: decision
tree algorithms, and ensemble learning methods, which include
bagging, boosting, and stacking strategies (Fig. 2) (Jafarzadeh et al.
2021). Decision tree algorithms utilize the feature values of the in-
put data to partition the data space into smaller regions recursively
(Xiaohe et al. 2014; Coadou 2022). Conversely, ensemble tree al-
gorithms improve model accuracy and robustness by combining
multiple decision trees (Mishina et al. 2015). During the model cre-
ation process, some trees (learners) may be weak, and that is where
boosting strategies combine multiple weak learners to create a
stronger learner (Nishio et al. 2018; Coadou 2022). The following
section reviews these tree-basedML algorithms, along with relevant
examples.

Decision Trees

A decision tree (DT) is a supervised machine learning algorithm
that handles classification and regression problems. Its name
comes from its treelike structure. When predicting the class of
a data set, the DT algorithm starts at the root node, which repre-
sents the entire population, and compares the feature values of the
root node with the record features. Based on this comparison,
the algorithm follows the corresponding branch to the next
node. The process continues until it reaches the final node (leaf)
in the tree.

Fig. 3 demonstrates a simple instance where WDN data was uti-
lized to predict pipe failure. The example employs three features:
pipe type (main or service), length, and age. The data set’s pipe

type feature is used to create two sub-nodes from the root node
based on a yes-or-no condition. The age feature is then utilized
for further splitting, with ages above 50 years serving as branch
nodes, and failed as the resulting leaf node. Another branch is cre-
ated using the length feature. After three splits using these features,
failed and not-failed become leaf nodes, and no further splitting
occurs.

The careful selection of the root node and sub-nodes is crucial in
implementing the DT algorithm, significantly influencing its per-
formance. To achieve this, attribute selection measures (ASMs)
are employed to choose the most relevant attributes for classifica-
tion. Different ASMs have been developed for this purpose, includ-
ing entropy, information gain, and the Gini index (Liu et al. 2004;
Nnebedum 2012; Katterbauer et al. 2022; Li and Yin 2023).

The following section covers a brief explanation and mathemati-
cal formulation of some of the main ASMs. Entropy is a fundamen-
tal measure that quantifies uncertainty or randomness within a
given data set. In the context of DT, entropy is utilized to evaluate

Fig. 2. Categories of tree-based models.

Fig. 3. A decision tree for failure prediction.
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the impurity of a specific node or a subset of data. The entropy
value assigned to the root node reflects the overall impurity of
the entire data set, while within subsequent sub-nodes it character-
izes the impurity of the corresponding subset of data governed by
the respective decision. Mathematically, entropy is expressed as:

HðsÞ ¼ −X
pðiÞlog2pðiÞ ð1Þ

where HðsÞ is the entropy of the set (s); and pðiÞ is the portion
of the number of elements in (s) that belongs to the ith class
(Li et al. 2011).

Information gain (IG) is a measure utilized to decrease uncer-
tainty in a manner similar to entropy. It determines the most suitable
feature for splitting the root node into sub-nodes, thereby minimiz-
ing impurity in the resulting subsets. The feature with the highest
IG value is selected as the preferred splitting criterion. The calcu-
lation of IG is represented as follows:

IGðs;AÞ ¼ HðsÞ −X
pðtÞHðtÞ ð2Þ

in which, IGðs;AÞ is the information gain of splitting set (s) and
feature (A); pðtÞ is the proportion of elements in subset t relative to
the number of elements in (s) (Batra and Agrawal 2017).

The Gini impurity index, like entropy, serves as an alternative
measure of impurity or randomness in DTs. It quantifies the like-
lihood of misclassifying a randomly selected element from a set,
assuming random labeling according to the label distribution within
the subset. By considering the proportions of different classes or
labels within a data subset, the Gini index captures the extent of
impurity or randomness in that subset (Tangirala 2020; Smith
et al. 2022). The Gini index is calculated as

Gini ¼ 1 −X
ðpðiÞÞ2 ð3Þ

where pðiÞ has been defined in Eq. (1).
DT models have evolved over time and have been utilized in

various domains. In this review, we explore some of the renowned
DT models that have emerged throughout the history of their de-
velopment. Fig. 4 presents a timeline of the evolution of tree-based
models.

The chi-squared automatic interaction detector (CHAID) model
is one of the primary tree-based classification algorithms. This al-
gorithm partitions data based on the chi-square test and stops the
partitioning process when a threshold of statistical significance is
reached (Kass 1980; Jagtiani and Henderson 2010; Tamaoka et al.
2010).

Interpreting the CHAID model is intricate due to its use of
multiway splits, specifically designed for categorical data analysis.
Notably, the computational demands of the CHAID algorithm arise
from the calculation of chi-square statistics for each potential split.
In response to the need for managing both classification and regres-
sion tasks involving categorical and numerical data, and to address
the challenges associated with CHAID, classification and regres-
sion trees (CART) was introduced (Breiman 1984). This algorithm
utilizes the Gini index as a measure of impurity to establish splitting
criteria. CART has proven to be highly successful and widely em-
ployed in diverse fields, particularly in failure prediction modeling.
It is noteworthy that CART can be regarded as the progenitor of
other tree-based algorithms (Tamura et al. 2019; Brédart et al.
2021; Wieczorek et al. 2021; Fiosina et al. 2023). Although CART
was a successful algorithm, it had certain limitations, such as sen-
sitivity to small changes in data and susceptibility to overfitting.
To address these shortcomings, generalized, unbiased, interaction
detection, and estimation (GUIDE) was developed (Loh and Shih
1997). Based on recursive partitioning, this method is considered
more robust and proficient in handling complex relationships
between variables. It also provides unbiased variable selection,
enhancing its reliability and accuracy in modeling tasks (Kang
et al. 2010; Lee 2021). CARTwas further developed by introducing
a non-parametric method called quick unbiased efficient statistical
tree (QUEST) (Breiman 1984). This algorithm is highly recognized
for its ability to handle large data sets and its unbiased nature, as it
does not make any assumptions about the underlying distribution of
the data (Lee and Lee 2015; Song et al. 2020).

Moreover, to accommodate both categorical and continuous fea-
tures, an array of approaches were proposed for partitioning the
data into subsets based on different feature categories and employ-
ing binary splits for continuous variables. This concept underwent
further refinements, leading to the development of the Quinlan de-
cision tree (QDT) algorithm, also known as the iterative dichoto-
mizer 3 (ID3) (Quinlan 1990). Other algorithms, such as C4.5 and
C5.0, were later developed to overcome shortcomings, e.g., the ten-
dency to overfit (Quinlan 1992; Nanda et al. 2011).

Ensemble Learning

Ensemble learning is an ML methodology that aims to improve
prediction accuracy and robustness by combining the predictions
of multiple models. It addresses the issues of errors and overfitting
that may arise in individual models by harnessing the collective
power of multiple models. Combined models can be of the same
type or different types. Over time, various techniques have been
developed for implementing ensemble learning, which have
evolved in their capabilities and applications across different fields
(Webb and Zheng 2004; Yang et al. 2010).

Fig. 4. Timeline of evolution of tree-based ML models.
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Extremely randomized trees (ExtraTrees) is one of the primary
ensemble methods that builds multiple DTs and combines their out-
puts to make a final prediction. The trees in ExtraTrees are con-
structed using random splits of the input features and random
thresholds for each split, which makes it less prone to overfitting
than traditional DTs (Geurts et al. 2006).

Various approaches have been introduced for ensemble learn-
ing, and the main success point of these methods is diversity. Here
diversity refers to generating multiple subsets from the original data
set to train different predictors such that the outputs of the predic-
tors are diverse (Ganaie et al. 2021). Ensemble approaches are
broadly categorized as bagging, boosting, and stacking.

Bootstrap Aggregating (Bagging)
Bootstrap aggregating, also referred to as bagging, is an ensemble
learning approach employed to create numerous subsets of the
original data set through random sampling and training separate
models on each subset (Fig. 5). Bagging proves particularly ben-
eficial when working with limited data sets that are prone to over-
fitting. This approach is not limited solely to DT models, as it can
be applied to various models, such as ANN and SVM (Mehmood
et al. 2019; Muhammad et al. 2020; Modabbernia et al. 2022).

Random Forest (RF) is an ensemble ML approach that improves
model accuracy and robustness by employing multiple base DTs.
This approach utilizes a bagging strategy to enhance predictive
capability by randomly selecting a subset of features and aims
to mitigate overfitting by decorrelating each tree (Breiman 2001;
Kulkarni and Sinha 2012; Shahhosseini and Hu 2020; Ogunleye
2022). Isolation forest is an unsupervised algorithm developed
by using the bagging strategy. It is renowned for its ability to detect
anomalies without using traditional measures such as density,
which refers to the concentration of data points in a data set,
and distance, which represents the spatial separation between data
points. Instead, the isolation forest algorithm utilizes alternative ap-
proaches based on DT to identify anomalies. These distinctive fea-
tures make isolation forest stand out in anomaly detection, as it
does not rely on density or distance measures commonly employed
by other algorithms (Hastuti et al. 2020; Suriyanarayanan and
Kunasekaran 2020). Conditional random forest (CRF) was intro-
duced as an algorithm that combines RF and a graphical model
called conditional random fields, which is utilized to establish con-
nections between input and output variables by employing a col-
lection of potential functions (Kong et al. 2021). The idea of CRF is

based on modeling the dependencies between the output variables
using a graph structure. The graph structure in the CRF model al-
lows it to effectively capture and exploit correlations and interac-
tions among the output variables. This is achieved by organizing
and modeling the connections between these variables using a
graph, where the output variables are represented as nodes, and the
dependencies between them are indicated by edges (Kaczałek and
Borkowski 2016; Kumbhakarna et al. 2020). The random survival
forest algorithm is another method that constructs an ensemble of
DTs to predict survival probability, which entails predicting the
likelihood of an event occurring within a specified time frame
(Ishwaran et al. 2008).

Boosting
Boosting is a sequential strategy that involves building models in
a cascading manner, with each subsequent model aiming to cor-
rect the errors made by its predecessor. In this strategy, the suc-
ceeding models depend on the performance and insights gained
from the previous models. An initial subset is generated from the
original data set with equal weights assigned to each data point. A
base model is created using the initial subset, and subsequently,
predictions are made on the entire data set using this model. The
errors are then calculated by comparing the actual and predicted
values. To take the errors into account and reduce them, incorrect
data points are assigned higher weights, and a new model is cre-
ated. Iteratively, several models are created, each correcting the
errors of the previous model. The final model, regarded as a
strong model, is derived by calculating a weighted average of
all the previously created weak models (Fig. 6). These weak mod-
els, while not performing well individually on the entire data set,
exhibit effectiveness in specific areas of the data. Consequently,
each model contributes to enhancing the overall performance of
the ensemble, resulting in a boosted performance (Schapire 1999;
Mayr et al. 2014).

Adaptive boosting (AdaBoost) and gradient boosting trees
(GBT) are two well-known examples of boosting strategies that
have been widely employed in various domains. AdaBoost utilizes
a collection of small decision trees called stumps, each with a maxi-
mum depth of one. This implies that the tree comprises a sole root
node and two leaf nodes, permitting only a single decision split to
occur. The main objective of AdaBoost is to minimize misclassi-
fications by iteratively improving the current model by including a

Fig. 6. Boosting approach.Fig. 5. Bagging approach.
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properly weighted predictor (Freund and Schapire 1996). GBT fol-
lows a similar boosting strategy to AdaBoost, aiming to minimize
the loss function (a mathematical function to measure the error
between prediction and actual values) by fitting subsequent models
to the negative gradient of the loss. However, there is a subtle differ-
ence in their implementation. While AdaBoost commonly uses
decision stumps as weak models, GBT is more flexible and can
employ various weak models, including decision trees with larger
depths (Friedman 2002). This allows GBT to capture more com-
plex relationships in the data and potentially achieve higher accu-
racy compared to AdaBoost (Luo and Spindler 2016; Saez et al.
2016; Kwon et al. 2017; Toghani and Allen 2020; Anjum et al.
2022).

Light gradient boosting machine (LightGBM) has gained pop-
ularity for large-scale machine learning tasks. It incorporates a tech-
nique called gradient-based one-side sampling (GOSS) to reduce
the number of samples used during training. This approach signifi-
cantly accelerates the training process while maintaining predict-
ability (Ke et al. 2017).

The categorical boosting algorithm (CatBoost) is specifically
designed to handle categorical variables without needing one-hot
encoding (Hancock and Khoshgoftaar 2020) or extensive prepro-
cessing steps. This saves time and mitigates the risk of overfitting,
particularly when dealing with categorical features with high
cardinality.

Extreme gradient boosting (XGB) is another well-known and
widely used algorithm. It operates by iteratively adding DTs, sub-
sequently building a collection of weak predictive models, known
as weak learners, which are then combined to form a robust pre-
dictive model. XGB has gained widespread recognition for its out-
standing performance in various machine learning competitions
hosted on platforms like Kaggle, known for its data science com-
petitions (Hasani and Nasiri 2021), and its ability to handle missing
data. XGB was used for both regression and classification tasks,
and it performed well at both (Jafarzadeh et al. 2021; Tervonen
et al. 2021). This method has also the ability to automatically learn
the optimal imputation of missing values based on the available
data (Jafarzadeh et al. 2021; Zhongyuan et al. 2022; Siregar et al.
2022).

Random undersampling boosting (RUSBoost) is also an ensem-
ble learning algorithm, utilizing boosting strategy developed to ad-
dress class imbalance problems in binary classification tasks
(Seiffert et al. 2010). It is worth noting that boosting algorithms,
such as RotBoost (Zhang and Zhang 2008), which combines rota-
tion forest and AdaBoost, showcases the effectiveness of the boost-
ing strategy when utilized in conjunction with other algorithms,
demonstrating impressive accuracy.

Stacking
Stacking is an ensemble learning strategy that utilizes predictions
from multiple models to construct a new model. It is also known as
a meta-learning method, as it integrates the outputs of base models
and serves as a valuable approach to reducing bias (Mallick et al.
2022). In this strategy (Fig. 7), the training data set is divided into n
subsets. A base model, such as a DT, is trained on n − 1 subsets of
the data, and then used to predict the nth subset. These steps are
repeated for each base model, resulting in a set of predictions for
both the training and testing data sets. The predictions from the
training data set are then employed as features to build a new
model, which is subsequently used to make final predictions on
the testing data set (Ganaie et al. 2021).

Several studies have used tree-based models as one or two of the
base models in the ensemble. Stacking strategy, which incorporates
tree-based models like DT, RF, and GBT, has found application in

various domains such as estimating the amount of time, resources,
and effort required for developing software, analyzing COVID-19
vaccine sentiments, predicting air quality index and using a blend-
ing approach in stacking for detecting botnet attacks in computer
network traffic (Ag and Varadarajan 2021; Jain and Kashyap 2022;
Afrifa et al. 2023; Gupta et al. 2023). The stacking strategy was
also employed in evaluating the performance of water mains to op-
timize pipeline rehabilitation and to enhance the prediction of pipe
conditions (Shi et al. 2017).

Evaluation Metrics

Various metrics have been proposed for the evaluation of ML pre-
diction models. Selecting the right metric depends on the type of
problem and output of the models (Vaags 2021). Each evaluation
metric should be understood carefully before they are employed.
Using unrelated metrics could be misleading in assessing the
performance of the models, and lead to either overestimation or
underestimation of their prediction capabilities (Jin et al. 2019;
Rahim et al. 2021). Furthermore, traditional evaluation metrics
are not able to comprehensively assess the capability of failure
prediction models for pipes. This limitation results from their ten-
dency to consider equal value for each member of the data set,
i.e., pipes. As an example, correctly predicting the failure in a pipe
with large diameter and length should not be equated with fore-
casting the failure in a short, small diameter pipe. Hence, reduc-
tion in failures versus cost of pipe replacement, and saved capacity
of WDN versus replacement costs are some options to evaluate
the performance of a prediction model more practically (Beig
Zali et al. 2024). Another illustrative example is the work of
Robles-Velasco et al. (2020) where they considered the percentage
of failures avoidance by replacing 5% of high-risk pipes, i.e., 5%
of the pipes with the highest likelihood of failure. Such measures
not only make more sense to the engineers, but also provide de-
cision makers with a clear understanding of the effectiveness of
each approach. Some of the most commonly used metrics are in-
troduced in Appendix I. Based on their purpose, evaluation met-
rics are categorized into three distinct groups: (1) regression,
(2) classification, and (3) ranking. In each category, the metrics
are defined, and their application is discussed. This section can
serve as a guide for researchers to select the best metrics to assess
their prediction models.

Fig. 7. Stacking approach.
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Application of Tree-Based Models in Sewer Pipes
Assessment

Some of the most well-known tree-based approaches have been
employed in evaluating the pipes’ condition and predicting the fail-
ures in sewer and wastewater systems. Here, wastewater systems
are those only carry sewage, while sewer systems collect both sew-
age and stormwater. In most cases, tree-based models have been
compared with statistical and ML approaches, to identify the model
that exhibits the highest level of performance. Appendix II presents
a summary of the previous research utilizing the tree-based models
in this particular field.

Condition Assessment Using CCTV Footage

Since 2014, several studies have been conducted to forecast the
state of sewers using network data. In the majority of cases, the
necessary information for assessing the pipes has been collected
through CCTV inspections of the pipes. Tree-based classifiers, spe-
cifically the RF method, were utilized to categorize the pipes into
condition groups, often consisting of five groups. Subsequently, all
the pipes were classified into two primary categories: those in poor
condition and those in good condition. Harvey and McBean (2014)
used RF to label the sewers in the City of Guelph, Ontario, Canada.
After inspecting 123 km of the gravity pipes by CCTV, all pipes
were assigned an internal condition grade (ICG) of 1–5. Pipes’
length, diameter, age, material, slope, road coverage, land use, and
census tract, to name a few, were used to train a model to classify all
pipes into two categories of pipes with good structure (ICG of 1–3),
and those with poor structure (ICG of 4–5). The database suffered
from a class imbalance of 11%, i.e., only 11% of the data belonged
to poor structure class. However, they did not mention their ap-
proach for dealing with class imbalance issue. While the model
trained with the aforementioned data achieved an AUC of 0.81,
introducing the neighboring pipes conditions to the model in-
creased its AUC to 0.85.

Vitorino et al. (2014) applied the same approach to predict the
membership of the sewers to pre-defined condition classes (1–5).
While the sewers had been inspected by CCTV, they employed
pipes’ length, diameter, age, material, zone, condition at the pre-
vious inspection, and so on to train an RF model for predicting
the pipe’s current condition. Although they did not present the
variable importance matrix, it seems that the condition class at pre-
vious inspection feature had the strongest influence on the predic-
tive capability of the model, particularly when the pipes were
inspected on a regular basis. Wu et al. (2013) employed AdaBoost,
RF, rotation forest, and RotBoost, along with SVM and neural net-
works, as ensemble classifiers for pipe defect classification. Sewer
scanner and evaluation technology (SSET) was used, as a visual
inspection technique for sewer pipelines, to take footage from
the internal space of pipes. Using the outputs of image processing
as input variables to classifiers, RotBoost outperformed the other
classifiers in accuracy.

Rokstad and Ugarelli (2015) employed RF along with GompitZ
[which is a sewer deterioration model (Sægrov and Schilling 2002)
based on a nonhomogeneous Markov Chain model], for the clas-
sification of the individual sewer pipes (Le Gat 2008). In their re-
search, diameter, wastewater type, construction era, road traffic,
soil type, and presence of tree roots in CCTV images were used
for predicting the condition class of the pipes in the sewer system
of Oslo, Norway. The developed models were not highly predictive
due to several factors, including the lack of explicit consideration of
specific failure modes, inadequate inclusion of appropriate covari-
ates, and potential insufficiency of the model assumptions.

Myrans et al. (2018) used the CCTV frames from sewer net-
works of Wessex Water, UK, to detect the failures in sewer pipes.
A data set of 1,500 frames was manually labeled based on the
manual of sewer condition classification (WRc plc 2013). The la-
beled data set was used as the training data for RF and SVM clas-
sifiers. Image feature descriptors, such as GIST, were used as
model training inputs. While RF and SVM yielded AUC of 0.83
and 0.77, respectively, their results were combined to enhance the
results considering three approaches: take the most likely predic-
tion from the pair of classifiers, use both classifiers’ outputs as
inputs, and use stacking. Among these approaches, the weighted
stacking method led to a slightly larger AUC (¼ 0.85). Myrans
et al. (2019) used the same input data (CCTV footage) to predict
the type of detected failure in sewers. 13 failure types, including
joints, deposits, cracks, surface, roots, etc. were defined and as-
signed to each failure. The employed techniques achieved accura-
cies over 60%, indicating their merit in assisting the inspectors in
determining the fault types.

The ability of tree-based models to consider various input
variables allows them to outperform other ML algorithms, when
it comes to complex classification problems, such as learning from
CCTV footage and predicting the condition of unseen pipes.
Taking the more relevant variables and stacking the weaker algo-
rithms leads to higher prediction accuracy. Combining several clas-
sifiers makes it possible even to determine the type of failure
in sewers with reasonable accuracy (Myrans et al. 2019). Malek
Mohammadi et al. (2020) employed GBT algorithms to predict
the sewers condition through CCTV footage. Although they used
pH, sulphate content, water table, soil hydraulic group, and soil cor-
rosivity, the main predictive variables of the model were age, length,
and diameter.

Pipe Condition Assessment Using Static Data

Static data are the features of the pipes or network which do not
change (e.g., pipe material and length), or change very gradually
(e.g., pipe diameter and thickness), in a way that they can be con-
sidered constant in a case study. Soil type and installation date are
other examples of static data in a water or sewer network. Syachrani
et al. (2012) employed DT in predicting the real age of sewer pipe-
lines, which is defined as an adjusted age given the pipes’ location
and operation conditions. They calculated this factor as the mean
age of the pipes which fall in a particular cluster (leaf). MSE can
be used as the performance indicator for the prediction model; the
lower the MSE, the higher the predictive capability. Conversely,
lower MSE values in a given cluster represent the lower hetero-
geneity. They applied the DT along with a simple regression and
ANN model, in a case study of 95 km pressurized and 3,219 km
gravity sewer pipes in Kansas, US. All models used length, diam-
eter, material, slope, pipe condition value (between 1 and 5), and
problem type (e.g., debris, sludge, roots, etc.) as the input variables.
They focused on vitrified clay pipes (VCP) and PVC pipes. The
results showed that DT outperformed the other methods, in terms
of ASE, MAE, and RMSE.

Santos et al. (2017) used CART, RF, Robust Tree and Robust
Forest, NHPP, ZINHPP, and WAL models and the linear extended
Yule process (Le Gat 2013) to predict failure in individual pipes in a
sewer network in the US. Pipes’ diameter, length, age, material, and
slope were considered as input variables. To assess the prediction
capability of the models, they presented the percentage of avoided
failures as a function of the rehabilitated length (percentage).
Specifically, the analysis indicates that a small percentage of the
pipes’ length being rehabilitated can potentially result in avoiding
a significant number of failures. This is a more practical measure of
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the predictive capability, in comparison with precision, recall, ac-
curacy, F1-score, or AUC. This is because in awater/sewer network,
each pipe has its own length, diameter, cost of rehabilitation, and
consequence of failure, which should be considered rather than the
number of replaced pipes. The selected model, robust forest, was
able to capture 13% of failures by rehabilitating only 1% of the
pipes’ length.

Tavakoli et al. (2020) utilized an RF classifier to predict the pipe
condition in sewers. Diameter, length, age, material, slope, depth of
cover, age at the time of inspection, upstream and downstream el-
evations, etc. of a sewer network in Los Angeles, US, were em-
ployed as the input variables. Their best-selected model resulted
in an AUC of 0.80. Van Nguyen and Seidu (2022) selected a wide
range of regression models, including CART, RF, extra trees regres-
sion (ETR), AdaBoost, GBT, histogram-based GBT along with
Gaussian process regression (GPR), KNN, SVR, and MLPNN to
predict the sewer’s condition. Among all these models, ETR, GPR,
and RF exhibited higher accuracies, respectively.

In order to split the data set to a train set and a test set, two
methods can be utilized; (1) temporal split, i.e., training the model
with entire assets data from a part of historical failures data, and
then evaluating the model against the failures that occurred in
the remaining part of failures, and (2) random split, i.e., randomly
dividing the whole asset into two parts, one for training and the
other for testing the model. Temporal split showed better results,
in comparison with random split. It also provides the ability to
predict future failures (Santos et al. 2017).

Application of Tree-Based Models in Water Pipes
Assessment

Pipe Condition Assessment

Early failure prediction models for water pipes were developed
to assess and predict their condition. Jilong (2014) utilized the
C4.5 algorithm for the classification of water pipes into three con-
ditions/categories: unserviceable, near-perfect condition, and seri-
ous deterioration. In addition to the common variables (diameter,
age, material, pressure), distance to pump, distance to tank, and
pipe load were considered as explanatory covariates for pipe con-
dition prediction.

Shi et al. (2018) employed and RF model, besides multiple lin-
ear regression, SVM, and ANN, for pipe condition rating based on
remaining pipe thickness in CI pipes. As input variables, they used
pipes’ wall thickness; soil type; soil resistivity; soil pH; soil sulfite
content; soil moisture; and soil corrosivity, to develop a model with
more accuracy than previous ones. Based on the results, RF had the
least RMSE, while SVM reached the highest R2. Furthermore,
stacking all four algorithms led to an assessment model with better
performance than each.

Mazumder et al. (2021) employed tree-based algorithms DT,
RF, AdaBoost, XGB, LightBoost, and CatBoost along with
KNN and Naïve Bayes for categorizing steel oil and gas pipes,
based on their failure pressure, into four classes of failure proba-
bility (low, moderate, high, and severe). The models were trained
on a data set of 92 experiments from the literature to predict the
pipes’ conditions. CatBoost, XGB, and LightBoost presented the
highest accuracy (>0.84) than the others. While the study focused
on oil and gas pipelines, its relevance to WDNs lies in the similarity
of failure patterns, making it a noteworthy addition to this review.
Assad and Bouferguene (2021) used tree-based algorithms like DT,
RF, XGB and AdaBoost along with a range of other ML methods,
e.g., GLM, KNN, Deep Learning, and SVM to predict the pipe

condition score (1–10) in Waterloo, Canada. Among the utilized
approaches, XGB and RF proved highest performance in predicting
the actual condition of the pipes in test set. Pipe material, number of
previous bursts and age were shown to be the most important
attributes.

Estimating Time-to-Failure

Snider and McBean (2018) used RF, XGB, and ANN to predict the
time-to-failure for 339 km of ductile iron (DI) pipes in a North
American water utility. Cement mortar lining year, cathodic protec-
tion year, pressure, break density, number of previously recorded
failures, and break age for all previously recorded failures were used
to train the models. Tuning all three models, RF and XGB presented
considerably better RMSE and R2 values than the ANN. Snider and
McBean (2019) compared XGB (as a representative of ML algo-
rithms) with the WPH model (as a survival analysis model) in pre-
dicting the time-to-failure in a case study of a WDN in Canada with
failure records between 1960 and 2016. They concluded that the
ML model works well in short-term predictions; however, when
it comes to long-term break patterns, the model does not include
the censored events, which compromises its ability to predict
the pipe-break events. In addition to WHP and XGB, Snider and
McBean (2020) developed two more heuristic models based on
age and previous breaks in each pipe. They split the failure record
and pipe data sets into subsets to study the effect of data limitation
on predictive capability. As expected, data shortage, either temporal
or record-wise, downgraded the predictivity of the models. How-
ever, when it came to training the models with more than 5 years
of failure data and more than 2,000 pipes in the training data set,
XGB outperformed all the other approaches. Additionally, among
the algorithms tested, XGB demonstrated the highest robustness
against missing data. Snider and McBean (2021) utilized random
survival forest (RSF), a combination of RF and Weibull survival
models, for predicting the time-to-failure in the same case study.
The RSF model worked significantly better than each of the con-
stituent models.

Almheiri et al. (2020) employed ensembled decision trees
(EDT) along with ANN and l2 regression models (Tibshirani
1996) to predict the time-to-failure in gray CI, DI with/without lin-
ing, PVC, and hyprescon/concrete water pipes. Although l2 regres-
sion presented the least RMSE and MAE, and the highest R among
the three models, the authors recommended the EDT model for pre-
diction due to its simplicity, computational efficiency, and ability to
deal with both categorical and continuous variables. Yang et al.
(2020) used simple DT to predict the survival of the pipes in China.
They clustered all features into groups, in order to make the DT
training easier. However, the accuracy of their model did not exceed
8%. They found that the time passed from previous failure and
month of the year have the major impacts on the probability of fail-
ure in each pipe.

Training a model to predict time-to-failure at the pipe level
requires long-term failure data, i.e., in short-term (censored)
data tree-based models suffer from limited accuracy. Combining
tree-based models with statistical models, e.g., survival models,
covers their weaknesses and results in models with higher
concordance.

Predicting Individual Pipes Failures

Predicting pipe failure within a specific time frame has consis-
tently remained an intriguing area of interest for researchers.
Winkler et al. (2018) studied 851 km of a WDN in Austria, with
failure data since 1983. They employed DT, RF, AdaBoost,
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and RUSBoost to classify the individual pipes into either failed or
non-failed groups. This paper stands out as a notable contribution
that compares the effectiveness of tree-based models for classifi-
cation purposes. Among the four models, RF and AdaBoost dem-
onstrated the lowest false negative rate (FNR), while RUSBoost
exhibited the least false positive rate (FPR). Although all methods
showed similar Area Under Curve (AUC) values, RUSBoost
achieved the highest AUC of 0.93, demonstrating its exceptional
predictive capabilities. Leveraging an extensive historical record
of pipe failures, the study harnessed common pipe features such
as diameter, length, age, material, pressure, and pipe type, to
achieve such high prediction performance.

Chen and Guikema (2020) utilized density-based scanning
(DBSCAN) (Sander et al. 1998) spatial clustering to identify areas
with high failure rates. These data were fed to ML models such as
GLM, generalized additive models (GAM), regression trees, RF
and GBT, to enhance the prediction accuracy. Among these models,
RF yielded significantly better predictions, based on break capture
versus pipe replacement length. In addition to the common features,
they used average pressure, average flow, proximity to major roads,
soil corrosivity and frost potential, land use, and climatological
data, as explanatory features for failure prediction.

Giraldo-González and Rodríguez (2020) investigated a case
study of a WDN in Bogotá, Columbia. They utilized four different
models, GBT, Bayesian, SVM, and ANN, for a classification
task involving two types of pipe materials: PVC and AC. The ob-
jective was to determine whether the pipes would fail or not.
Based on the analysis of the predicted outcomes, the study con-
cluded that GBT and Bayesian outperformed the other models in
terms of accurately predicting failures and reducing false predic-
tions. Konstantinou and Stoianov (2020) used RF for predicting the
annual number of failures per pipe segment and for thewholeWDN,
along with time linear models, time exponential model, Poisson
GLM, and naïve Bayes algorithm. In all cases, RF delivered the
most accurate predictions, both in training and testing.

Fan et al. (2021) used LightGBM besides ANN, LR, KNN, and
SVM classification to predict pipe failure in a specific year. In ad-
dition to diameter, length, age, material, number of previous breaks,
and time-to-previous break, they utilized soil type, topographical
data, census data (population, health insurance, and poverty),
and climate data (hot/cold days). The correlation matrix of the co-
variates indicated low impact of census data, and high impact of age
and climate data on the target. LightGBM model showed the high-
est area under the ROC and PRC curves among utilized models,
which could be because of its ability to handle categorical variables
without one-hot-encoding. Liu et al. (2022) employed RF and LR
models for classifying the pipes in 1,100 km water pipes in China.
Due to the class imbalance nature of the data, different treatment
methods were implemented, such as the synthetic minority over-
sampling technique (SMOTE) (Chawla et al. 2002), oversampling,
and undersampling. In all cases, RF yielded higher accuracy, recall,
and AUC than LR. Nevertheless, the authors did not present the
precision of the models, which is a key indicator of catching true
positives among all positives. In data with imbalanced nature, in-
creasing the precision is still a great challenge, even after applying
balancing techniques.

Evaluating Failure Rate

The failure rate is often defined as the number of failures per unit
length of pipes per unit of time, for which failure=km=year is a stan-
dard unit. Therefore, the failure rate could be predicted for a group
of pipes, usually pipes in an area (e.g., a DMA), or pipes with sim-
ilar properties (e.g., material, or age). This factor gives an insight to

the operators about the vulnerability of a part of WDN. Shirzad and
Safari (2019) compared the performance of multivariate adaptive
regression splines (MARS) with RF in predicting the failure rate.
Both regression models were trained with pipes’ diameter, length,
age, installation depth, and average hydraulic pressure, for two case
study WDNs of 139 km and 579 km. In the smaller case study, RF
achieved to RMSE, MAE and R2 of 0.31, 0.05, and 0.97, respec-
tively, which indicates that it significantly outperformed theMARS,
with 0.71, 0.36, and 0.84, respectively. In the larger WDN, both
regressors worked perfectly, with RF performing slightly better.
Wols et al. (2018) employed a gradient boosting regressor for
predicting the failure rate in 97,000 km of water pipes in the
Netherlands, which is the largest data set in terms of pipe length,
in this review. They used diameter, age, material, soil type, and
regional weather data, e.g., mean daily air temperature, maximum
daily wind gust at ground level, daily precipitation amount, and po-
tential evapotranspiration (i.e., rain deficit). This is one of the few
studies that have used climate and soil settlement data as factors for
predicting the failure rate.

Aslani et al. (2021) developed RF, boosted regression trees
(BRT), MARS, and ANN, to predict the failure rate in a WDN
in Florida, US. BRT exhibited the best performance in terms of
RMSE and MAE in the test sets. They also used ICOMP, AIC,
and CAIC metrics for ranking the performance of the models.

Although most of the models have incorporated environmental
data, e.g., soil data, weather data, pipe bedding conditions, etc., into
failure prediction models, only a few have shown a high correlation
between environmental characteristics and failures. Nonetheless,
when there was such a relationship, tree-based models often out-
performed other approaches.

Probability/Likelihood of Failure

Konstantinou and Stoianov (2020) used RF and XGB besides
ANN, logistic GLM, and linear discriminant (Tsitsifli et al. 2006)
analysis to predict the probability of failure. The tree-based models
achieved an AUC of almost 1, while the best AUC for the other
models was not higher than 0.84. In addition to common pipe prop-
erties, maximum daily pressure and temperature, daily pressure,
and temperature ranges, corrosivity, fracture potential, etc. were
employed as explanatory features.

Vaags (2021) used XGB survival embedding (XGBSE)
(Loft Data Science Team 2021), random survival forest (RSF)
(Weeraddana et al. 2021), polynomial regression, CoxPH, WPH,
and neural multitask logistic regression for predicting the likeli-
hood of failure (LoF) in four utilities in Canada. They considered
diameter, length, age, material, soil type and resistivity, number of
previous breaks, pressure, rainfall, temperature, flow, pump sta-
tion proximity, water conductivity, etc., to enhance the accuracy
of predictions. In all cases, XGBSE and RSF captured a larger
number of failures compared to the other models. The capability
of the models for ranking the pipes was evaluated with C-index, in
which XGBSE and RSF reached the highest values. Dimas et al.
(2022) compared the efficiency of a DT regression model with a
KNN regression model, in three case study WDNs. Although they
used simple covariates, such as diameter, length, material, and the
main flagging (1 for main pipes, 0 for secondary/tertiary pipes),
they achieved high accuracy, particularly for DT. They did not
mention the length of available failure data for any of the case
studies.

Barton et al. (2022b) applied XGB to a UK WDN of 38,400 km
pipes to estimate the LoF and rank the pipes. They used MCC and
FNR index to select the best threshold for deciding whether a pipe
fails or not. To enhance AUC values, they utilized various sets of
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data, e.g., number of previous breaks, length, diameter, age,
material, water source, air frost, weekly soil moisture deficit and
temperature, and type, corrosivity, clay content, and shrink-swelling
potential of soil. Their proposed model achieved an AUC of 0.89,
one of the highest values in the literature.

Increasing the depth of trees in tree-based models enhances
predictivity in the training phase. However, this may lead to over-
fitting when applied to the test set. Deepening the trees in tree-
based models tends to capture more specific details from the train-
ing data, but this may not generalize effectively to unseen or test
data. Furthermore, deep trees have the ability to memorize noise
and outliers during the training phase, potentially leading to poor
performance when dealing with new data. Also, their sensitivity to
even minor variations in the training set can cause significant
changes in the trained structure of the tree, resulting in different
splits and branches for data sets with similar characteristics, ulti-
mately compromising the model’s robustness. To mitigate this is-
sue, hyperparameter tuning becomes necessary to optimize the
model’s input parameters (not variables). This allows to achieve
the best prediction performance and prevents the model from
overfitting.

Discussion and Conclusion

Tree-based models, including decision trees (DTs), bagging,
boosting, and stacking, are widely used in machine learning.
Beginning with the most straightforward approach, decision trees
offer an easily interpretable visualization of the decision-making
process. They can capture nonlinear relationships between fea-
tures and target variables, and handle both categorical and numeri-
cal data. However, decision trees have some inherent limitations,
which have paved the way for the development of improved mod-
els. One such drawback is their tendency to overfit the training
data, resulting in poor performance on unseen test data. Addition-
ally, decision trees are sensitive to small changes in the training
data, and their high variance can lead to a lack of robustness in
the model.

To address the problem of overfitting, researchers have intro-
duced a concept of combining multiple DT models, e.g., bagging,
boosting, and stacking. This approach improves the development of
the models by averaging their predictions and effectively address-
ing overfitting concerns. For instance, in the case of the bagging
strategy, using multiple models trained on different data subsets
helps reduce overfitting by decreasing the overall variance of
the model. Similarly, in boosting, the emphasis on error correction
works to decrease bias and variance, thereby resulting in reduced
overfitting. Furthermore, stacking contributes to the reduction of
overfitting by harnessing the strengths of different models and en-
suring that the final prediction is founded on a more comprehensive
and robust understanding of the data. Moreover, this approach leads
to the creation of a more stable model that is less sensitive to var-
iations in the data set, resulting in improved robustness. Addition-
ally, this technique enables the handling of data sets with a large
number of features without requiring feature selection techniques.
However, it is essential to note that the bagging strategy comes with
inevitable trade-offs. These include reduced interpretability com-
pared to a single DT model, increased computational complexity
due to the generation of multiple trees, and the necessity of more
memory resources. Nonetheless, researchers would be willing to
accept these compromises in order to leverage the benefits of bag-
ging within tree-based models.

The issue of bias toward the majority class in DT and bagging
models, particularly in imbalanced data sets, is effectively addressed

by the boosting strategy, which focuses on misclassified samples
and significantly enhances predictive capability. However, these
models also have some limitations. They can be sensitive to outliers
in the data and typically require a longer training time compared to
other methods. Moreover, an increased number of boosting itera-
tions potentially leads to overfitting, highlighting the importance
of careful hyperparameter tuning, which can be time-consuming
and demanding in these models.

As researchers strive to enhance the predictive performance
of their proposed models, the development of the stacking strat-
egy becomes a natural focus. This strategy combines the predic-
tions of multiple models, leveraging their individual strengths
and significantly improving the overall prediction capability.
Stacking allows for the utilization of diverse model types, includ-
ing tree-based models, thereby enabling flexibility in capturing
complex feature relationships. However, it is valuable to acknowl-
edge the drawbacks associated with this strategy. Implementing
and tuning stacking models require additional effort compared
to individual models. Furthermore, constructing a meta-model
within this strategy might be computationally expensive. Addi-
tionally, in a world where explainable computational intelligence
is highly valued, it is worth noting that stacking models are chal-
lenging to interpret.

In summary, the decision on which model to use for decision-
making depends on the specific needs and priorities within a given
context. For instance, DT excels at providing clear explanations
and interpretations but can be sensitive to data. Alternatively, RF,
which utilizes multiple DTs, offers robustness and predictive ac-
curacy, but presents challenges in terms of interpretation and can
be computationally intensive when large number of trees need to
be trained.

Statistical analysis of the research conducted in this domain
indicates an increase in employing of tree-based models for
failure prediction in water and sewer systems. Fig. 8(a) shows
the increasing trend since 2018, and the higher number of studies
on water systems in comparison with sewer systems. Usage of the
three most well-known tree-based models, i.e., DT, RF, and GBT
are highlighted in Fig. 8(b), underscoring the prevalence of RF
comparing with other approaches, both in water and sewer sys-
tems. Fig. 8(c) demonstrates the temporal application of the men-
tioned tree-based approaches, showing the fact that until 2018,
GBT had not been used in failure prediction of water and sewer
pipes. However, subsequent to 2018 GBT has garnered a consid-
erable share among the tree-based approaches applied in this field.
It should be noted that all figures presented here illustrate the
number of case studies utilizing tree-based models, and thus,
the summations may not necessarily be equal. Fig. 8(d) illustrates
the distribution of case studies across continents, proving that the
majority of the research has been carried out in North America
and Europe. Due to the inherent strengths of tree-based models
in working with challenging data sets, they emerge as appropriate
options to develop condition assessment models in developing
countries.

A comprehensive review of the research conducted on the
utilization of tree-based models in pipe condition assessment
and failure prediction for water and wastewater networks indi-
cates that, in the majority of cases, tree-based models outperform
common models such as ANN, SVM, Bayesian models, etc., or
achieve comparable performance. The underlying factor for this is
the capacity of these models to capture intricate patterns and non-
linear interactions. Techniques utilized in tree-based models, such
as ensemble modeling, effectively address the issues in other
methods. For instance, the boosting method iteratively fits new
trees to the residuals of the previous tree, thus reducing bias
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and enhancing the model’s performance. Moreover, compared to
other existing methodologies like ANN, tree-based models offer
the advantage of interpretability. This feature is particularly cru-
cial in engineering domains such as the prediction of failures in
water and sewer pipes. It is also important to note that tree-based
models have proven to be successful in handling missing data. By
combining bootstrap imputation with tree-based machine learning
variable selection methods, these models can deliver strong per-
formance even when some covariate and outcome data are miss-
ing at random. It should also be emphasized that, if the main
priority is speed of training and interpretability of model, tree-
based models are generally faster and more straightforward to
implement.

By applying tree-based models in various case study WDNs and
sewer networks, they have demonstrated their merit in accurately
predicting failure rates, number of failures, binary failures, likeli-
hood of failure, time-to-failure, and even training models based on
CCTV images. These numerous advantages have encouraged re-
searchers to adopt them increasingly. Moreover, their successful
application in other fields of science has been a driving force
for computer science researchers to evolve and enhance these mod-
els on a daily basis, continuously.

Pipe failure is a complex phenomenon influenced by many fac-
tors. While feature selection is a common approach in failure pre-
diction, tree-based models offer asset managers the flexibility to
include a wide array of features, thereby enhancing prediction capa-
bilities significantly. The most common features used in the liter-
ature are diameter, length, age, and material. Other factors such as
pressure data, inspection data, weather/climate data, soil data, road
and traffic data, census data, etc., have been utilized by some re-
searchers where available.

Among the studied papers, RF emerged as the most frequently
used model, mainly due to its widespread availability in various
programming languages, making it easily applicable. Another
advantage of RF is its inherent ability to generate different trees
in parallel, providing an excellent opportunity to leverage par-
allel computing and reduce the computational time significantly.
However, it is worth mentioning that implementing parallel or
distributed computing, although beneficial, may pose challenges
and require careful consideration in the context of model deploy-
ment. Although ensemble models are often considered as black
boxes, they represent evolved tree-based models that offer re-
markable benefits, particularly in terms of superior predictive
accuracy.

By examining the case studies investigated in the literature, it
has been demonstrated that incorporating extensive historical fail-
ure data enhances the correlation between input variables and the
target output. This, in turn, aids prediction models in capturing the
underlying trends and relationships between input features and tar-
get values more effectively. In addition, the significance of having
richer failure data outweighs the mere presence of longer networks
with a greater number of assets.

The literature reveals a prevalent presence of tree-based models,
although they have not been extensively utilized for pipe failure
prediction and condition assessment. These models are rapidly
advancing, not only within the water/wastewater field but also
in various other fields like computer science and medical sciences.
Therefore, conducting a comprehensive scientific review to explore
the potential use of alternative models, e.g., CRF and stacking mod-
els that have not been applied in the water industry, yet holds con-
siderable promise.
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A wide range of metrics were employed in the literature for
evaluating the prediction models. The selection of the evaluation
metrics requires careful consideration, taking into account the mod-
el’s purpose and output data. While convenient data science metrics
exist for problems with elements having identical values for pre-
diction, sewer and water networks involve pipes with individual
values in terms of rehabilitation cost and consequences of failure.
For example, correctly predicting failure in a low-diameter pipe that
serves only a few customers differs significantly from predicting
failure in a large-diameter main. Although researchers have pro-
posed novel ways for evaluating models, such as failure capture
versus pipe replacement length, there is a need for further develop-
ment in this area of study. Advancing evaluation methodologies
will lead to more accurate and relevant assessments of prediction
models in the context of sewer and water networks.

One avenue for future research could focus on enhancing the
interpretability of tree-based models to provide deeper insights
into the reasons behind specific predictions and to gain greater
trust in these models. Given the ongoing progress in data collec-
tion within the water sector, these models could incorporate data
from a variety of sources, including IoT devices like sensors, to
improve predictive capability. Tree-based models can also be ex-
tended to handle diverse data types, such as time series, geospatial
data, and images. Furthermore, there is a potential for developing
models that can adapt to changing conditions and continually
monitor water and sewer pipes, ensuring that tree-based models
remain up-to-date with evolving data. Another promising area
of research involves the integration of tree-based models with deep
learning models, to create hybrid models capable of capturing
complex relationships in data. For instance, deep learning could
be employed for feature extraction, and tree-based models could
effectively handle these derived features. In addition, there is room
for advancement in ensemble techniques like stacking, which can
enhance predictive accuracy by combining various tree-based
models. Finally, it is worth noting that data sets related to pipe
failures often exhibit class imbalance, with more instances of non-
failure cases than failure. Future models could explore techniques
to address this imbalanceness, such as data augmentation or spe-
cialized sampling methods.

Appendix I. Evaluation Metrics for Prediction Models

All evaluation metrics are categorized into three major groups,
based on their purpose, i.e., metrics for (1) regression, (2) classifi-
cation, and (3) ranking (Fig. 9).

Evaluation Metrics in Regression Models

Mean squared error (MSE) measures the average squared differ-
ence between the predicted and actual values (Wallach and
Goffinet 1989). The formula can be expressed as

MSE ¼
P ðy − y⌢Þ2

n
ð4Þ

where n = total number of data points; and y and y⌢ = represent-
atives of actual and predicted values, respectively.

Coefficient of determination (CoD), also known as R-squared
(R2), is a widely-used metric in assessing regression models and
shows how good the regression model fits by showing it in a range
of 0 (poor correlation) to 1 (perfect correlation) (Gelman et al.
2019). The equation of this metric is as follows:

CoD ¼ R2 ¼
P ðy − y⌢Þ2P ðy − ȳÞ2 ð5Þ

where ȳ is the mean of dependent variable.
Root mean squared error (RMSE) quantifies the average mag-

nitude of prediction errors or residuals between the predicted and
actual values (Chai and Draxler 2014). As RMSE squares the error,
this metric is sensitive to outliers. The equation for this metric is as
follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðy − y⌢Þ2

n

s
ð6Þ

Mean absolute error (MAE) is a metric for measuring the aver-
age difference between actual and predicted values by calculating

Fig. 9. Evaluation metrics for failure prediction models.
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the absolute difference between these values (Chai and Draxler
2014). The formula for this metric is as follows:

MAE ¼
P jy − y⌢j

n
ð7Þ

Evaluation Metrics in Classification Models

Confusion matrix is a well-known table, widely used for evaluating
the performance of classification models by comparing the number
of predicted values to the actual values (Marom et al. 2010). It com-
prises four key values, as outlined as follows:

True Positive (TP): Representing number of correctly predicted
positive values.

False Positive (FP): Representing number of incorrectly predicted
positive values.

True Negative (TN): Representing number of correctly predicted
negative values.

False Negative (FN): Representing number of incorrectly pre-
dicted negative values.

These four values used to calculate various performance metrics.
Precision measures the proportion of correctly predicted positive
instances out of all instances that were predicted as positive

Precision ¼ TP
ðTPþ FPÞ ð8Þ

Recall measures the proportion of correctly predicted positive
instances out of all actual positive instances

Recall ¼ TP
ðTPþ FNÞ ð9Þ

Accuracy provides an assessment of how well the model per-
forms in terms of correctly classifying instances

Accuracy ¼ ðTPþ TNÞ
ðTPþ TN þ FPþ FNÞ ð10Þ

Specificity also measures the proportion of correctly predicted
negative values out of all actual negative instances

Specificity ¼ TN
ðTN þ FPÞ ð11Þ

F1-Score is a common metric, because of getting a harmonic
average of both precision and recall providing a balanced measure
of the models’ performance

F1-Score ¼ 2 ×
ðPrecision × RecallÞ
ðPrecision þ RecallÞ ð12Þ

Matthews correlation coefficient (MCC) is a metric that utilizes
the four key values of the confusion matrix to provide a score
ranging from −1 to 1. A score of 1 indicates a perfect model, 0
represents a random prediction, and −1 signifies a complete dis-
agreement between the predicted and actual values (Chicco and
Jurman 2020):

MCC¼ ðTP×TN−FP×FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþFPÞ× ðTPþFNÞ× ðTNþFPÞ× ðTNþFNÞp
ð13Þ

Brier score is defined as the mean squared difference between
predicted probabilities and the actual values, in which lower scores
indicate better predictability (Rufibach 2010)

Brier ¼
P ðy − pÞ2

n
ð14Þ

where n = total number of instances in data; y = actual binary value
of 0 and 1; and p = predicted probability of positive class.

Out-of-bag score (OOB) is a metric which estimates the model’s
predictability on unseen data, derived from instances that were not
used for training in each tree of ensemble models utilizing bagging
strategy as RF (Fauzi 2018):

OOB ¼
P ðIðyi ≠ y⌢iÞÞ

n
ð15Þ

where yi = actual known outcome of the ith instance; y⌢i = predicted
outcome of the ith instance using the trees that did not include it in
their training subset; and I = indicator function which returns 1 if
the condition is true and 0 if false.

Area under the receiver operating characteristic curve (AUC-
ROC) is a widely used evaluation metric for classification tasks.
It assesses the performance of a classifier by measuring the true
positive rate (TPR) and false positive rate (FPR) at various classi-
fication thresholds, and subsequently calculates the area under the
curve. Its value is within range of 0 to 1, where 0.5 indicates a
random selection and the higher the values, the stronger the clas-
sification (Huang et al. 2014).

Evaluation Metrics for Ranking

Concordance index (C-index) evaluates the accuracy and ranking
ability of a model in distinguishing between relevant and non-
relevant cases. It qualifies the degree of concordance and ranges
between 0.5 and 1, in which C-index of 1 signifies the perfect con-
cordance (Brentnall and Cuzick 2018).

Akaike information criterion (AIC) is a criterion for model se-
lection and comparison which considers both models explanation
ability and also the used number of parameters (Bozdogan 2000;
Wagenmakers and Farrell 2004). The equation for calculation AIC
is as follows:

AIC ¼ 2k − 2 lnðLÞ ð16Þ
where k = number of parameters of model; and L = maximum like-
lihood estimate of the likelihood function of the model.

In addition to AIC, there are other criteria, such as information
complexity (ICOMP) and consistent Akaike criterion (CAIC), that
are employed for ranking the likelihoods obtained from models
(Bozdogan 2009; Mohebbi et al. 2019).

The Conover-Iman test, a nonparametric test, utilizes the ranks
of observations to determine a test statistic that quantifies the differ-
ences in the central tendency (location parameter) among various
groups being compared (Iman and Conover 1982). The Kendall
Tau rank correlation distance serves as a metric for quantifying
the dissimilarity between two rankings. It offers insight into the ex-
tent of differences between the rankings. The Kendall Tau ranking
ranges from 0 to 1, where a value of 0 signifies identical rankings,
while a value of 1 represents the highest degree of disagreement
between the rankings (Kendall 1938).
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Appendix II. Summary of the Literature Review

Reference
Clean water/
wastewater Objective Main variables

Performance
measure

Tree-based
method(s) Case studies

Length of
WDN (km)

Failure data
availability

(year) Material

Syachrani et al.
(2012)

Wastewater Real age L; D; material; slope; pipe
condition; problem type; etc.

MSE, MAE,
RMSE

DT Kansas, US 95 (pressurized)
+ 3219 (gravity)

Not mentioned VCP, PVC

Harvey and
McBean (2014)

Wastewater Individual pipe
conditions (2
categories)

L; D; age; material; slope;
road coverage; watermain breaks;
land use; census tract; etc.

AUC, Youden
(1950) J index

RF City of Guelph,
Ontario, Canada

123 (gravity) N/A PVC, VCP,
CP, AC, RC

Jilong (2014) Water Individual pipe
conditions (3
categories)

D; age; material; pressure;
distance to pump; distance to
tank; load

AUC C4.5 Not mentioned Not mentioned Not mentioned DI, CI, CP

Vitorino et al.
(2014)

Wastewater Pipe condition L; D; age; material; zone;
previous inspection; age at
previous inspection

— RF — — — DI, PVC, VCP,
RPM, RCP

Rokstad and
Ugarelli (2015)

Wastewater Condition class (5
categories)

D; effluent type; construction era;
road traffic; type of bedding soil;
presence of trees

— RF Oslo municipality,
Norway

499 2002–2012 CP, other

Wu et al. (2013) Wastewater Defect types Image processing features Correct
classification rate
(%), Recognition
accuracy (%)

AdaBoost, RF,
rotation forest,
RotBoost

— — — —

Santos et al.
(2017)

Wastewater Blockage failure for
individual pipes

D; L; age; material; slope % of avoided
failures

DT, CART, RF,
robust DT, robust
forest

A sewer network in
US

3,803 January 2012–
May 2013

PVC, DI, VCP,
RPM

Myrans et al.
(2018)

Wastewater Pipe condition
(Fault/normal)

GIST descriptor Accuracy, FPR,
AUC

RF Wessex Water, UK 5.5 — Brick, vitrified
clay and
concrete

Shi et al. (2018) Water Remaining wall
thickness rating

Wall thickness; soil type; soil
resistivity; soil pH; soil sulfite
content; soil moisture; soil
corrosivity

RMSE, R2 RF (ensembled with
other ML methods)

City of Toronto Not mentioned January 1998–
October 1999

CI

Snider and
McBean (2018)

Water Time-to-failure for
individual pipes

D; L; age; material; cement
mortar lining year; cathodic
protection year; pressure, break
density, number of previously
recorded failures, and break age
for all previously recorded
failures

RMSE, R RF, XGB A North American
water utility

339 1960–2017 DI

Winkler et al.
(2018)

Water Failure/non-failure
in pipe level

D; L; age; material; pressure; pipe
type; etc.

AUC DT, RF, AdaBoost,
RUSBoost

A city in Austria 851 1983 PE, ST, PVC,
DI, AC

Myrans et al.
(2019)

Wastewater Type of a detected
fault

GIST descriptor — RF Wessex Water, UK 30 — Vitrified clay,
PVC and brick
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Appendix II. (Continued.)

Reference
Clean water/
wastewater Objective Main variables

Performance
measure

Tree-based
method(s) Case studies

Length of
WDN (km)

Failure data
availability

(year) Material

Shirzad and
Safari (2019)

Water Failure rate for
classes of pipes

D; L; age; installation depth;
average hydraulic pressure

RMSE, MAE, R2 RF Mahabad city and
Mashhad city, Iran

139 and 579 (for
each case study)

1 year PE and AC
(for each case
study)

Wols et al.
(2018)

Water Failure rate
(#=km=year)

D; age; material; soil type;
regional weather data

R2 GB regression Netherlands 97,667 January 2009–
December 2014

AC, GCI, DI,
PVC, ST

Almheiri et al.
(2020)

Water Time to failure for
individual pipes

D; L; age; material RMSE, MAE, R2 EDT Sainte-Foy,
Quebec

432 1986–2001 Grey CI, DI
with/without
lining, PVC,
and hyprescon/
concrete

Chen and
Guikema (2020)

Water Failure/non-failure
in pipe level

D; L; age; material; average
pressure; average flow; road
proximity; soil corrosivity and
frost potential; climatological
data

Break capture
versus length
capture

DT, RF, GBT
(+DBSCAN)

A WDN in
Midwest US

681 2008–2017 CI, other

Giraldo-
González and
Rodríguez
(2020)

Water Failure/non-failure
in pipe level

D; L; age; material; soil
properties (contraction and
expansion potential, moisture
content); precipitation; land use;
number of valves and hydrants
connected to the pipe

Precision, recall,
f-score, AUC

GBT AWDN in Bogotá,
Colombia

1,819 2012–2018 PVC, AC

Gorenstein et al.
(2020)

Water Ranking of pipe
segments

L; age; material; etc. RMSE, Conover,
Kendall’s Tau

RF Mekorot Company,
Israel

Not mentioned June 2016–
December 2019

Not mentioned

Konstantinou
and Stoianov
(2020)

Water Annual number of
failures in pipe
segment and WDN
level, probability of
failure

D; L; age; material; maximum
daily pressure and temperature;
daily pressure and temperature
range; corrosivity; fracture
potential; etc.

AUC RF, XGB Not mentioned 374 2003–2016 —

Malek
Mohammadi
et al. (2020)

Wastewater Pipe conditions
(good/ critical)

D; L; age, material, flow rate,
pipe depth, slope, soil type, pH,
sulfate content, water table, soil
hydraulic group, and soil
corrosivity

ROC, confusion
matrix

GBT City of Tampa,
Florida

2,900 N/A —

Snider and
McBean (2019)

Water Time-to-next break
for individual pipes

D; L; age; material; soil type;
cement mortar lining year;
cathodic protection year

RMSE, MAE, R,
C-index

XGB AWDN in Canada 5,136 1960–2016 CI

Snider and
McBean (2020)

Water Time-to-next break
for individual pipes

— C-index XGB AWDN in Canada — 1960–2016 CI
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Appendix II. (Continued.)

Reference
Clean water/
wastewater Objective Main variables

Performance
measure

Tree-based
method(s) Case studies

Length of
WDN (km)

Failure data
availability

(year) Material

Tavakoli et al.
(2020)

Wastewater Pipe condition D; L; age; material; slope; depth
of cover; age at the time of
inspection; up/down elevation

Precision, recall,
f1-score, AUC

RF City of Los
Angeles, US

— N/A VCP, AC,
PVC, ST, CI,
DI, etc.

Yang et al.
(2020)

Water Survival time of the
pipes

Information of surrounding
buildings; pipes lifetime; road
width

Precision, ratio of
risk

DT Beijing, China Not mentioned January 2013–
December 2016

Not mentioned

Amini (2021) Water Probability of
failure, age at first
failure, current rate
of failure

— — RF, XGB Thirteen Canadian
water utilities,
including Barrie,
Calgary, Halifax,
etc.

— — CI, PVC, DI,
AC, etc.

Aslani et al.
(2021)

Water Failure rate for
pipes, pipe
replacement ranking

D; L; age; material; available land
and water; total precipitation;
average temperature

RMSE, MAE,
AIC, ICOMP,
CAIC

RF, BRT City of Tampa,
Florida

Not mentioned 2015–2020 DI, CI,
Galvanised
Iron, PVC

Mazumder et al.
(2021)

Oil and gas Categorizing the
pipes based on their
failure pressure, into
low, moderate, high
and severe classes

D; wall thickness, defect depth;
defect length; yield stress;
ultimate tensile test; operating
pressure

Precision, recall,
accuracy

DT, RF, AdaBoost,
XGBoost,
LightBoost,
CatBoost

92 experimental
test results for oil
and gas pipelines,
from literature

— — ST

Snider and
McBean (2021)

Water Time-to-next-break D; L; age; material; pressure; soil
type; cement mortar lining year;
cathodic protection; age of pipes
at 1st, 2nd, and 3rd last break

C-index, MAE Random Survival
Forest

A large water
utility located in
Canada

Not mentioned þ60 CI, DI, AC,
PVC

Vaags (2021) Water LoF D; L; age; material; soil type and
resistivity; number of previous
breaks; pressure; rainfall;
temperature; flow; pump station
proximity; water conductivity;
etc.

RMSE, R2,
C-index

XGB Survival
Embedding,
Random Survival
Forest

4 Utilities in
Canada

4,528, 1,570,
486, 1,473

64, 10, 45, 28 PVC, DI, CI,
AC, ST

Weeraddana
et al. (2021)

Water Failed/ not failed
pipes

D; L; age; number of previous
breaks; type

AUC Random Survival
Forest

Three major
Australian states:
VIC, NSW and
QLD

— 2000–2017
(VIC & NSW),
2013–2017
(QLD)

AC, CI, DI,
PE, PVC, etc.

Assad and
Bouferguene
(2021)

Water Pipe condition D; L; age; material; number of
previous breaks; annual average
daily traffic; shallow main (Y=N)

MAE, MAPE,
RMSE, R

DT, RF, XGB,
AdaBoost

Waterloo, Canada 450 — PVC, DI, CI
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Appendix II. (Continued.)

Reference
Clean water/
wastewater Objective Main variables

Performance
measure

Tree-based
method(s) Case studies

Length of
WDN (km)

Failure data
availability

(year) Material

Barton et al.
(2022b)

Water Probability of pipe
failure

Number of previous breaks; L; D;
age; material; water source; air
frost; weekly soil moisture deficit
and temperature; type,
corrosivity, clay content, and
shrink-swelling potential of soil

AUC, briers score,
Mathews
Correlation
Coefficient

XGB A UK WDN 38,400 2015–2018 PE, Iron, AC,
PVC, ST, DI

Dimas et al.
(2022)

Water Probability of pipe
failure

D; L; material; the main flagging
(1 for main pipes, 0 for
secondary/ tertiary pipes)

AUC DT Mourati zone,
Greece; C-Town

Not mentioned Not mentioned Grey CI, seam
ST, AC

Fan et al. (2021) Water Failed/ not failed
pipes in a certain
year

D; L; age; material; number of
previous breaks; time-to-previous
break; soil type; topographical
data; census data; climate data

Precision, recall,
accuracy, AUC

LightGBM Cuyahoga County,
Cleveland, US

8,500 Not mentioned CI, DI, other

Liu et al. (2022) Water Failed/ not failed
pipes in a certain
year

D; L; age; material; qualification
of construction enterprises,
bridge pipe or not, road class,
failure record

Accuracy, recall,
specificity, AUC,
out of bag score

RF AWDN in Suzhou,
China

1,107 Not mentioned DI, CI, ST, PE,
prestressed
concrete
cylinder pipe

Liu et al. (2022) Oil Failed/ not failed
pipes

D; thickness; depth; slope;
welding date, process, and
company; max pressure;

Precision, recall,
accuracy, AUC

XGB — — — —

Gioele (2022) Water — D; L; age; material; average
pressure

— RF City of Manresa,
Spain

— 2005–2019 —

Robles-Velasco
et al. (2020)

Water — — — — — — — —

Van Nguyen and
Seidu (2022)

Wastewater Pipe condition D; L; age; material; slope; depth;
rainfall, traffic; population; soil
type; pipe type; groundwater; etc.

RMSE, MAE, R2 CART, RF, Extra
Trees Regression,
AdaBoost, GBT,
Histogram-Based
GBT

Oslo, Norway 703 — PE, PVC,
concrete, other

Abokifa and
Sela (2023)

Water Failure rate of
sectors in WDN

D; L; age; fraction of materials by
pipe length in each zone

RMSE, MAE RF A large
metropolitan water
utility in the US

8,625 September
2016–2019

CI, PVC, DI,
AC

Beig Zali et al.
(2024)

Water Likelihood of
Failure in individual
pipes

D; L; age; material; pressure; soil
type

Precision, recall;
AUC; 2 new
measures

RF, XGB A water utility in
the UK

32,800 2 AC, CI, PVC,
PE

Robles-Velasco
et al. (2020)

Water Failed/ not failed
pipes in future

D; L; age; material; connections;
mean and fluctuations of
pressure; number of previous
failures; time since last failure;
soil type

Accuracy, recall,
specificity,

RF Seville, Spain 3,800 2012–2018 DI, CI, AC,
PE, concrete,
AC
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