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Abstract: The paper introduces a generic deep learning–based method using a sliding window computing algorithm based on long short-
term memory (LSTM) networks for the classification of potential anomalies (e.g., cracks, potholes, bumps, and uneven surfaces) in support of
the development of an instrumented bike. The instrumented bike provides a real-time platform to sense, store, transmit, and analyze cycling
information through a sensor logger, smartphone, and the proposed LSTM-based sliding window computing algorithm. The paper is to ad-
dress concerns with respect to existing factors such as weight of cyclists, speeds, types of bikes, and threshold setting that have an impact on
the accuracy of identification of potential anomalies during instrumented cycling activities. The LSTM-based sliding window computing al-
gorithm is designed in a way that it analyzes and localizes anomalies without any human-controlled supervision (threshold setting) while
achieving human-level perception. Two bike routes were selected to validate the effectiveness of the sliding window computing algorithm
in the identification of anomalies involving four cyclists. Based on the computing results from the two field tests, the numbers of distressed
pavement areas from the four cyclists were 53, 51, 46, and 48, respectively. The follow-up p-value of ANOVA test result is 0.98, indicating
the difference in detected anomalies among the four cyclists is not significant. Therefore, the paper concludes that the LSTM-based sliding
window computing algorithm has the ability to effectively detect anomalies of cycling trails and it also provides an effective and efficient
technique to replace the human-made threshold setting in support of the development of instrumented bikes and promote cycling as a
daily mode of transportation. DOI: 10.1061/AOMJAH.AOENG-0025. This work is made available under the terms of the Creative Com-
mons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Author keywords: Instrumented bike; Deep learning; Unsupervised learning; Anomaly detection; Long short-term memory (LSTM)-based
sliding window algorithm.

Introduction

The market for connected vehicles has been growing dramatically
in recent years, with the global market expected to reach $225.16
billion by 2027 (AMR 2021). However, as a part of intelligent trans-
portation systems, the use of geospatial and remote sensing in cy-
cling mobility has yet to receive significant attention, likely due to
limited efforts in manufacturing instrumented bikes or smart bikes
to promote cycling mobility and reduce greenhouse gas emissions.
Particularly, during crises such as the coronavirus disease 2019
(COVID-19) pandemic, an activity like cycling can decrease expo-
sure to others on public transport, reduce air pollution, and promote

improved health andwell-being.When cycling on bike facilities, the
roadway surface structure plays an important role in bike ride qual-
ity; pavement surfaces with anomalies (i.e., potholes, uneven sur-
face, cracks, bumps, etc.) could reduce the quality of bike trails,
increase the risk of accidents, and decrease the cycling safety.
With the continued growth in cycling activity and infrastructure
throughout the United States, the question of how to obtain real-time
information on cycling facilities that would help better maintain the
quality of these facilities and provide a safe environment for cyclists
has become a concern among city, county, and state engineers. The
use of sensors/accelerometers attached to bikes has been investi-
gated by numerous researchers to study cyclist behavior, monitor cy-
cling motion, and measure the force of pedaling (ECF 2021a, b;
Leitner et al. 2014; Liu et al. 2015; Pedotti et al. 2016; Pigatto
et al. 2016). However, this technology presents an untapped poten-
tial to assess cycling facility surface conditions. There is an urgent
need to meet increasing demands for cyclist safety to motivate in-
creased activity. Hence, it is believed that the interactive behavior
of cyclists plays an important role in bringing together improved
bike mobility and community engagement. An instrument bike has
been developed by Ho et al. (2021, 2019) and Qiu et al. (2018).
The instrumented bike is equippedwith a sensor logger and amobile
application, and it aims at providing a tool that can be taken into ac-
count for detecting anomalies on bike trails/routes as well as sharing
real-time information with cyclists around them. However, the pre-
viously developed threshold setting used to identify potential anom-
alies has raised concerns that need to be addressed. For example,
some argue that existing factors such as the weight of cyclists,
speeds, tire pressures, types of bikes, and threshold setting have an
impact on the accuracy of identification of potential anomalies dur-
ing cycling activities. In the past, threshold values to detect
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anomalies needed to be adjusted in the data analysis process to obtain
better prediction results. However, based on our experience, this
human-made setting is time-consuming and inefficient for anomaly
detection. To address the issues, this paper is presented to develop an
advanced computing method using a generic deep learning–based
computing algorithm to: (1) replace the current human-made thresh-
old setting; and (2) provide a better and more accurate computing
method for anomaly identification on bike trails/routes.

The structure of the paper is arranged using the following flow-
chart (Fig. 1).

Development of Computing Algorithm: A Generic
Deep Learning Approach

This section presents a methodology using a deep learning comput-
ing algorithm to process, analyze, and detect anomalies on bike
trails/routes.

Literature Review and Motivation

The instrumented bike (Ho et al. 2019, 2021; Qiu et al. 2018) pro-
vides a reliable framework to sense, transmit, and store acceleration
information on various bike routes. The variation of acceleration in
three-axes can physically encode the intrinsic features of anomalies
(e.g., cracks and potholes): the acceleration will change dramati-
cally in either axis when cracks/potholes are encountered. How-
ever, taking advantage of those collected acceleration data to
detect and localize anomalies becomes inherently intractable. Pre-
viously, the window-interpolation method proposed by Qiu et al.
(2018) was used to detect anomalies by dividing the data into
many nonoverlapping chunks and then determining the difference
between maximum and minimum accelerations within one win-
dow. However, as previously mentioned, the handcrafted threshold
varies dramatically in different scenarios. Even though different
thresholds can be tested out in different scenarios, it is practically
infeasible to handcraft thresholds in every single event. This
method even fails in some cases where: (1) two adjacent anomalies
are very close; (2) the anomalies are very small; and (3) the speed is
so fast that it is beyond the sampling frequency. This is because this
method only works for a limited sampling frequency (around

50 Hz), while the accelerometer is capable of a higher sampling fre-
quency (around 200 Hz), resulting in the sparsity of samples within
a given time slot.

Recently, the advances in many machine learning techniques
have enabled us to take advantage of the huge amount of data to
uncover the hidden pattern within a sequence of acceleration
data. The majority of them (Lu et al. 2014; Zhao et al. 2018; Pienaar
and Malekian 2019; Hammerla et al. 2016; Abbaspour et al. 2020)
however need annotated data to train a classifier in a supervised set-
ting to identify whether a subsequence of the acceleration data con-
tains anomalies. In practice, it is laborious to manually label the
anomaly patterns within a sequence of acceleration data. In addi-
tion, human bias may also be introduced during labeling, as manual
annotation is equivalent to perceptually identifying the anomalies.
Furthermore, many classical powerful machine learning methods
(e.g., support vector machine, random forest) still need to handcraft
features and generally fail to capture the long-range time dependen-
cies between data points. Anomalies are jointly encoded by a small
subsequence of acceleration in a specific order within a certain time
slot. For example, the acceleration in the Z-axis first goes up and
then goes down for any anomalies or vice versa. Therefore, a ge-
neric method is desired to detect and localize anomalies while min-
imizing the impact of variations in physical conditions such as
speeds, sampling frequency, weather, and different bikes. Recently,
recurrent neural networks (RNNs)-based methods have been
widely used to process acceleration data in human activity recogni-
tion tasks (Zhao et al. 2018; Pienaar and Malekian 2019; Hammerla
et al. 2016; Abbaspour et al. 2020). The RNNs have the capability
of capturing the dependencies of data concerning time, which rep-
resents the acceleration data in a probabilistic way over time. How-
ever, the RNN-based methods are trained in a supervised way
(Zhao et al. 2018; Pienaar and Malekian 2019; Hammerla et al.
2016; Abbaspour et al. 2020) that inputs an acceleration sequence
and outputs a label indicating the classification category (e.g.,
cracks or noncracks). However, the process of annotating acceler-
ation data is time-consuming and inefficient. To tackle the lack
of annotated data, the team built on the concept of another family
of machine learning techniques—unsupervised representation
learning (Malhotra et al. 2016). The idea is that instead of learn-
ing the direct mapping from acceleration sequence to anomaly
label, the algorithm learns the representation of normal bike
routes on anomaly-free areas. The whole idea was implemented

Fig. 1. Project flowchart.
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Table 1. Summary of literature review results

Author (year) Type of research Sensors used Research purpose Results

Abbaspour
et al. (2020)

Comparative analysis
of hybrid deep learning

models

Wearable sensors (gyroscopes,
accelerometers, IMU sensors),

ambient sensors (cameras, GPSs,
PIRs), smartphone sensors

Investigate the effectiveness of CNNs integrated
with RNNs in recognizing human activities

The study applied four hybrid deep learning models for human activity
recognition (HAR), integrating CNNs with various RNNs. The results
showed high accuracy, surpassing that of individual CNNs or RNNs.

Bengio et al.
(2013)

Theoretical review on
representation learning

Not applicable Review recent work in unsupervised feature
learning and deep learning

The study explored contractive autoencoders in representation of learning,
showing the effectiveness in estimating tangent vectors to high-density
manifolds, and allowing for the demonstration of plausible additive

deformations of inputs.
Hammerla
et al. (2016)

Empirical study on
HAR using wearables

Wearable sensors (accelerometers,
IMUs)

Explore deep learning approaches for HAR The authors explored the performance of state-of-the-art deep learning
approaches for HAR 1538 using wearable sensors. The paper also
indicated that DNNs are very sensitive to their hyperparameters and

require a significant investment into parameter exploration.
Lu et al.
(2014)

Review on connected
vehicle technologies

Various sensors in connected
vehicles

Review CV technologies, challenges, and
opportunities

The authors highlighted the challenge of obtaining accurately labeled data
that has an impact on the effective training of machine learning models to
identify irregularities in vehicle behaviors. The research underscored the
dependency on high-quality, annotated data sets for developing robust and
reliable anomaly-detection systems in the context of vehicle connectivity.
The paper suggested a future direction toward enhancing data annotation
methods and exploring more sophisticated machine learning techniques
that can adapt to the complexities of acceleration data, thereby improving

the accuracy and efficiency of anomaly detection.
Pienaar and
Malekian
(2019)

Empirical study on
HAR using
LSTM-RNN

Raw sensor data from WISDM data
set

Model and train LSTM-RNN for HAR Bidirectional LSTMs were found to outperform the current state-of-the-art
models on the data set. In addition, RNNs excelled in activities with a

natural order and shorter duration, whereas CNNs were recommended for
prolonged, repetitive activities like walking or running. Moreover, while
regular DNNs require extensive parameter exploration, more sophisticated
models like CNNs and RNNs could show a smaller spread in performance,

suggesting ease in finding effective configurations.
Srivastava
et al. (2015)

Unsupervised learning
of video representations

using LSTMs

Video sequences Explore LSTM networks to learn video
representations

The study involved training models on data sets of moving Modified
National Institute of Standards and Technology (MNIST) digits and

natural image patches to learn video representations in an unsupervised
manner using LSTM-based models. The author improved classification

accuracy, especially with few training examples. The experiments
showcased the LSTM’s ability to learn meaningful representations from
video sequences and improved predictions in action recognition tasks.

Zhao et al.
(2018)

Applied Research in
Deep Learning for HAR

Accelerometers, gyroscopes, etc. To propose a deep network architecture using
residual bidirectional LSTM to address HAR

problems, aiming to improve recognition rates by
capturing temporal dependencies and preventing

gradient vanishing

The study introduced the Res-Bidir-LSTM framework for HAR,
enhancing learning speed and accuracy through residual and bidirectional
connections. Experiments showed a 4.8% accuracy improvement for the
UCI data set and a 3.7% increase in F1 score for the opportunity data set.
Key findings included the significance of window size (500‒5,000 ms) for
optimal information processing and the necessity of tailoring network

architecture and hyperparameters to data set complexity, with cell number
adjustments based on feature and label richness.

Note: CNNs= convolutional neural networks; CV= connected vehicles; DL= deep learning; DNN= deep neural network; GPSs= global positioning systems; HAR= human activity recognition; IMU= inertial
measurement unit; LSTM= long short-term memory; LSTM-RNN= long short-term memory recurrent neural network; PIRs= passive infrared sensors; Res-Bidir-LSTM= deep residual bidirectional long
short-term memory; RNNs= recurrent neural networks; and WISDM=wireless sensor data mining.
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as an RNN-based autoencoder neural network (Srivastava et al.
2015; Bengio et al. 2013). During inference, the anomalies can
be detected as their patterns are different from those from
anomaly-free regions. Conversely, when several cyclists travel
on the same bike trails, regardless of their speeds and bikes,
all patterns and signals from anomaly regions will be registered
and recorded for analysis. In this regard, the team takes advan-
tage of the sliding window technique associated with long short-
term memory (LSTM) architecture to localize anomalies (i.e.,
cracks/potholes) to map them to corresponding location
coordinates.

Table 1 summarizes the results of all literature reviews regard-
ing the types of research conducted, the number of sensors used,
research purposes, and their results.

Thus, in this paper, the team presents an automated and system-
atic approach to detect and localize anomalies without human
supervision. The whole framework is illustrated in Fig. 2. The ob-
jectives of the proposed computing method are as follows:
1. Designing an LSTM-based autoencoder neural network to clas-

sify anomalies (i.e., cracks/potholes).
2. Incorporating sliding windows with neural networks to localize

anomalies (i.e., cracks/potholes) and output candidates.

Fig. 2. Whole framework including preprocessing, sliding window, LSTM-autoencoder neural network, postprocessing.

Sensor logger
Mobile app: Motion Tracking

Fig. 3. Instrumented bicycle setup.
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3. Efficient implementation for the combined sliding window tech-
nique and neural network inference (LSTM-based sliding win-
dow computing algorithm).

4. Postprocessing strategies to aggregate the anomaly candidates.

Background of an Instrumented Bike

The technique of using accelerometers to monitor and track road
conditions has been broadly used through a variety of applications
in the vehicular and cycling communities. In early 2018, the team
embarked on the development of an instrumented bike with a goal
to detect potential anomalies (cracks, potholes, bumps, etc.) along
bike routes. An instrumented bike is equipped with a sensor logger,
a video device (e.g., GoPro), an inertial measurement unit (acceler-
ometer and gyroscope), a global positioning system (GPS), a wire-
less network adapter (WIFI), a micro Secure Digital (microSD)
card data storage, and a battery (Ho et al. 2021) as shown in
Fig. 3. An instrumented bike mobile app named Motion Tracking
developed by our team is installed in a smartphone paired with
an instrumented bike. One of the advantages of using an instru-
mented bike is the ability to share real-time cycling information
with cyclists nearby, allowing cyclists extra time to adjust their cy-
cling routes to avoid any potential risk of accidents. This process is
illustrated as follows: When a cyclist travels on a bike trail, the vi-
bration data/signals will be registered by the sensor logger and then
wirelessly transferred to the smartphone or stored in the sensor

logger. The data will be retrieved from either a smartphone or a sen-
sor logger, processed, and analyzed to determine if any potential
anomalies (e.g., bumps, uneven surfaces, potholes, and cracks)
are identified. Identified anomalies are recorded in a csv. format,
georeferenced, and displayed in a map using geographic informa-
tion systems (GIS) software (i.e., ArcGIS version 10) or theMotion
Tracking app. Those cyclists who have downloaded the mobile app
will be notified of anomaly locations prior to their cycling trip so
that they can plan ahead to adjust cycling routes or ride cautiously
to avoid any accidents. The previous implementation of the instru-
mented bike between 2019 and 2020 demonstrated that this is an
effective method to facilitate the quality control of cycling facilities
and promote cycling mobility (Ho et al. 2019, 2021; Qiu et al.
2018).

Based on the current practice, a threshold value of 0.95 g was
used in the computing process to classify anomalies through instru-
mented cycling (Ho et al. 2019, 2021). However, this threshold is a
human-made decision process based on data distributions and stat-
istical analysis, and its setting is highly dependent on several fac-
tors such as different bikes (street bikes, mountain bikes, beach
cruisers, etc.), cycling speeds, tire pressures, the weight of cyclists,
and weather conditions of bike routes (wet or dry); these would
have a significant impact on the accuracy of anomaly identification.
To address this issue, the paper presents an advanced computing al-
gorithm using a generic deep learning approach to improve the ex-
isting computing efficiency and accuracy in anomaly identification
and advance the use of instrumented bikes.

Fig. 4. Architecture of the proposed LSTM autoencoder.
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Data Set and Preprocessing

The data set used in all the experiments and training was collected
by Ho et al. (2019, 2021) and Qiu et al. (2018). The sensor devel-
oped in the paper is a nine-axis sensor incorporating a three-axis
accelerometer, a three-axis gyroscope, and a three-axis magnetom-
eter. It has an integrated 32-bit microcontroller unit while the accel-
erometer sensor has a maximum range of± 16g and the gyroscope
has a range of± 2,000°/s, where each sample is of 16 bits. Prior to
assembly of a sensor logger, all sensors were tested in the labora-
tory and calibrated based on the aforementioned range to ensure
the accuracy of each sensor according to the research team’s de-
sign. The original data consist of accelerometer values in three
axes (x, y, z) and corresponding location coordinates (longitude, lat-
itude). Fourier transform process observes that the accelerations in
all three axes change dramatically when encountering a crack/pot-
hole, the magnitude of the acceleration in all directions was used as
the input feature so that all the results can be better visualized in this
paper (while the team leaves the possibility of using more features
to enhance the robustness). The magnitude is computed as the fol-
lowing equation:

M =
���������������

X 2 + Y 2 + Z2
√

(1)

where X, Y, Z= acceleration values in x-, y-, z-directions,
respectively.

The magnitude is further standardized by subtracting its mean
and dividing by the standard deviation as expressed in the follow-
ing equation:

Mnorm =
M − μ

σ
(2)

where μ=mean; and σ= standard deviation, so that it has the same
mean and deviation.

Note that standardization is a general preprocessing step in neu-
ral network training as it improves the numerical stability of the
model and may boost the convergence.

The training and validation data sets were collected on three dif-
ferent bike routes at different times containing 3,000 samples. All

data were resampled to overlapping windows with a size of
seven as a data augmentation strategy. After data were standard-
ized; fast Fourier transform (FFT) was performed to change the
data to the frequency domain from the time domain.

Classification with LSTM Autoencoder

Anomaly detection from acceleration data is a challenging task for
machines, even though the variation of accelerations in three axes
can physically encode the pattern of anomalies. The patterns of an
anomaly can be distinguished effortlessly by human-beings out of a
sequence of accelerations. Human beings recognize anomalies by
their visualization and cycling experience based on the dramatic
changes of acceleration within a certain subsequence. Therefore,
autoencoders that mimic human beings to learn the representation
of anomalies without annotated data are desired for this task.

An autoencoder is made up of the encoder and the decoder. The
encoder projects the input data space χ into the latent space Γ,
which is also known as the latent representation, via a function
φ:χ→Γ. The decoder, whose architecture generally mirrors that
of the encoder, reconstructs the input data from the latent represen-
tation via a function: Γ→ χ . Mathematically, an autoencoder is de-
fined as follows:

φ, Φ = arg min
φ,Φ

||χ − (φ ◦Φ)χ ||2 (3)

Eq. (3) minimizes the distance between the input data and the
output reconstruction from the network. The formulation of the au-
toencoder suggests that the training of an autoencoder is fully un-
supervised, or technically self-supervised, which is another
motivation for using the autoencoder architecture. However, anom-
alies are not commonplace during cycling, since extracting them
from the original signal is equivalent to detecting them. Alterna-
tively, the representation of anomaly-free cycling sequence
(smoothing sequence), as they are more easily obtained, can be
used to help recognize cracks/potholes as anomalies. Once the re-
construction loss in the inference is greater than the maximal

Fig. 5. Training and validation losses after each training epoch during the neural network training process.
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validation reconstruction loss during training, the sequence is iden-
tified as an anomaly.

Another insight to perceptually recognize human-level anoma-
lies is that the order of the data points supports human beings to
identify them. For example, the acceleration in the Z-direction
first goes up, then goes down, or vice versa. Therefore, the depen-
dencies between the data points are another key factor to identify
anomalies, leading to the criteria of RNNs. The RNNs capture
the temporal dependencies (or orders) of sequence input by propa-
gating the information from the current state to the next state. The
vanilla RNNs, in practice, lose long-term dependencies (Bengio
et al. 1994). Therefore, the team decided to replace the vanilla
RNNs with LSTM architecture (Bayer 2015). The LSTM unit is in-
corporated into the autoencoder architecture so that the network can
learn the sequence representation in a self-supervised way. The pro-
posed network is implemented as an LSTM autoencoder as shown
in Fig. 4. A follow-up training process is performed to evaluate the
effectiveness of our methodology. A simple architecture including
two LSTM units with two layers was used for both the encoder and

the decoder, and the performance is considered satisfactory; the sta-
tionary training loss and validation loss are close to 0 as is shown in
Fig. 5. Based on the training, the next step is to make the LSTM
architecture more efficient to detect anomalies using a sliding win-
dow algorithm previously developed by the team.

In our proposed computing method, the team employed an au-
toencoder architecture based on LSTM networks, which are well
suited for handling sequential data. The encoder consists of two
LSTM layers with hidden dimensions of 128 and 64, respectively.
These layers are responsible for mapping the input sequence (with
length of N and dimensions of d ) to a vector with a dimension of 64
in the latent space. The decoder component of our autoencoder is
responsible for reconstructing the original input data from the latent
representation. It consists of two LSTM layers followed by a linear
layer. The first LSTM layer has a hidden dimension of 64, and the
second LSTM layer has a hidden dimension of 128. After the
LSTM layers, the team used a linear layer with an input size of
128 and an output size of 1 to transform the latent representation
back into the original data space.

(a)

(b)

Fig. 6. Locations of preliminary test using the LSTM-based sliding window computing algorithm: (a) anomalies detected by the LSTM autoencoder;
and (b) localized crack/pothole candidates by sliding window technique and aggregated cracks/potholes by postprocessing.
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By self-supervised/unsupervised training on a data set (i.e.,
input is a sequence, and the target is the same sequence), the
LSTM autoencoder learns the typical/regular/normal patterns and
correlations within the data and the abnormal patterns will be auto-
matically treated as noise by the network.

During the decoding phase, the network attempts to reconstruct
the input data from the encoded representation from the latent
space. Since the autoencoder only learns to reconstruct normal
data well, if the input data contain anomalies, the reconstruction
will be poor, and the reconstruction error will be high.

In addition, when computing the data, the team used grid search
to choose the most suitable value as the optimal threshold and ad-
justed as needed.

Localization with Sliding Window

Even though the LSTM autoencoder provides a novel way to detect
anomalies based on their own representation without any supervi-
sion (annotated data), localizing anomalies is still nontrivial. The
paper is motivated by the previously developed window-
interpolation method (Qiu et al. 2018) while extending the non-
overlapping window to the overlapping window implemented as
the sliding window technique. The sliding window technique,
which is widely used in object detection (Dalal and Triggs 2005;
Sermanet et al. 2013), samples overlapping subsequences with
fixed stride and length. The basic idea is to feed the magnitude
of acceleration within a single sliding window into the trained
LSTM autoencoder to compute the reconstruction loss. Once the

output reconstruction loss is greater than the maximal validation
loss during training, which ought to be an anomaly, the input se-
quence within the sliding window is recognized as an anomaly
candidate.

Postprocessing

The LSTM autoencoder along with the sliding window technique
named the LSTM-based sliding window algorithm can accurately
and automatically classify and localize anomaly candidates. Post-
processing is still applied to aggregate multiple anomaly candidates
into one final decision and further map to location coordinates. No-
tice that the team provides a general strategy to postprocess and ag-
gregate the results.

As for different data acquisition systems, the details are ex-
plained as follows.

First, the nonmaximal suppression is applied to the selected
anomaly sliding window candidates. The team filtered out those
candidates that do not have consecutively neighboring anomaly
candidates based on a key observation that multiple candidates
exist when an anomaly is encountered.

Secondly, the team interpolated the location coordinates of all
candidates as our suggested anomaly location. The biggest limita-
tion of our data acquisition system is the sampling frequency mis-
match between accelerometer and the GPS sensor. The sampling
frequency of the accelerometer is up to 200 Hz, while the sampling
frequency of GPS sensor is up to 1 Hz.

In the cases where multiple anomalies are detected within one
sampling time slot, the location coordinates of all candidates re-
main the same. Aggregating the longitudes and latitudes over all
candidates mitigates this issue, because the sampled location coor-
dinates within one sliding window are likely to be different. Be-
cause the GPS sensor and accelerometer did not refresh at the
same time, two aggregation strategies were imposed. The first strat-
egy is to average the values of both longitudes and latitudes over all
the candidates for a potential anomaly. The second one is to com-
pute the midpoint between the maximum and minimum of both
longitudes and latitudes over all the candidates. Notice that the
same strategy can be used to aggregate the results from multiple
sensors.

Preliminary Test (Single Cyclist)

After completion of the LSTM-based sliding window algorithm, a
preliminary test was conducted to verify if the proposed method is
able to collect vibration signals and identify potential anomalies
(e.g., bumps, uneven surfaces, potholes, and cracks). A bike
route on the Northern Arizona University campus was selected
for the preliminary testing. The selected bike route is located on
the east side of the campus and it is made of asphalt concrete exhib-
iting varying levels of pavement distress (poor, fair, and good),
which is suitable for the purpose of the data collection, training,
and processing. The preliminary cycling test commenced with a
single cyclist traveling on the selected bike route. All vibration
data were recorded and stored by the sensor logger in real time.
After cycling, the team exported and analyzed all the data using
the LSTM-based sliding window computing algorithm to classify
anomalies, and the result is shown in Fig. 6. As can be seen in
Fig. 6, the reconstruction loss for the smoothing pattern is close
to zero as illustrated by the training process. The reconstruction
loss above the maximal validation loss (as is shown by the horizon-
tal red line in Fig. 6) should be identified as due to anomalies. The
anomaly patterns have a one-to-one match to the crack/pothole

Fig. 7. Anomaly detection and localization in a GIS map. POI= point
of interest known as an anomaly along the bike route. (Base map
sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/
Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community.)
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patterns in the raw signal. A total of 2,474 vibration points were
sensed, collected, and analyzed, and a total of 62 anomalies were
recorded and localized with coordinates. The final aggregated
boxes from the detected anomaly candidates bound the crack/

pothole pattern in the original signal. The selected 62 anomalies
were retrieved from the original data set and imported and graphed
in a map using GIS software (Fig. 7). A follow-up field observation
was conducted to physically compare the locations of anomalies to

(a)

(b)

Fig. 8. Locations of identified anomalies on Bike route 1: (a) process of reconstruction and normalization; and (b) results of the selection of anomalies
using the algorithm.
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(a)

(b)

Fig. 9. Locations of identified anomalies on Bike route 2: (a) process of reconstruction and normalization; and (b) results of the selection of anomalies
using the algorithm.
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validate the effectiveness of the LSTM-based sliding window com-
puting algorithm in detecting pavement distresses. The preliminary
test results as shown in Figs. 6 and 7 highlight the fact that the
LSTM-based sliding window algorithm has an ability to efficiently
and accurately detect anomalies without any human-controlled
supervision (threshold adjustments) along the bike route. There-
fore, the team is confident to expand the scope of instrumented
bike prototyping from a single cycling event to multiple cycling
tests.

Field Validation (Multiple Cyclists)

After the preliminary test was done, the team recruited four cyclists
(including men and women) and had each one of them travel on the

two selected bike routes using their individual instrumented bike in-
cluding street bikes and mountain bikes. The two bike routes are lo-
cated on the west side of the campus where a variety of pavement
distress patterns (potholes, cracks, bumps, etc.) are noticeable. Pave-
ment surfaces that remain in good condition are collected for training
purposes. Both pavements are made of asphalt materials. The field
validation was designed to further evaluate the usefulness and effec-
tiveness of the proposed LSTM-based sliding window computing al-
gorithm in the identification of anomalies along the two bike routes.
Each cycling trip generated a variety of vibration patterns based on
the speeds, bikes, and individual cyclists. All patterns generated by
instrumented cycling were normalized and analyzed using the
LSTM-based sliding window computing algorithm to screen all vi-
bration patterns and select anomaly candidates. The computing prin-
ciple is that even though different cyclists and bikes would result in

Fig. 10. Locations of identified anomalies on Bike route 1. [Base map sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri
Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community.]
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varying magnitudes of vibration patterns, the LSTM-based sliding
window computing algorithm will be able to distinguish the dramatic
change of vibration signals, recognize those patterns, and pick them
as potential anomalies.

After each one of the four cyclists completed individual cycling
on the two selected bike routes, all datawerewirelessly transferred to
the mobile apps and also stored in the sensor loggers. The team

exported all data from the sensor loggers and mobile apps and trans-
ferred them to the computer for analysis. Using the LSTM-based
sliding window computing algorithm, the patterns of potential
anomalies of each cyclist were screened and identified (Figs. 8
and 9) and their georeferenced locations were displayed in GIS
maps (Figs. 10 and 11). As can be seen in Figs. 8 and 9, the magni-
tude of the normalized vibration patterns against the number of data

Fig. 11. Locations of identified anomalies on Bike route 2. [Base map sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri
Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community.]

Table 2. Number of anomalies identified by the four cyclists

Cyclist Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Total anomalies

Cyclist 1 1 4 10 12 17 7 2 53
Cyclist 2 3 4 9 13 14 7 1 51
Cyclist 3 3 3 7 11 13 8 1 46
Cyclist 4 2 3 7 13 16 6 1 48
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points fluctuates depending on the individual cycling. Based on the
data, it can be concluded that the LSTM-based sliding window com-
puting algorithm has been able to screen all normalized vibration
patterns and identify potential anomalies (squared in red colors).
As shown in Figs. 8 and 9, the selected anomalies are shown against
the number of data points (in X-axis), so it is still hard to tell if those
georeferenced anomalies collected from individual cyclists can rep-
resent the actual or closer pavement distress areas on the two bike
routes. A field observation trip was then scheduled to compare the
computing results with the identified pavement distress areas.

Note that after reviewing the distributions of identified anomalies
in the two GIS maps, the team rearranged all adjacent anomalies in a
zonewhere all four instrumented cycling results have similar agree-
ment in anomaly identification. These rearranged zones are useful to
facilitate the evaluation. As shown in Fig. 10, there are four zones
(Zones 1–4; highlighted in red lines), while three other zones are
shown in Fig. 11 (Zones 5–7; highlighted in red lines). Additionally,
there are a few anomalies beyond the highlighted seven zones that
resulted from only one or two instrumented cycles. This is because
the level of pavement distress is in a range of good to fair or the in-
dividual cycling paths did not travel onto the deteriorated areas. The
team further retrieved anomaly data fromGIS software and analyzed
the results as provided inTable 2.A follow-upANOVA test was per-
formed to determine if the difference in anomaly detection among
the four cyclists was significant and the result is provided in Table 3.
A p-value of 0.98 > 0.05 was calculated from the ANOVA test, so
the team concludes the difference in anomaly detection among the
four cyclists is not significant. The ANOVA test supports the truth
that the LSTM-based sliding window computing algorithm can ef-
fectively detect anomalies of cycling trails.

The team went on to the two bike routes and observed the pave-
ment distress conditions in the seven zones. The purpose of the field
observation was to determine what levels of pavement distress areas
have caused the bike routes to deteriorate and how accurately the
LSTM-based slidingwindow computing algorithmwas able to iden-
tify these deteriorated pavement areas. To systematically record the
level of pavement distress areas on the two bike routes and relate the
pavement distress to the accuracy of the LSTM-based sliding win-
dow computing algorithm, a rating handbook, the Distress Identifi-
cation Manual, published by the Federal Highway Administration
(FHWA 2014) was used for rating guidance when recording the se-
verity level of the pavement (i.e., good, moderate, and high) on the
two bike routes. The Distress Identification Manual provides a very
detailed definition and explanation of each type of pavement dis-
tress, such as to how to identify distress types and rate a level of cor-
responding pavement distress. Based on the twoGISmaps, the team
walked through the two bike routes, rated each one of the pavement
distress areas according to the Distress Identification Manual, and
recorded the results in a field notebook. An example of pavement
distress identification and rating results on the seven zones within
the two bike routes is shown in the Appendix.

Based on the rating results, it is obvious that any pavement dis-
tress labeled as high or in some cases moderate in the severity
level would lead to the generation of significant patterns by all cy-
clists. Another situation observed in the field is that some pavement
distressed areas labeled as moderate or low might not generate rec-
ognizable patterns by all cyclists. This is because of the different

paths of cycling and less significant vibration responses that were
not selected by the LSTM-based sliding window computing algo-
rithm. From the maintenance standpoint, the ignorance of low or
moderate pavement distress areas during the computing process is
acceptable as thesemild pavement distress surfaces would not create
cycling discomfort and raise a flag for maintenance. Instead, all
pavement distress areas labeled as high in the rating book (Table 1)
and in Figs. 9 and 10 exhibit adverse cycling conditions that have
jeopardized cycling safety andmobility.More importantly, these cy-
cling results call for the immediate attention of local authorities for
maintenance or repair as well as provide useful information to be
shared with cyclists, allowing them to navigate their trip and adjust
routes (if needed) before cycling.

Summary

Given the results presented in Figs. 7‒10 along with the pavement
rating record in the Appendix, regardless of the weight of the cy-
clists, speeds, bikes being used, etc., the LSTM-based sliding win-
dow computing algorithm is capable of screening and analyzing
vibration patterns and identifying anomalies that could adequately
reflect pavement distressed areas on bike routes. The identified
anomaly locations and information can be shared with: (1) local au-
thorities for decision-making for maintenance or repair; and (2) cy-
clists who will be able to plan their cycling trip accordingly. The
use of the LSTM-based sliding window algorithm will advance
the use of instrumented bikes and will be a good starting step to en-
courage the public to participate in crowd-sourcing-based cycling
activities and collect more real-time cycling data for the improve-
ment of cycling facilities. The rating record provides good informa-
tion on the pavement condition assessment. Local authorities could
take the record into account for policy decision-making for mainte-
nance and prioritizing pavement distressed areas for repair. The re-
sults presented in the paper will be helpful in support of the
advancement of instrumented bikes, improving cycling safety,
and promoting cycling as a daily mode of transportation. The
team is confident that the LSTM-based sliding window algorithm
can replace our previous human-made threshold setting to classify
pavement distress. For the future implementation of smart cycling
using instrumented bikes, the LSTM-based sliding window will be
highly recommended to be used as an advanced computing method
for anomaly detection along bike trails.

Implication of Instrumented Bikes for Future Applications

Future applications will be continued on an array of roadway surfaces
along bike trails including asphalt, concrete, gravel, and cobblestone
sections under different weather conditions (dry, wet, and icy) to fur-
ther evaluate the accuracy of the LSTM-based sliding window com-
puting algorithm in anomaly detection along bike trails and lanes.

Conclusions

Through the demonstration of the LSTM-based sliding window
computing algorithm in support of cycling activities, the paper
has the following conclusions:

Table 3. ANOVA test result

Source of variation SS df MS F P-value F crit

Between groups 4.142857143 3 1.380952381 0.049785408 0.984947061 3.00878657
Within groups 665.7142857 24 27.73809524 — — —
Total 669.8571429 27 — — — —
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1. The LSTM-based sliding window computing algorithm shows
effectiveness in analyzing vibration patterns and identifying
anomalies of cycling trails without any human-controlled
supervision.

2. From the practice standpoint, the cycling results bring immedi-
ate attention to local authorities for maintenance or repair as
well as provide useful information to be shared with cyclists, en-
abling them to navigate their trip and adjust routes (if needed)
prior to cycling.

3. The LSTM-based sliding window computing algorithm can be a
good technique to replace the currently used threshold setting
for the determination of anomalies and promote the use of cy-
cling as a daily mode of transportation.

4. For future implementation, it is recommended that the
LSTM-based sliding window algorithm be used on different
road surfaces (e.g., asphalt, concrete, gravel, and cobblestone)
under the effect of different weather conditions (dry, wet, and
snowy).

Appendix. Examples of Pavement Distress
Identification

Fig. 12 shows examples of pavement distress identification on se-
lected Zones 1–7 within Bike routes 1 and 2.

Fig. 12. Examples of pavement distress identification in Bike routes 1 and 2. (Images by authors.)
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Data Availability Statement

Some or all data, models, or codes generated or used during the
study are proprietary or confidential in nature and may only be pro-
vided with restrictions, including sensor logger programming, GUI
coding, vibration data sets, Excel files, and GIS mapping data. Data
requests will be approved at the corresponding author’s discretion.

Acknowledgments

The authors acknowledge the financial support by the University
Transportation Center Pacific South Region.

References

Abbaspour, S., F. Fotouhi, A. Sedaghatbaf, H. Fotouhi, M. Vahabi, and M.
Linden. 2020. “A comparative analysis of hybrid deep learning models
for human activity recognition.” Sensors 20 (19): 5707. https://doi.org
/10.3390/s20195707.

AMR (Allied Market Research). 2021. Accessed February 2021. https://
www.alliedmarketresearch.com/connected-car-market.

Bayer, J. S. 2015. “Learning sequence representations.” Ph.D. thesis,
School of Computation, Information and Technology, Technische
Universität München.

Bengio, Y., A. Courville, and P. Vincent. 2013. “Representation learning:
A review and new perspectives.” IEEE Trans. Pattern Anal. Mach.
Intell. 35 (8): 1798–1828. https://doi.org/10.1109/TPAMI.2013.50.

Bengio, Y., P. Simard, and P. Frasconi. 1994. “Learning long-term depen-
dencies with gradient descent is difficult.” IEEE Trans. Neural
Networks 5 (2): 157–166. https://doi.org/10.1109/72.279181.

Dalal, N., and B. Triggs. 2005. “Histograms of oriented gradients for
human detection.” In 2005 IEEE computer society conference
on computer vision and pattern recognition (CVPR’05), Vol. 1, 886–
893.

ECF (European Cyclists’ Federation). 2021a. “Smart Cycling Series:
Big data and artificial intelligence are transforming bicycle navigation.”
Accessed June 2021. https://ecf.com/news-and-events/news/smarter
-cycling-series-big-data-and-artificial-intelligence-are-transforming-1.

ECF (European Cyclists’ Federation). 2021b. “Smart Cycling Series: you
are what you share.” Accessed June 2021. https://ecf.com/news-and
-events/news/smarter-cycling-series-you-are-what-you-share.

FHWA (Federal Highway Administration). 2014. Distress identification
manuel. FHWA-HRT-13-092. Washington, DC: FHWA.

Hammerla, N. Y., S. Halloran, and T. Plötz. 2016. “Deep, convolutional,
and recurrent models for human activity recognition using wearables.”
Preprint, submitted April 29, 2015. http://arxiv.org/abs/1604.08880.

Fig. 12. (Continued.)

© ASCE 04024003-15 ASCE Open: Multidiscip. J. Civ. Eng.

 ASCE OPEN: Multidiscip. J. Civ. Eng., 2024, 2(1): 04024003 

 T
hi

s 
w

or
k 

is
 m

ad
e 

av
ai

la
bl

e 
un

de
r 

th
e 

te
rm

s 
of

 th
e 

C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

4.
0 

In
te

rn
at

io
na

l l
ic

en
se

. 

https://doi.org/10.3390/s20195707
https://doi.org/10.3390/s20195707
https://doi.org/10.3390/s20195707
https://doi.org/10.3390/s20195707
https://doi.org/10.3390/s20195707
https://doi.org/10.3390/s20195707
https://doi.org/10.3390/s20195707
https://doi.org/10.3390/s20195707
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://www.alliedmarketresearch.com/connected-car-market
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-big-data-and-artificial-intelligence-are-transforming-1
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
https://ecf.com/news-and-events/news/smarter-cycling-series-you-are-what-you-share
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1604.08880
http://arxiv.org/abs/1604.08880


Ho, C.-H., J. Gao, M. Snyder, and P. Qiu. 2021. “Development and appli-
cation of instrumented bicycle and its sensing technology in condition
assessments for bike trails.” J. Infrastruct. Syst. 27 (3): 04021027. https://
doi.org/10.1061/(ASCE)IS.1943-555X.0000632.

Ho, C. H., P. Qiu, S. Wen, X. Liu, M. Snyder, and K. Winfree. 2019.
“Development of instrumented bicycle and mobile applications to per-
form cloud-based pavement condition management for bike roads.” In
Proc., of 2019 Annual Conf. of Transportation Research Board.
Washington, DC: Transportation Research Board.

Leitner, T., H. Kirchsteiger, H. and Trogmann, and L. del Re. 2014. “Model
based control of human heart rate on a bicycle ergometer.” In Proc.,
European Control Conf. 1516–1521. Piscataway, NJ: Institute of
Electrical and Electronics Engineers (IEEE).

Liu, X., C. Xiang, B. Li, and A. Jiang. 2015. “Collaborative bicycle sensing
for air pollution on roadway.” In Proc., 2015 IEEE 12th Int. Conf. on
Ubiquitous Intelligence and Computing, 316–319. Piscataway, NJ:
Institute of Electrical and Electronics Engineers (IEEE).

Lu, N., N. Cheng, N. Zhang, X. Shen, and J. W. Mark. 2014. “Connected
vehicles: Solutions and challenges.” IEEE Internet Things J. 1 (4): 289–
299. https://doi.org/10.1109/JIOT.2014.2327587.

Malhotra, P., A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G.
Shroff. 2016. “LSTM-based encoder-decoder for multi-sensor anomaly
detection.” Preprint, submitted July 1, 2016. http://arxiv.org/abs/1607
.00148.

Pedotti, L. A. S., R. M. Zago, and F. Fruett. 2016. “Instrument based on
MEMS accelerometer for vibration and unbalance analysis in rotating
machines.” In Proc., 1st Int. Symp. on Instrumentation Systems,

Circuits and Transducers, 25–30. Piscataway, NJ: Institute of
Electrical and Electronics Engineers (IEEE).

Pienaar, S. W., and R. Malekian. 2019. “Human activity recognition using
LSTM-RNN deep neural network architecture.” In Proc., 2019 IEEE
2nd Wireless Africa Conf, 1–5. Piscataway, NJ: Institute of Electrical
and Electronics Engineers (IEEE).

Pigatto, A. V., K. O. A. Moura, G. W. Favieiro, and A. Balbinot. 2016. “A
new crank Arm based load cell, with built-in conditioning circuit and
strain gages, to measure the components of the force applied by a cy-
clist.” In Proc., 38th Annual Int. Conf. of the IEEE Engineering in
Medicine and Biology Society, 1983–1986. Piscataway, NJ: Institute
of Electrical and Electronics Engineers (IEEE).

Qiu, P., X. Liu, S. Wen, Y. Zhang, K. Winfree, and C. H. Ho. 2018. “The
development of an IoT instrumented bike: For assessment of road and
bike trail conditions.” In Proc., Int. Symp. in Sensing and
Instrumentation in IoT Era, 1–6. Piscataway, NJ: Institute of
Electrical and Electronics Engineers (IEEE).

Sermanet, P., D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
2013. “Overfeat: Integrated recognition, localization and detection
using convolutional networks.” Preprint, submitted December 21,
2013. http://arxiv.org/abs/1312.6229.

Srivastava, N., E. Mansimov, and R. Salakhudinov. 2015. “Unsupervised learning
of video representations using lstms.” InProc., Int. Conf. onMachine Learning,
843–852. New York: Association for Computing Machinery.

Zhao, Y., R. Yang, G. Chevalier, X. Xu, and Z. Zhang. 2018. “Deep resid-
ual bidir-LSTM for human activity recognition using wearable sen-
sors.” Math. Probl. Eng. 2018: 7316954.

© ASCE 04024003-16 ASCE Open: Multidiscip. J. Civ. Eng.

 ASCE OPEN: Multidiscip. J. Civ. Eng., 2024, 2(1): 04024003 

 T
hi

s 
w

or
k 

is
 m

ad
e 

av
ai

la
bl

e 
un

de
r 

th
e 

te
rm

s 
of

 th
e 

C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

4.
0 

In
te

rn
at

io
na

l l
ic

en
se

. 

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000632
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
https://doi.org/10.1109/JIOT.2014.2327587
http://arxiv.org/abs/1607.00148
http://arxiv.org/abs/1607.00148
http://arxiv.org/abs/1607.00148
http://arxiv.org/abs/1607.00148
http://arxiv.org/abs/1607.00148
http://arxiv.org/abs/1607.00148
http://arxiv.org/abs/1607.00148
http://arxiv.org/abs/1607.00148
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1312.6229

	 Introduction
	 Development of Computing Algorithm: A Generic Deep Learning Approach
	 Literature Review and Motivation
	 Background of an Instrumented Bike
	 Data Set and Preprocessing
	 Classification with LSTM Autoencoder
	 Localization with Sliding Window
	 Postprocessing

	 Preliminary Test (Single Cyclist)
	 Field Validation (Multiple Cyclists)
	 Summary
	 Implication of Instrumented Bikes for Future Applications

	 Conclusions
	 Examples of Pavement Distress Identification
	 Data Availability Statement
	 Acknowledgments
	 References

