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Abstract: Floods are the most common and damaging natural disaster worldwide in terms of both economic losses and human casualties.
Currently, policymakers rely on data collected through labor-intensive and, consequently, expensive street-level surveys to assess flood risks.
We propose a laborless and financially feasible alternative: a framework that can effectively and efficiently collect building attribute data
without manual street surveys. By utilizing deep learning, the proposed framework analyzes Google Street View (GSV) images to estimate
multiple attributes of buildings simultaneously—including foundation height, foundation type, building type, and number of stories—that are
necessary for assessing flood risks. The proposed framework achieves a 0.177-m mean absolute error (MAE) for foundation height estimation
and classification F1 scores of 77.96% for foundation type, 83.12% for building type, and 94.60% for building stories, and requires less than
five days to predict the attributes of 0.8 million buildings in coastal Louisiana. DOI: 10.1061/(ASCE)CP.1943-5487.0001025. This work is
made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction and Motivation

Floods are a very common natural disaster, occurring worldwide
and causing economic losses and human casualties. Expected
climate changes over the next century, including sea level rise
(Michael 2007; Neumann et al. 2015), more frequent extreme pre-
cipitation events (Meehl et al. 2005; Lehmann et al. 2015), and
more intense cyclone activity (Emanuel 2005; Landsea et al. 2006),
pose existential threats to coastal cities hosting the large majority of
human life and activity (Hallegatte et al. 2013). Governments are
working to adapt to the changing environment by investing in large-
scale risk mitigation. For example, the State of Louisiana in the
United States has produced its Comprehensive Master Plan for
a Sustainable Coast, a fifty-year, legislatively-mandated plan
consisting of approximately $50 billion in coastal protection and
restoration projects (Louisiana Coastal Protection and Restoration
Authority 2012a, b). In coastal areas, governments, individual

homeowners, landlords, and businesses all need accurate informa-
tion about current and future flood risk to make effective decisions
about risk mitigation. Decision makers such as state and federal
governments may have the resources to invest in large-scale pro-
tection projects (e.g., levees, floodwalls, and pumps) that alter the
local probability distribution of flood depths, but others generally
do not. However, homeowners can still reduce their risk through
measures such as elevation-in-place that raise the home’s founda-
tion. In this paper, we focus on identifying building attributes that
provide individuals with the decision support they need to make
informed, cost-effective decisions about risk mitigation of their
own properties (Kellens et al. 2013).

Damage calculations in the Coastal Louisiana Risk Assessment
(CLARA) model primarily follow methods developed for the
FEMA Hazus Multi-Hazard model (Hazus-MH) (Scawthorn et al.
2006; Johnson et al. 2013; Fischbach et al. 2017). Direct economic
losses associated with flooding are calculated as a function of a
multitude of variables, such as the building’s replacement cost,
depth of flooding relative to the building’s first-floor elevation
above grade, number of stories, foundation type, and building type.
The last three characteristics can be collectively referred to as building
characteristics.

Assume a structure of building characteristics i with size s and
construction quality q is being retrofitted to elevate its foundation
to a height of h feet above the current level. Moreover, assume that
the elevation of flooding relative to the top of the building’s foun-
dation is e. Then, the depth damage function for the building can be
denoted as DiðeÞ, the replacement cost can be denoted as Vðs; qÞ,
and the probability distribution function of flood elevations occur-
ring in a given year can be denoted as fðeÞ, where each of these
depends on the variables inside their respective parenthesis. In the
CLARA model, the depth damage function is expressed as the pro-
portion of the structure’s replacement cost incurred as damage to
repair or reconstruct the building after a flood event. Elevating the
structure directly reduces the effective flood depth experienced in
comparison. Therefore, the annual losses are
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LðhÞ ¼ Vðs; qÞ ·
Z ∞
−∞

DiðeÞfðeþ hÞde ¼ Vðs; qÞ

·
Z ∞
−∞

Diðe − hÞfðeÞde ð1Þ

The damage curve DiðeÞ can vary substantially depending on
the building characteristics, with building type being the most im-
portant driver of variability. For example, 0.3-m of inundation
above the first-floor elevation is estimated to cause structural dam-
age equal to 48% of the replacement cost for an average commer-
cial building but 68% for a manufactured home. Damage to a
single-family home on a slab foundation is 56% if one story and
44% if two stories; the respective values are 62% or 54% if the
home is on a pier foundation (Scawthorn et al. 2006).

The set of structural attributes relevant to this calculation guided
the selection of features to estimate in this study. Such data are
expensive to collect manually and, as a result, seldom up to date.
For instance, in large parts of the Louisiana coast, where significant
efforts have been made toward studying flood risk since Hurricane
Katrina struck in 2005, the most recent data on the height of
building foundations above grade were from street-level surveys
performed by the USACE in 1991 (USACE 2009). Frequent recon-
structions and retrofits in the three decades since then have made it
obsolete, but the state has no better estimates to rely on for making
investment decisions about coastal protection measures in some
areas. A small number of building-level data collection efforts uti-
lizing post-Katrina reconstruction and tax records have somewhat
improved the estimates of structural features in several Louisiana
parishes; however, the coverage of high quality data is far from
complete. In other states and, in particular, developing countries,
individual structure-level data either do not exist or are scattered
across multiple agencies and jurisdictions, making them prohibi-
tively expensive and time-consuming to collect.

In recent years, deep learning (LeCun et al. 2015) techniques
have helped engineering researchers improve solutions for a variety
of problems, and the improvements have usually been significant
(Cheng et al. 2021; Bao et al. 2019). To better tackle the grand
challenge of flood risk management, this study proposes a

deep-learning-based framework that can collect structure-level
building attribute data in a more effective and efficient manner than
the current approach of performing manual street-level surveys.
First, the Google Street View (GSV) images of buildings in the
areas of interest are gathered. Then, the proposed framework uses
them to simultaneously estimate multiple structural attributes that
are crucial for assessing flood risk. Consequently, combining the
estimated structural attributes with geospatial data and flood risk
models (e.g., CLARA model) will directly improve flood risk as-
sessments for the areas of interest. Fig. 1 shows one view of an
online flood risk decision support system developed by Louisiana’s
Coastal Protection and Restoration Authority (CPRA) that visual-
izes flood risk information for public individuals and businesses in
the coastal zone in which the proposed framework will analyze
GSV images and estimate risk-relevant structural attributes.

The estimated attributes include each building’s foundation
height, foundation type (pier, slab-on-grade, mobile home, or other),
building type (commercial, residential, or mobile home), and number
of stories (one story or more). Fig. 2 shows sample GSV images of
typical buildings displaying these attributes.

By integrating the proposed framework into Louisiana’s master
planning and community resilience programs, individual home-
owners can directly benefit from the “hyper-local” flood risk
assessments by informing risk mitigation decisions. This will be
especially true in vulnerable communities that do not currently
have structural protection provided by levee and floodwall sys-
tems. Although this study focuses on predicting building attrib-
utes for managing flood risk, the proposed framework can be
extended to predict different attributes for other hazards, includ-
ing hurricane, tornado, or seismic hazards.

This study strives to first model the building attribute estimation
problem as a multiobjective one, that is, by using one model for
predicting multiple attributes at once. Then, to improve the perfor-
mance of this multiobjective model, this study proposes the addi-
tion of metadata and the encoding of known relationships between
the different building attributes. Not all of the building attributes
may have known relationships or relevant metadata readily avail-
able; however, those necessary for assessing flood risks usually do.

Fig. 1. Schematic for integrating proposed deep learning framework for building attribute recognition into CPRA’s existing online flood risk decision
support system. (Reprinted with permission from USGS.)
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For instance, piers are one of the most prevalent types of founda-
tions in coastal regions, and we know that they are usually taller
than slab foundations. Because both foundation height and foun-
dation type are extremely important for the assessment and mitiga-
tion of flood risks, the knowledge that pier foundations are usually
taller can be included in an automated building attribute extraction
scheme to allow the modeled probabilities of the foundation type
and height estimates to inform each other and improve overall
performance.

Similarly, some information relevant to the estimation of attrib-
utes for flood risk management is not present in an image. For in-
stance, a building’s actual scale is vital when predicting foundation
height. However, using an object detector followed by scaling the
image to a fixed size masks some of this information from the
models. Meta information, such as the size of bounding boxes, dis-
tance between the camera and the building, building aspect ratio,
and others, reintroduces some of the lost information and helps pre-
dict the attributes that are dependent on them. Adding meta informa-
tion when predicting building attributes also has other advantages.
Sometimes, they directly capture specific relationships between the
tasks. For instance, commercial buildings in some neighborhoods
tend to have shorter building-camera distances than residential
buildings because the latter are usually farther from the street,
and buildings with lower aspect ratios have a higher probability

of being multistoried than those with higher aspect ratios. Being
judicious in the selection of meta information that either character-
izes or differentiates the relevant classes can significantly improve
the estimation of building attributes relevant to flood risk estima-
tion. Our study shows that this combination of multitask learning
(MTL), relationship encoding, and feature fusion can improve the
performance of building attribute prediction models.

Related Works

Image Classification and Object Detection

Image classification (Haralick et al. 1973) and object detection
(Viola et al. 2001) have been two popular computer vision re-
search topics in recent decades. The former focuses on classifying
the content of images, whereas the latter identifies, localizes, and
categorizes the objects in images. Recently, deep learning (LeCun
et al. 2015) has dominated computer vision research fields by
using convolutional neural networks (CNNs) (Krizhevsky et al.
2012; Szegedy et al. 2015). Unlike traditional approaches that
extract “engineered” features from images, CNNs can learn
representative features from training data and achieve improved
accuracies.

Fig. 2. Sample GSV images of typical buildings displaying: (a) high foundation heights; (b) pier foundations; (c) slab foundations; (d) mobile homes;
(e) commercial buildings; and (f) two or more stories. (Images © 2017 Google.)
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Several CNN architectures have been developed to improve
classification accuracies for the ImageNet dataset (Deng et al. 2009).
The most popular among them have been AlexNet (Krizhevsky et al.
2012), VGG-16/VGG-19 (Simonyan and Zisserman 2014), ResNets
(He et al. 2016b, a), and Inception style networks (Szegedy et al.
2015; Ioffe and Szegedy 2015; Szegedy et al. 2017, 2016). After a
CNN is well-trained on the ImageNet dataset, it can be reused for
other applications via transfer learning, for which the variable
weights in CNN are fine-tuned from the original network on a dif-
ferent dataset. For instance, ImageNet pretrained VGG networks
(Simonyan and Zisserman 2014) were fine-tuned on relatively
small datasets for pavement distress detection (Gopalakrishnan
et al. 2017) and structural damage recognition (Gao and Mosalam
2018). Although these CNNs have achieved human-level perfor-
mances in a wide variety of classification and recognition studies,
estimating or quantifying objects’ physical attributes (e.g., building
characteristics or foundation heights in this study) has not been well
explored. In this case, the problem is not only classification but also
regression to predict attribute values from objects embedded within
images.

Before estimating buildings’ attributes, they first need to be de-
tected. Several approaches have been proposed to improve object
detection precision and processing speed for the COCO and
ILSVRC datasets. In general, every approach can pair up with any
CNN architecture. Bounding box regression for detection and class
probabilities for categorization have been trained simultaneously
by MTL (Ruder 2017). Approaches such as faster-RCNN (Ren
et al. 2015), R-FCN (Dai et al. 2016), and particularly SSD (Liu
et al. 2016) and YOLO (Redmon et al. 2016) for real-time detection
have been used on the COCO and the ILSVRC datasets. Unfortu-
nately, the object categories in the COCO or ILSVRC datasets do
not include buildings that could be used in this study. Thus, the
CNNs pretrained from these datasets could not be directly used,
and the detection precision and processing speed of different ap-
proaches need to be analyzed for detecting buildings.

Multitask Learning

MTL (Ruder 2017) is a technique used to train a machine learning
model on multiple tasks (e.g., predicting multiple building attrib-
utes) at the same time, for which the tasks share the same feature
layers. Over the years, several civil engineering works have used
MTL to improve performance, training time, and inference time.
Most recently, Cai et al. (2021) estimated the visual focus of atten-
tion of construction workers through noisy low-resolution photo-
graphs. They reported that formulating their solution as an MTL
increased prediction accuracies on the two harder categories (body
orientation and head yaw) by 2% each. Furthermore, they claimed
the deduction of training and inference times by approximately
50% and 35%, respectively. Zhang et al. (2020) compared the per-
formances of seven state-of-the-art single task learning (STL)
models and one MTL model to estimate traffic speeds at twenty-
four links in a road network. Their rationale for employing
MTL was that traffic speeds at different road links within the same
road network share intricate inter-dependencies, which an MTL
setup is more suitable to exploit, as they proved through their
experiments.

Wan and Ni (2019) applied MTL using Bayesian modeling with
Gaussian prior for reconstructing missing structural health monitor-
ing data and tested their approach on the acceleration and temper-
ature measurements taken at Canton Tower in China. Through a
quantitative study, they found that a higher correlation between in-
put variables resulted in the better performance of an MTL model.
Furthermore, they compared the performance of theMTLmodel with

an identical STL model and found that the MTL model outperformed
its counterpart by an overwhelming margin. Hoskere et al. (2020)
used a segmentation MTL model developed by Kendall et al.
(2018) to semantically segment material and fine and coarse dam-
age types. They found that MTL performed better than STL for the
material category but did not find any noticeable difference be-
tween the performance of the damage types. Their conclusion
was that the effective number of data samples in an MTL setting
is increased for the more difficult categories because of information
sharing, which further improves their results.

As is shown, MTL research in civil engineering has mostly been
about understanding the phenomenon of MTL, identifying where it
works and where it does not and determining its advantages and
disadvantages. Our work differs from these multitask studies in
two respects: (1) we primarily start with the assumption, which we
subsequently validate, that MTL is better for our purpose than
single-task learning, and (2) we move two steps beyond MTL by
studying the effect of additional types of data and relationship en-
coding in a MTL setup.

Use of GSV Imagery for Urban Analysis

GSV images have been previously used to extract information from
the built environment. In 2011, Rundle et al. (2011) estimated the
efficacy of auditing the physical environment through GSV images,
albeit manually. More recently, Zou and Wang (2021) detected
abandoned houses in rust belt cities using GSV images and a hier-
archical deep learning approach—they extracted both local and
global details using three CNNs and used a decision tree to pro-
cess the results. Their performance (F1 score of 0.84) was quite
good considering the difficulty of the task. Yu et al. (2020) de-
vised a deep learning-based method to identify soft-story build-
ings using GSV images. Although their results showed the
promise of GSV combined with deep learning for soft story de-
tection, one of the main contributions of their work was their
breakdown of the problems that their model faced, especially that
GSV images can be noisy, and an object detector can be used to
filter out these noises.

Li et al. (2018) used a combination of deep learning and support
vector regression to estimate the building age from GSV images
collected in Victoria, Australia. They found that deeper networks
usually perform better than shallow ones. Maniat et al. (2021) col-
lected pavement images using GSV and trained a two-step CNN
classifier for pavement assessment. The first classifier was used
to differentiate image patches with cracks from image patches with-
out cracks, and the second was used to classify cracks into different
categories.

Alipour and Harris (2020) used GSV images (along with
images collected from other sources on the Internet) to train a
ten-class street damage classifier. They used semisupervised
learning to annotate their GSV images, and the increase in data
because of it yielded them a 20% boost in accuracy across cat-
egories. As is shown, GSV images have been used to automati-
cally extract information about the built environment. GSV
imagery databases contain a vast plethora of information-rich
images of various types of buildings taken from various per-
spectives and for absolutely no cost. However, the metadata as-
sociated with the GSV imagery database are seldom viewed as
capable of informing the images when making building estima-
tions. In this study, we not only use the metadata themselves but
also form added functions of the metadata to carefully construct
features that may further improve performance in our feature
fusion pipeline.
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Building Attribute Estimation via Machine and Deep
Learning Methods

Several studies have attempted the estimation of building attrib-
utes through machine and deep learning methods. Qi et al. (2016)
used Google Earth images and celestial geometry to estimate
building heights. Mou and Zhu (2018) proposed a convolutional-
deconvolutional neural network architecture with skip connec-
tions to output height maps from aerial images. Liu et al. (2020)
proposed another convolutional-deconvolutional neural network
architecture for building height estimation and fused image data
with Lidar data to improve the quality of their training set. Xie and
Zhou (2017) suggested an extended multiresolution segmentation
and soft back-propagation classification approach to classify
building types from aerial images in urban locations. Huang et al.
(2017b) used aerial images and Lidar data to predict building
types. However, one major limitation of using aerial images for
estimating building types and, to a certain extent, building height
is that inferring their value from a building’s surrounding and roof
is almost always inferior to inferring them from street-level im-
ages, which are much richer in information specific to height and
type prediction.

Iannelli and Dell’Acqua (2017) used GSV images to predict the
number of floors using a CNN-based approach to enable the infor-
mation to be used as a proxy in exposure models. Gonzalez et al.
(2020) collected and annotated images in Medellin to detect lateral
load resisting systems of buildings and their materials to build ex-
posure models during earthquakes. They also applied a data fusion
scheme by including the number of story data along with image
data in a multimodal-styled architecture. Pi et al. (2020) used object
detection models to identify objects in aerial images for better dis-
aster response and recovery. They used hurricane videos for this
study. One of their conclusions was that pretraining is important
for improved performance, and that pretraining done from a differ-
ent altitude/perspective can alter the performance, which constricts
its widespread applicability.

Hoffmann et al. (2019) proposed an ensemble approach to
building type classification that classified aerial and street-level im-
ages separately using two models, and their respective prediction
scores are combined to arrive at the final prediction. Similarly,
Li et al. (2017) exploited the vantage point that GSV images pro-
vide to classify building-block level land use. Kang et al. (2018) did
the same but using a CNN-based approach. Lenjani et al. (2020)
used a posthurricane preliminary survey as a test bed for their gen-
eral approach to postdisaster reconnaissance with two streams of
information extraction: postevent and pre-event. The pre-event
stream used three classifiers for three building attributes. In fact,
the total number of classifiers in their pre-event stream, which
could be regarded as comparable with our study, was three.

Customized versions of all of these studies could be easily
adapted for estimating any building attribute, including those asso-
ciated with flood risks. However, most works requiring building
data demand more than one attribute. Similarly, that machine/deep
learning is a costly endeavor is no secret. If we use as many models
as there are relevant building attributes, the costs may become ex-
ceptionally high because most agencies, such as local governments,
that use building attribute data typically have a dearth of financial
resources. We propose a less expensive route—an end-to-end high-
performing model for predicting the most important building attrib-
utes relevant for an application at once.

Flood Risk Assessment and Response

Flood risk assessment and response consists of two aspects: (1) es-
timating the frequency and magnitude of floods, and (2) assessing

the vulnerability of the built environment against them. The former
is a science in itself (Hall and Howell 1963; Hailegeorgis and
Alfredsen 2017; Stamataki and Kjeldsen 2021); however, the latter
has been met with markedly less enthusiasm (Wright 2015). Our
study focuses on the latter.

One of the main components of built environment vulnerability
assessment from floods is estimating the potential losses that could
be incurred due to their effects on buildings. As briefly touched on
in the introduction section, the collection of such data has been
traditionally done through manual street-level surveys and has not
seen any real progress for several years. For instance, in a 2016 case
study (Li et al. 2016) on flood risk assessment at a Chinese town,
building data were collected through field surveys. Examples such
these are abundant in the literature (Dall’Osso et al. 2009; Laudan
et al. 2017; D’Ayala et al. 2020; Sen et al. 2021). Some studies
have relied on data retrieved through public and private agencies
(McGrath et al. 2014; Pinelli et al. 2018), but the manual labor re-
quired to collect such data on a regional scale has resulted in their
sparse coverage, even in high-risk places such as Florida. Accord-
ing to Pinelli et al. (2018), building data in the Florida Public
Hurricane Loss Model (FPHLM) were taken from the National
Flood Insurance Program(NFIP), private insurance records, and
county tax appraiser databases. Their study stated that 97% of
structures in the NFIP database did not contain attribute-level in-
formation, only some private insurance companies were able to
provide extensive building attribute data, and the tax appraiser data-
base for the most populated county in Florida (Miami-Dade) con-
tained virtually no information relevant to FPHLM.

Although manual field surveys are still the norm in building
attribute data collection for flood vulnerability assessment, some
researchers have begun to use more efficient methodologies. In
a 2020 study (Arrighi et al. 2020), the authors used GSV images
as a virtual environment to quantify several building characteristics;
however, their process was still manual and expensive for large
areas. Similarly, a mobile- and Internet-based attribute data collec-
tion methodology in which building owners act as contributors has
been proposed as well (Valenzuela et al. 2016). However, the effi-
cacy of such an approach is questionable because it relies on people
volunteering to disclose information without incentive. In addition,
cellular and internet reach is not pervasive in many rural areas of
developing nations. We collect GSV images containing buildings,
use an object detector to identify buildings in those images, and
automatically extract relevant building attributes, saving the need
to rely on field surveys or potentially incomplete historical records.
Similarly, our method can easily scale to large geographical regions
and is not based on crowdsourcing.

Contribution

We propose a MTL approach for predicting multiple building
attributes at once for flood risk assessment. To the best of our
knowledge, this study is the first to do so and the first to estimate
foundation type and foundation height as a regression problem
from GSV images. MTL, in addition to being cheap, also improves
performance by allowing the transference of knowledge across
tasks (Thrun 1996; Caruana 1997). Our study shows that this rel-
atively overlooked area of research should be perceived as a viable
candidate for building attribute estimation because of its potential
to provide accurate predictions at a proverbial penny on the dollar
when compared with single-task learning approaches. Similarly, to
further increase the performance of MTL models, we propose the
two methods of Task Relation Encoding Network (TREncNet) and
feature fusion. Traditionally, each task in MTL has independent,
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fully connected layers. Recent studies (Meyerson and Miikkulainen
2017; Ma et al. 2018) have shown that the implicit relations among
tasks can be learned by soft layer ordering or multiple gating with
task-specific parameters. However, the case of tasks having explicit
relations (i.e., relationships we have prior knowledge about) has
been under-discussed. We encode such known relationships through
an architectural modification that we call TREncNet. Moreover, we
use another technique called feature fusion, which introduces meta-
data, such as camera-to-building distances and aspect ratios, into the
MTL network. By combining MTL, TREncNet, and feature fusion,
we report the best overall prediction scores among three separate
single-task learning and four separate plain MTL experiments con-
ducted using state-of-the-art architectures. Given its capabilities, we
conclude that the proposed approach can effectively and efficiently
process comprehensive data without using street surveys, which will
save time and money for flood risk management. Finally, we provide
an extensive evaluation of different CNN architectures for building
attribute prediction and object detection, which provides practi-
tioners a starting point when implementing this framework.

Scope

The remainder of this paper is organized as follows. The section on
“Building Dataset Generation” describes the dataset of buildings
collected for training and evaluation. The section on “Proposed
Framework” elaborates on the details of the proposed framework.
The section on “Experimental Results” discusses the evaluation re-
sults. The section on “Error Analysis” discusses why some errors
might have occurred. The section on “Key Findings and Potential
Implications” provides a detailed breakdown of the results from our
proposed approaches and discusses some implications of this study.
The section on “Limitations and Future Work” lists some possible
future studies that can build on this work, and the “Conclusion”
summarizes the paper.

Building Dataset Generation

To train the CNNs in the proposed framework and validate the es-
timation performance, ground-truth building attributes along with the
corresponding GSV images need to be collected. Several field sur-
veys have been conducted in the post-Katrina coastal Louisiana that
collected the attributes and the GPS coordinates of 80,109 buildings.
For 73,781 buildings, the records had all of the desired attribute in-
formation, and the other 6,328 records had only foundation height
information. This building-level data primarily originated from three
studies performed by the USACE: the Morganza to the Gulf Refor-
mulation study (noa, a), Southwest Coastal Louisiana Feasibility
study (noa, b), and West Shore Lake Pontchartrain Feasibility study
(noa, c). Coverage includes part or all of Calcasieu, Cameron, Iberia,
Jefferson Davis, Lafourche, St. Charles, St. James, St. John, and
Terrebonne parishes (i.e., county-level units of governance in
Louisiana). Foundation heights from FEMA Elevation Certificates
for 2,471 buildings in Jefferson Parish were also obtained from a
parish floodplain manager. The buildings’ GSV images (640 × 640
resolution and 75° field of view) were autonomously extracted using
GSV’s application programming interface (API) and the GPS coor-
dinates. Then, the bounding boxes of buildings in the GSV images
were manually annotated, as shown in Fig. 3.

Not all of the GSV images had usable views of buildings. Some-
times, major parts of the buildings were blocked by objects
(e.g., fences, trees, or cars), or the buildings appeared too small
in the images (e.g., with width or height less than 80 pixels). Given
the inconsistencies between the collected building coordinates and

the GSVAPI, some images did not contain a building in the scenes,
and some coordinates did not have a GSV image available. Fig. 3 also
shows sample GSV images with unusable building views. Images
with unacceptable views were removed from the dataset; the remain-
ing dataset contained 42,415 usable GSV images. Fig. 4 shows the
distributions of the building attributes in the training dataset. The dis-
tributions are imbalanced, and the dominant attributes with the largest
prevalence are 0.15-m foundation heights (0.5-ft), concrete slab foun-
dations, residential buildings, and one-story buildings.

Proposed Framework

Fig. 5 shows the overview of the proposed framework, consisting
of the following steps. (1) “CNN building detection” detects the
bounding box of a building from a GSV image. The pixels inside
the bounding box are then scaled to a fixed-sized image of that
building. (2) “CNN feature extraction” extracts the image feature
vector from the fixed-sized image. (3) “Feature fusion” concate-
nates the image feature vector with the meta information vector
to form a fused feature vector. (4) “Task relation encoding network”
simultaneously predicts all of the building attributes from the fused
feature vector, including the building’s foundation height in feet
above grade, foundation type (pier, slab, mobile home, or other),
building type (commercial, residential, or mobile home), and num-
ber of stories (one story or more). The details of each step are ex-
plained in the following subsections, and the training of CNNs is
described in the experimental results section.

CNN Building Detection

As mentioned in the literature review, several object detection ap-
proaches using deep learning have been proposed and achieved suc-
cessful results for the COCO (Lin et al. 2014) and ILSVRC
(Russakovsky et al. 2015) datasets. However, the object categories
do not include buildings. Thus, the CNN architectures cannot be di-
rectly used, and the performance of each approach needs to be evalu-
ated for detecting buildings. In this study, the detector’s localization
accuracy is important because the pixels inside the building bounding
box affect the accuracy of the attribute prediction. If the bounding box
is too large, the pixels include too much background area. If the
bounding box is too small, some of the building’s pixels will be miss-
ing. Meanwhile, the detector’s speed is also a concern because a large
number of buildings are in coastal areas: more than 780,000 buildings
are in the coastal Louisiana study region with virtually complete GSV
coverage; however, only approximately 75% were found to have
GSV images usable for feature extraction. After an extensive evalu-
ation of different object detection approaches and CNN architectures
to compare the accuracy/speed trade-offs, this study chose Faster
R-CNN (Ren et al. 2015) along with Inception-ResNet (Szegedy
et al. 2017) to detect building bounding boxes in GSV images.
The details of this analysis are explained in the experimental results
section. If more than one building bounding box is detected in a GSV
image, only the box with the highest detection score was kept.

CNN Feature Extraction

After the building bounding box is detected in a GSV image, the
pixels in the bounding box are scaled to generate a fixed-sized
image. Then, a CNN takes the scaled image (224 × 224 or 299 ×
299 pixels depending on the CNN architecture) as input and ex-
tracts the image feature vector through the convolution and pooling
layers. This study compared several CNNs that achieved high ac-
curacies for the ImageNet dataset (Deng et al. 2009). The CNNs
were pretrained on the Imagenet dataset and fine-tuned on the
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building attribute dataset in this study. The feature vector of each
CNN was extracted from the final global pooling layer and had vec-
tor dimension of 1,024 or 1,536, depending on the CNN architecture.
In this study, Inception-ResNet (Szegedy et al. 2017) was chosen
to extract the image feature vector. Details about the comparison
of different CNNs are described in the experimental results section.

Feature Fusion

As described in the literature review, although many studies have
achieved successful results in different image classification or rec-
ognition tasks, estimating or quantifying objects’ physical attrib-
utes has seldom been discussed. In addition to the use of image

Fig. 3. Sample GSV images of buildings in coastal Louisiana areas: (a) good views with annotated building bounding boxes; and (b) unacceptable
views removed from dataset for buildings blocked by front objects, no building present in the scene, buildings too small, or no GSV image available.
(Images © 2017 Google; image © Google, Inc.)

Fig. 4. Distributions of building attributes in dataset.
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pixels, additional information describing objects’ physical proper-
ties might improve prediction accuracies. Thus, this study proposes
a feature fusion scheme that extracts the meta information of the
building and concatenates the meta information vector with the im-
age feature vector to form a fused feature vector for final attribute
prediction.

The meta information consists of seven values: d, s, wp, hp, wf,
hf , and r. The first value d represents camera-to-building distance
in feet, which can be obtained by using the Haversine formula

d¼2Rarcsin

×

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

�
latc− latb

2

�
þcosðlatcÞcosðlatbÞsin2

�
lonc− lonb

2

�s 1
CA

ð2Þ

where R = radius of earth in feet that varies with latitude; and latc,
lonc, latb, and lonb = latitudes and longitudes of the camera and

building, respectively, as obtained through the GSVAPI. The sec-
ond value s represents pixels per feet for the building in the image,
which can be calculated by using

s ¼ W
2d tanðθ=2Þ ð3Þ

whereW = width of GSV image in pixels; and θ = camera’s field of
view (W ¼ 640 and θ ¼ 75° in this study). The third and fourth
values wp and hp represent the building bounding box’s width and
height in pixels, respectively. The fifth and sixth values wf ¼ wp=s
and hf ¼ hp=s represent the building bounding box’s width and
height in feet. The final value r ¼ wp=hp represents the width-to-
height ratio. After obtaining all of these seven values, the normal-
ized meta information vector is calculated as

�
d
100

;
s
10

;
wp

640
;
hp
640

;
wf

100
;
hf
100

;
r
5

�

where the constant divisors approximately normalized each value
to a floating range from zero to one. Finally, the image feature vec-
tor is concatenated with the normalized meta information vector to
form the fused feature vector.

Alternatively, using metadata to directly predict some attributes
(e.g., foundation height) is possible. One property that can be con-
sidered is camera-building distance. However, due to the inaccur-
acies of distance calculation and building or camera coordinates,
the camera-building distances might not be completely accurate.
Fig. 6 shows sample GSV images whose estimated camera-building
distances are not accurate. If the camera-building distances are di-
rectly used to predict foundation heights (e.g., predict heights in
pixels and then convert heights to feet using the distances), those
inaccurate distances will result in erroneous predictions. Other
possible properties include the building’s physical width, height,
and width-height ratio. Yet, the estimations for those properties still
depend on the bounding box detection or camera-building distan-
ces that are not absolutely accurate. However, when used in our
feature fusion scheme and with TREncNet, even though the meta
information might not be completely accurate, they are not the only
source of information. Therefore, the network itself can make

Fig. 5. Overview of proposed framework. (Images © 2017 Google.)

Fig. 6. Samples of GSV images with inaccurate estimated camera-building distances: (a) 2.13 m; (b) 6.14 m; and (c) 43.83 m. Buildings in
(a and b) should be farther from the camera, and buildings in (c) should be closer to the camera than the estimated distances. (Images
© 2017 Google.)
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determinations about their validity and how best to incorporate the
information and improve the predictions. In other words, the
TREncNet accounts for some of the uncertainties that exist in this
problem, to some extent.

Task Relation Encoding Network

After obtaining the fused feature vector from the CNN and meta
information, the final step is to simultaneously predict all of the
building attributes from the feature vector on the basis of MTL
(Ruder 2017). The tasks in this study include one regression for
foundation height and three classifications for foundation type,
building type, and number of stories. Traditionally, each task
has its own fully connected layers, with one hidden layer as illus-
trated in Fig. 7. This study proposes TREncNet as a means of en-
coding the explicit and implicit relations of tasks as network
connections to improve predictive accuracies.

In a multitask study, some relationships between tasks are ob-
scured from the practitioner’s view, whereas others can be more
easily identified. For instance, a sophisticated nonlinear function
may exist that our human perception fails to detect, but the knowl-
edge that pier foundations usually have greater heights than slab
foundations is ubiquitous. The relationships that are transparent
to human perception can further be divided into two types: implicit
and explicit. Implicit relationships are those that occur with less
certain probabilities, whereas explicit relationships are those that
occur with absolute probabilities (i.e., probabilities of one). This
example that pier foundations are usually taller than slab founda-
tions belongs to the former category, whereas the fact that mobile
homes always have mobile foundations belongs to the latter

category. In the context of MTL, implicit relationships can be
encoded in the probabilistic space, that is, through shared learning
in the layer(s) preceding the output layer to ensure that the model
can appropriately learn them without us having to tell it to make
definite decisions. In contrast, the explicit relationships can be
exploited by setting up hard rules, such as if x is true, y is true,
and z is false (x, y, and z are hypothetical variables).

As Fig. 7 shows, the knowledge that mobile foundations and
mobile homes are the same tasks is encoded through their shared
logit value before softmax. Another explicit relation is that a mobile
home always has one story. As a result, the final logit value for “one
story” is the maximum value of the original “one story” and “mo-
bile home” logit. By doing this, if a building has a small original
“one story” logit value but is classified as a “mobile home,” it might
still ultimately be classified as a one-story building because the
logit value for “mobile home” will be large.

In this study, the implicit relationships among tasks are encoded
by using the prediction results from one task to help predict other
tasks. To do this, the logits from one task are concatenated with
the feature vector for other tasks. Specifically, the number of sto-
ries task uses the original feature vector, the building type task
uses the feature vector plus the logits from the stories task, the
foundation type uses the feature vector plus the logits from both
previous tasks, and the foundation height task uses the feature
vector plus the logit values from all other tasks. This concatenat-
ing order is determined by the tasks’ prediction difficulty (i.e., the
stories task is the easiest, and the foundation height task is the
most difficult). To prevent creating loops in the network, the logits
for “mobile home” and “one story” are not concatenated with the
feature vector.

Fig. 7. (a) Traditional multitask learning that treats each task independently with separate fully connected layers; and (b) proposed TREncNet that
encodes tasks’ explicit and implicit relations. (Images © 2017 Google.)
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Experimental Results

Evaluation Pipeline

Fig. 8 illustrates the overall evaluation pipeline. Using the building
attribute dataset, the buildings’ GSV images were collected and fil-
tered. Then, approximately 80% (33,822) of the GSV images were
randomly selected to train (70% of the images) and validate (10%
of the images) building detection and attribution prediction models.
During training, the validation loss was calculated and compared
for every epoch. The models with the least validation losses were
chosen whose performances were evaluated using the remaining
20% (8,593) of the GSV images. Mean average precision (mAP)
was used to evaluate building detection models, whereas residual
error for foundation height and classification accuracies for foun-
dation type, building type, and the number of stories were used to
evaluate the attribute prediction models. The evaluation took place
on an Exxact deep learning Linux server with Ubuntu 16.04.3 LTS,
two Intel Xeon E5-2620 v4 CPUs with a total of 32 cores, 256 GB
DDR4 RAM, and four NVIDIATitan X Pascal GPUs. One GPU at
a time was used to train and evaluate.

Evaluation of the Building Detection Scheme

Detection Approaches and Training: ATensorflow object detection
API (Huang et al. 2017a) was utilized to evaluate the accuracy/
speed trade-offs for detecting building bounding boxes from
GSV images. The detection approaches and CNN architectures that
achieve more than 24% mAP for the COCO dataset (Lin et al.
2014) were selected for performance comparison. The detection
approaches included Faster R-CNN (Ren et al. 2015), R-FCN
(Dai et al. 2016), and SSD (Liu et al. 2016). The CNN architectures
included Inception V2 (Ioffe and Szegedy 2015), ResNet 50 and
101 (He et al. 2016a), MobileNet V1 (Howard et al. 2017),
Inception-ResNet V2 (Szegedy et al. 2017), and NASNet (Zoph
et al. 2018). The variable weights for each CNN were pretrained
from the COCO dataset and fine-tuned using the building bounding
box annotations described in the section on building dataset

generation. Each training took 35 epochs using the optimized train-
ing parameters provided by Huang et al. (2017a).

Overall Performance of Building Detection Approaches:
Table 1 lists the detection mAP at a different intersection over union
(IoU) thresholds, training time, and inference time for different
detection approaches and CNN architectures. The IoU threshold
defines the size of the minimum IoU between detected and ground-
truth bounding boxes. The mAP at [0.5:0.95] thresholds, which
takes the average of the mAPs for IoU thresholds equal to 0.5,
0.55, : : : , 0.95 (0.05 increments), is the primary challenge metric
for the COCO dataset (Lin et al. 2014).

Table 1 shows that most of the detection approaches and CNN
architectures achieve more than 98% mAP at 0.5 IoU threshold.
Therefore, most of the buildings can be successfully detected.
However, to obtain actual pixels of buildings for attribute predic-
tion, a precise detection model that achieves high mAP at a high
IoU threshold is preferred. The most precise detection model in
Table 1 is Faster R-CNN (Ren et al. 2015) with Inception-ResNet
V2 (Szegedy et al. 2017); that combination has the highest values
of 79.6% mAP at a 0.75 threshold and 66.6% mAP at [0.5:0.95]
thresholds. It takes 0.405 seconds to process a 640 × 640 GSV im-
age with one GPU or less than four days for the 0.8 million GSV
images in the study region. Thus, Faster R-CNN (Ren et al. 2015)
with Inception-ResNet V2 (Szegedy et al. 2017) has a reasonable
processing speed for this study, and its detection results were used
to evaluate the building attribute predictions. For computation envi-
ronments without GPU processing, SSD (Liu et al. 2016) with
ResNet 50 (He et al. 2016a) is a feasible choice, considering
its accuracy/speed trade-off. SSD achieves the second-highest
78.6% mAP at 0.75 threshold and 65.8% mAP at [0.5:0.95] thresh-
olds. Two CPUs for a total of 32 cores take 0.528 seconds to pro-
cess a GSV image (less than five days for 0.8 million images).

Evaluation of Attribute Prediction Scheme

CNN Architectures and Training. Because Inception-ResNet V2
(Szegedy et al. 2017) achieved the highest mAP for building de-
tection, it was chosen for the “CNN feature extraction” to evaluate

Fig. 8. Evaluation pipeline in this study. Approximately 80% (33,822) of GSV images were used to train (70% of images) and validate (10% of
images) building detection and attribution prediction models. The remaining 20% (8,593) of GSV images were used to evaluate their performance.
Full boxes: ground truth building bounding boxes; dashed boxes: predicted building bounding boxes. (Images © 2017 Google.)

© ASCE 04022031-10 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2022, 36(6): 04022031 

 T
hi

s 
w

or
k 

is
 m

ad
e 

av
ai

la
bl

e 
un

de
r 

th
e 

te
rm

s 
of

 th
e 

C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

4.
0 

In
te

rn
at

io
na

l l
ic

en
se

. 



the attribute prediction accuracy of the proposed framework. To
show the effectiveness of the proposed feature fusion scheme
and TREncNet, three other CNNs were also evaluated, including
MobileNet V1 (Howard et al. 2017), Inception V2 (Ioffe and
Szegedy 2015), and Inception V4 (Szegedy et al. 2017). Mobile-
Net V1 and Inception V2 take a 224 × 224 scaled image as input
and extract the CNN features of 1,024 dimensions for which
Inception V4 and Inception-ResNet V2 take a 299 × 299 scaled
image and extract the CNN features of 1,536 dimensions. The
variable weights of CNNs were pretrained using the ImageNet
dataset (Deng et al. 2009) with a TensorFlow version 1.4.0 model
library (Silberman and Guadarrama 2016) and fine-tuned using
the building attribute dataset described in the building dataset
generation section. The architecture of TREncNet allows end-
to-end (Yang et al. 2018) training for which the variable weights
of CNN and TREncNet were fine-tuned together.

During fine-tuning, the loss function to be minimized included a
Huber loss (Huber 1992), with δ ¼ 15 [found through a hyper-
parameter search (Meyer 2021)] for the regression task, and three
cross-entropy values for the classification tasks. We further multi-
plied the regression loss by 0.25 to prevent the overall gradient
from overflowing from the classifiers’ perspectives because of
the imbalance between the scales of the regression and classifi-
cation losses in our model. If a GSV image did not have certain
building attributes (e.g., some images in the training dataset only
have foundation height data), the loss weights of the corresponding
tasks are zero for that image. The loss function also included a regu-
larization term that equaled the sum of the squared values for all of
the variables in TREncNet with a 0.004 loss weight (found through

a hyperparameter search). The number of hidden layer nodes in
TREncNet was 128 for each task. To prevent overfitting, each hid-
den layer had a 0.5 dropout rate (Srivastava et al. 2014) during fine-
tuning. The learning rate was initially 0.001 for MobileNet V1 and
0.002 for all other CNNs, with a 0.6 decay rate for every 40 epochs.
Each CNN was fine-tuned for 160 epochs with a batch size of 32.
The training images were randomly augmented in each batch, in-
cluding horizontal flipping and �10% brightness, �20% contrast,
�20% saturation, and �2.5° hue adjustments.

Single versus Multi Task Learning: A detailed comparison be-
tween MTL and STL has been shown in Table 2. The evaluation
metrics are mean average error (MAE) for foundation height esti-
mation and F1 score for building type, foundation type, and number
of stories classification. Of the buildings, 85% are residential, 59%
have slab foundations, and 91% are single-storied. To consider the
class imbalance issue, the F1 score is the harmonic mean of pre-
cision and recall. Furthermore, the percentage differences reported
are absolute differences for classification tasks and relative differ-
ences for the foundation height task.

The strongest impact of choosing MTL over STL can be ob-
served in foundation height estimation. Both plain MTL and the
proposed best MTL architecture (feature fusion and TREncNet
combined) perform significantly better than STL. For classification
tasks, the F1 scores were averaged to simplify the analysis. There,
although plain MTL sometimes results in poor estimates, the pro-
posed MTL can be observed to significantly improve them when
compared with STL.

As mentioned in the literature review, a common theme across
MTL studies is that it provides significant improvements in

Table 2. Evaluation results of different CNN architectures with STL, MTL, and MTL combined with feature-fusion and TREncNet (i.e., Proposed Best MTL)

CNN architecture STL MTL

Proposed
MAE
(m) F1 (%)

Average
(%)

Inference
time (s)

Best MTL F. height F. type B. type B. story Overall GPU CPU

MobileNet V1 (Howard et al. 2017) Yes — — 0.229 75.84 80.82 94.00 83.55 0.006 0.081
— Yes — 0.201 75.23 79.17 93.90 82.77
— — Yes 0.180 76.70 81.5 93.91 84.04

Inception V4 (Szegedy et al. 2017) Yes — — 0.223 77.74 82.58 94.1 84.81 0.029 0.307
— Yes — 0.195 77.49 82.30 94.40 84.73
— — Yes 0.177 77.31 82.48 94.65 84.81

Inception-ResNet V2 (Szegedy et al. 2017) Yes — — 0.232 77.77 81.85 94.00 84.54 0.038 0.483
— Yes — 0.192 77.97 82.48 94.09 84.85
— — Yes 0.177 77.96 83.12 94.60 85.23

Note: MAE = mean absolute error; F. = foundation; and B. = building.

Table 1. Evaluation results of different detection approaches and CNN architectures for building bounding box detection

Detection approach CNN architecture

mAP@IoU Training
time (day)

Inference time
(s)

0.5 0.75 [0.5:0.95] GPU CPU

SSD (Liu et al. 2016) MobileNet V1 (Howard et al. 2017) 98.2% 77.4% 65.1% 1.2 0.034 0.311
Inception V2 (Ioffe and Szegedy 2015) 98.2% 77.6% 65.8% 1.1 0.026 0.165

ResNet 50 (He et al. 2016a) 98.4% 78.6% 65.8% 1.4 0.046 0.528

Faster R-CNN (Ren et al. 2015) Inception V2 (Ioffe and Szegedy 2015) 98.2% 78.5% 65.8% 1.1 0.056 0.391
ResNet 50 (He et al. 2016a) 98.2% 77.8% 65.2% 1.7 0.109 1.338
ResNet 101 (He et al. 2016a) 98.2% 77.8% 65.3% 2.4 0.125 1.662

Inception-ResNet V2 (Szegedy et al. 2017) 98.3% 79.6% 66.6% 6.9 0.405 6.591
NASNet (Zoph et al. 2018) 97.9% 78.0% 65.0% 6.9 0.305 2.965

R-FCN (Dai et al. 2016) ResNet 101 (He et al. 2016a) 98.3% 76.3% 64.7% 2.1 0.072 0.601

Note: Highest value in each column is in bold.
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performance in categories that are relatively difficult and does so by
sharing information from other correlated tasks. In this study, we
considered foundation height to be the most difficult task because it
concerned the estimation of regression data from images. Using
Table 3, the worst performing MTL model had an MAE of
0.210 m, whereas the best performing STL model had an MAE
of 0.223 m. Similarly, the best performing MTL model had an
MAE of 0.171 m. However, MTL models’ performances cannot
be evaluated on a per-task basis because they are not used in a
real-world application on a per-task basis; therefore, the actual
comparison should be done between the 0.177-m MAE of Incep-
tion ResNet V2 with feature fusion and TREncNet and the 0.223-m
MAE of STL, which is a significant 20.63% reduction. Fig. 9
shows a whisker-and-box plot that provides a visual demonstration,
where the boxes are wider and the extensions of the whiskers are
denser for STL than for MTL. MTL models produced a much
tighter prediction near and around the ground truths, where the
number of samples is 4,341, 1,252, 503, 737, 995, and 245, respec-
tively, for each of the foundation height intervals. In other words,

MTL leads to smaller standard deviations of MAE, indicating the
robustness of MTL compared with STL.

On a NVIDIA Titan X GPU, the inference time added up to
0.125 seconds per image for single task learning but only 0.038 sec-
onds for the multitask model—a 70% reduction. This reduction is
significant from a resource budgeting and allocation point-of-view.
For instance, to process the 0.8 million images that make up our
region of study, using a MTL approach would take less than nine
hours but approximately 28 hours using a single-task learning ap-
proach. The latter would still yield worse estimates, especially in
arguably the most important building attribute with respect to
assessing flood risks i.e., foundation height. If only for gains in
computational costs and foundation height estimation, MTL should
be used over single task learning for the purpose of building attrib-
ute prediction in flood management.

Plain MTL versus Feature Fusion versus TREncNet versus
Feature-Fusion-Plus-TREncNet: Table 3 lists the performances of
MTL with or without TREncNet and feature fusion. Here as well,
the metrics used are MAE for foundation height estimation and the

Table 3. Evaluation results of different CNN architectures without or with proposed feature fusion scheme and TREncNet for building attribute prediction

CNN architecture
Feature
fusion TREncNet

MAE (m) Precision (%) Recall (%) F1 (%) Average (%)

F.
height

F.
type

B.
type

B.
story

F.
type

B.
type

B.
story

F.
type

B.
type

B.
story Overall

MobileNet V1 (Howard
et al. 2017)

— — 0.201 78.3 83.7 94.5 72.4 75.1 93.3 75.23 79.17 93.9 82.77
Yes — 0.171 76.8 82.5 93.0 73.6 76.6 94.0 75.17 79.44 93.5 82.7
— Yes 0.210 78.1 83.8 94.6 76.1 80.1 93.6 77.09 81.91 94.10 84.37
Yes Yes 0.180 77.3 83.6 92.0 76.1 79.5 95.9 76.70 81.50 93.91 84.04

Inception V2 (Ioffe and
Szegedy 2015)

— — 0.204 77.5 84.6 93.6 73.6 76.5 93.7 75.5 80.35 93.65 83.17
Yes — 0.180 78.3 85.0 95.7 75.3 78.8 92.8 76.77 81.78 94.23 84.26
— Yes 0.201 79.7 86.1 95.5 75.4 77.7 90.3 77.49 81.68 92.83 84.00
Yes Yes 0.174 78.1 84.5 92.0 74.2 76.6 94.6 76.1 80.36 93.28 83.25

Inception V4 (Szegedy
et al. 2017)

— — 0.195 78.5 85.2 95.0 76.5 79.6 93.8 77.49 82.30 94.4 84.73
Yes — 0.177 78.2 84.4 94.8 75.5 79.0 93.2 76.83 81.61 93.99 84.14
— Yes 0.192 79.4 85.9 94.7 76.2 79.4 94.5 77.77 82.52 94.60 84.96
Yes Yes 0.177 79.1 85.8 95.3 75.6 79.4 94.0 77.31 82.48 94.65 84.81

Inception-ResNet V2
(Szegedy et al. 2017)

— — 0.192 79.6 85.8 94.9 76.4 79.4 93.3 77.97 82.48 94.09 84.85
Yes — 0.177 79.8 86.6 94.1 76.1 78.8 95.0 77.91 82.52 94.55 84.99
— Yes 0.192 79.8 86.4 94.8 76.6 79.2 93.3 78.17 82.64 94.04 84.95
Yes Yes 0.177 79.7 86.5 94.7 76.3 80.0 94.5 77.96 83.12 94.60 85.23

Note: MAE = mean absolute error; F. = foundation; and B. = building.

Fig. 9. STL versus MTL for foundation height estimation.

© ASCE 04022031-12 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2022, 36(6): 04022031 

 T
hi

s 
w

or
k 

is
 m

ad
e 

av
ai

la
bl

e 
un

de
r 

th
e 

te
rm

s 
of

 th
e 

C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

4.
0 

In
te

rn
at

io
na

l l
ic

en
se

. 



F1 score for foundation type, building type, and number of stories
classification. Furthermore, we averaged the F1 scores from the
three classification tasks.

For foundation height regression, TREncNet did not provide
any significant improvement over a plain MTL, whereas feature
fusion did. In MobileNet V1, the foundation height estimate of
a plain MTL has 0.201-m MAE, whereas the same decreases to
0.171 m when metadata are added. TREncNet’s performance is
worse than plain MTL because it has an MAE of 0.210 m.
Similarly, for Inception V2, feature fusion reduces MAE from
0.204 m to 0.180 m, whereas TREncNet’s performance remains
almost the same at 0.201 m. Inception V4 and Inception ResNet V2
show similar improvements because of feature fusion (0.195 m to
0.177 m and 0.192 m to 0.177 m, respectively), whereas TREncNet’s
MAE in both of those architectures is 0.192 m. In percentage terms,
feature fusion reduces MAE in MobileNet V1 by 15%, in Inception
V2 by 12%, in Inception V4 by 9%, and in Inception ResNet V2
by 8%.

We have treated foundation height separately because its perfor-
mance cannot be conflated to an F1 score, and it can furthermore be
assumed to be of greater importance than other tasks with respect to
flood risk assessment. None of the architectures reported plain
MTL as providing the best average F1 score, which is strong evi-
dence that plain MTL is not recommended over our proposed alter-
natives for classification tasks. In fact, the only architecture that
reports a significantly higher average F1 score over any of our pro-
posed alternatives is Inception V4, which outperforms its feature
fusion version. Some alternative MTLs have almost equal perfor-
mances as their plain MTL counterparts, such as feature fusion of
MobileNet V1, feature-fusion-plus-TREncNet of Inception V2,
and feature-fusion-plus-TREncNet of Inception V4.

In summary, we cannot conclude that fusion + TREncNet is nec-
essarily better than fusion only. Having said that, as Table 3 shows,
except for MobileNet V1, for all other architectures, fusion +
TREncNet provides a similar or better MAE for foundation height
than feature fusion alone, whereas the precision, recall, and F1
scores are slightly better for building type, foundation type, and

building story estimations. For Inception V2, although the preci-
sion, recall, and F1 scores for building type, foundation type, and
building story estimations are marginally better when fusion only
was used, the MAE foundation height is higher when fusion alone
is used relative to fusion + TREncNet. Similarly, although the MAE
foundation height estimations for Inspection-Resnet V2 with fusion
+ TREncNet are comparable to other combinations of architectures,
fusion, and TREcNet, the F1 scores were higher for building type,
foundation type, and building story estimations when Inspection-
Resnet V2 with fusion + TREncNet is used. Similarly, although the
MAE foundation height estimations for fusion only and fusion +
TREncNet are the same for Inspection-Resnet V2, precision, recall,
and F1 scores are slightly better for fusion + TREncNet. Conse-
quently, we use Inspection-Resnet V2 with fusion + TREncNet,
although one cannot conclude that fusion + TREncNet is signifi-
cantly better than fusion only.

Sensitivity analysis of foundation height prediction to flood
damage estimates: Fig. 10 illustrates the importance of making
small improvements in the accuracy of estimates for the foundation
height (i.e., first-floor elevation above grade). Using the Coastal
Louisiana Risk Assessment model, we made small perturbations
in the assumed first-floor elevations of all buildings at risk of storm
surge-based flooding in the Louisiana coastal zone. The left pane of
the figure shows the average change in the expected annual damage
resulting from perturbations ranging from 10 cm below the esti-
mated foundation height to 10 cm above it (with a floor such that
the assumed foundation height cannot be negative). The right pane
shows the corresponding average change in the level of damage
with a 1% annual exceedance probability. Each line represents a
different type of building; some asset classes in the model are
excluded for clarity of the figure; however, these results are also
representative of other types (e.g., educational, agriculture, reli-
gious). Negative perturbations yield higher risk, whereas assum-
ing higher foundation heights reduces risk. We can observe that
even changes in a few centimeters can produce substantial
changes in the estimated risk of damage; importantly, this bias is
not symmetric.

Fig. 10. (a) Average change, by asset type, in expected annual damage; and (b) 1% annual exceedance probability (AEP) damage resulting from
deviations in structures’ first-floor elevations away from estimates produced by AI algorithm.
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Influence of imbalanced data: As shown in Fig. 4, the distribu-
tions of building attributes in the dataset are imbalanced. In this
case, predicting the dominant attributes may be more accurate,
whereas predictions of the tail attributes with less training data
may be less accurate. To evaluate the influence of imbalanced data,
Table 4 lists the heightwise MAEs and classwise f-scores of the
original and weighted models. For foundation height prediction,
only the MAEs of heights that had more than 2% of testing data
(i.e., 172 testing GSV images) are shown. The original model ap-
plied a uniform loss weight for all of the classes and heights during
training. For the weighted model, the loss weight for each class or
height equaled the inverse of its percentage in the training data,
which was intended to increase the influence of tail attributes dur-
ing training. For instance, the loss weight for “pier foundation”
equaled 100%/26% because 26% of the training data images had
a “pier foundation” (Fig. 4). To prevent larger loss weights that
might cause model divergence during training, all of the loss
weights were clipped at a value of 10. Additionally, the initial learn-
ing rate was set to 0.00005 for the weighted model because its total
loss was larger due to the weightings. Table 4 shows that all of the
dominant attributes [0.153 m (0.5 foot) foundation height, slab
foundation, residential building, and one-story building] have more
accurate predictions when the unweighted model is used. Although
the weighted model improved some of the tail attribute predictions,
it also made the prediction f-scores for some dominant attributes
worse because the dominant attributes had smaller loss weights
than the tail attributes during training. As a result, the overall
f-scores and MAE of the weighted model are worse than the pre-
dictions from the original model with uniform loss weights.
Therefore, this study chose a uniform loss for each task as op-
posed to a height/class-weighted one.

Impact of Accurate Attribute Values on Flood Risk
Estimates

The Motivation section outlined how structure attribute data are
used to estimate flood risk. Here, we empirically examine the po-
tential impact of accurate accounting by running the structure-level
foundation heights and square footage of the approximately 36,900
single-family residences from the ground-truth training datasets
through the Coastal Louisiana Risk Assessment (CLARA) model.
We calculate the total damage to these assets from flood depths
with annual exceedance probabilities (AEP) ranging from 20%
(i.e., five-year flood depths with a one-in-five chance of occurring
or being exceeded in a given year) to 0.005% (i.e., 2,000-year flood
depths). The flood depths are those estimated by CLARA for the
coastal Louisiana landscape in 2015, which is used to represent
current conditions for the state’s 2017 Coastal Master Plan.

Risk estimates using the ground-truth values for foundation
heights and square footage are taken as the basis for comparison.
Because these attributes are typically spatially aggregated, we also
run the model using the mean values of the structures in each cen-
sus block. Fig. 11 shows that spatially aggregating structure attrib-
utes underestimate the risk from more frequent flood events and
overestimate the risk from more rare and extreme events. The pat-
tern is intuitive because flood depths with high AEP are lower,
meaning that modeling the mean foundation heights results in an
assumption that a larger percentage—if not all—of the structures
have first-floor elevations above the flood depths, resulting in little
damage. In other words, structures with below-average foundation
heights are assigned values higher than they actually are; therefore,
the estimated risk to those structures from frequent events is lower
than in reality. T
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In contrast, damage from more extreme events with lower AEP
is overestimated by using mean values for structure attributes. The
same intuition applies: when all structures are assigned mean values
for the foundation height and are exposed to high flood depths,
structures with above-average heights are assumed to incur damage
when they would not in reality. The point at which, empirically,
damage estimates transition from underestimating to overestimating
risk is important for two policy-relevant reasons. On the one hand,
the expected annual damage (EAD) from flooding produced by in-
tegrating the damage exceedances over their probability distribution
is underestimated at $115.5 million compared with $117.75 million
when using the ground-truth attributes (−1.9%). Because EAD is an
expected value, it is driven by more frequent events that are weighted
more heavily when taking a weighted average, and the risk from
these events with higher AEP is biased downwards by using mean
foundation heights.

On the other hand, damage from the 100-year flood event
(i.e., 1% AEP) is overestimated by 6.5%. The protection from
100-year events is a common standard for flood protection in
the United States, relevant to requirements for flood insurance
and other policy decisions. Overestimating this quantity is at odds
with underestimating EAD, which is relevant to planners engaging
in benefit-cost analyses of flood protection measures or calculating
actuarially fair flood insurance rates. Given that the 36,900 single-
family residences used in this analysis represent only 8% of the
approximately 459,000 single-family homes in coastal Louisiana
vulnerable to storm surge-based flooding, our analysis indicates
that using mean values for structural attributes could underestimate
the expected damage by approximately $28 million per year or hun-
dreds of millions of dollars during the coming decades.

Error Analysis

Some of the correctly predicted samples are shown in Fig. 12, and
incorrectly predicted samples are shown in Fig. 13. In this section,
we perform error analysis using the incorrectly predicted samples.
For foundation height estimation, the system predicts significantly
higher heights than the ground truth for buildings that have slab
foundations but also pillars on their facade. Similarly, some mis-
takes also occur as a result of wrong labels. For instance, the system
predicts 0.180 m as one of the buildings’ foundation height, which
visually appears closer to the true value but has a large numerical

disparity with the ground truth (2.440 m). When looking at the
wrong predictions in foundation type classification, one of the key
points to note is the number of labeling mistakes across sections. In
some cases, the model actually predicts the correct class, but the
labels are wrong. At other times, the errors are random, such as the
prediction of mobile foundations as pier, mobile foundations as
others, and others as mobile, which is not surprising. Foundation
type estimation is a four class task, and even our best models fail to
properly characterize the minor classes.

The classifications of mobile homes as residential and residen-
tial homes as mobile seem to occur because of unclear boundaries
between some of the buildings in these two classes. Some mobile
homes’ visual features resemble those of residential homes and
vice-versa, and the model fails to capture these distinctions. The
misclassification of some of the commercial buildings as residential
seems to occur for the same reason; however, the misclassification
of residential buildings as commercial seems random, suggesting
that the model fails to characterize some of the patterns in residen-
tial homes that distinguish them from commercial homes.

The errors in the one-story category occur when tall slab foun-
dations underlie the structures. Some mistakes may also have oc-
curred due to noise. For instance, in one of the images, the building
adjacent to the building of concern seems to be multistoried.
Similarly, the errors in the “two stories” category do not seem to
possess an alternate explanation other than the fact that they happen
because of the model’s inability to properly categorize some of the
multistoried buildings.

To conclude, two main kinds of errors exist in our predictions.
The first one originates because of the inability of the models to
properly characterize a specific class. The other is due to incorrect
labeling. To prevent the former type of error from happening, more
advanced versions of TREncNet and feature fusion that introduce
even more relevant metadata and encode complex relationships
need to be conceptualized. Similarly, to prevent the latter type of
error from happening, local agencies need to be more careful when
taking and keeping records of building attributes.

Key Findings and Potential Implications

The first key finding of this study is that building attribute estima-
tion is best modeled as a multiobjective problem if more than one
attribute exists. By reducing the number of models, the inference

Fig. 11. Bias in estimated damage exceedances by annual exceedance probability introduced by spatially averaging foundation heights and square
footage of single-family residences in training datasets at census block level.
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Fig. 12. Sample GSV images with correct predictions: (a) foundation height; (b) foundation type; (c) building type; and (d) number of storeys.
(Images © 2017 Google; image © Google, Inc.)
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Fig. 13. Sample GSV images with incorrect predictions: (a) foundation height; (b) foundation type; (c) building type; and (d) number of storeys.
(Images © 2017 Google; images © Google, Inc.)
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time can be decreased significantly, which allows authorities to
more frequently carry out projects, such as flood risk assessment.
Furthermore, the performance of the single task learning approach
in estimating the most important building attribute regarding flood
risk management is concerned (i.e., foundation height) is subpar.
The lower foundation height MAEs in multitask models suggests
that some degree of correlation exists between foundation height
and the other attributes, and deep learning architectures possess
enough ability to exploit them. However, the performance gains in
the classification tasks were not as high, suggesting that they are
relatively easy tasks and, thus, are affected by the regularization
that can sometimes be induced by MTL. This disparity in the per-
formance gain between easy and difficult tasks is consistent with
the findings of MTL studies from other fields.

The second finding of this study is that additional sources of
information through either feature fusion or the encoding of known
relationships can improve performance. This is especially the case
when the two are used together rather than separately. Similarly, the
type of metadata and relationship encoding may impact the perfor-
mance of individual categories. Evidence of this idea is observed in
our results.

For instance, TREncNet did not provide any improvement in
foundation height estimation, but feature fusion did. We hypoth-
esize that, although foundation height is correlated with other tasks
(evident by the performance gain when MTL instead of STL was
used), the encoded relationships apparent to us might have been
equally apparent to the architectures, which made our encodings
redundant. However, for feature fusion, some information such as
camera-to-building distances were extraneous to the images, whereas
others such as aspect ratios of bounding boxes might have been too
difficult for the networks to estimate without outside help. Further-
more, the largest-to-smallest reduction in foundation height MAE
was 15% for MobileNet V1, 12% for Inception V2, 9% for Incep-
tion V4, and 8% for Inception ResNet V2, which lends some cre-
dence to this theory because simpler architectures might be less
prone to map harder-to-extract information by themselves.

Moreover, the results of foundation and building types show that
TREncNet has a stronger impact than feature fusion. When com-
pared with those two attributes, its impact on the number of stories
and foundation height categories is negligible. To determine why,
we must observe two factors: the architecture of TREncNet and
the confusion matrices. Four total architectures exist; however,
MobileNet V1 not only echoes the pattern in most other architectures
but also accentuates it and serves as a case study for analyzing where
TREncNet may or may not work or where feature fusion may or may
not work. Therefore, we have illustrated its confusion matrices for
the three classification tasks along with the boxplots for the founda-
tion height task in Fig. 14, where the number of samples is
4,341, 1,252, 503, 737, 995, and 245, respectively, for each of
the foundation height intervals. First, we must refer to Fig. 7.

As is observed, task encoding for the number of stories task is
minimal. We only share the logits of the mobile home from build-
ing type task with one-story of the building stories task. However,
from Fig. 14, the performance of the one-story class was already
saturated even without TREncNet. For both foundation type and
building type tasks, TREncNet improves the performance of minority
classes. To understand why, let us refer back to Fig. 7. The building
type category takes logits from the number of stories category. We
performed a Cramer’s V test using the chi-square test of independ-
ence between the two categories. Cramer’s V value ranges from 0%
to 100% in percentage form, and a higher value suggests a stronger
relationship between nominal variables. With the residential build-
ings included, the result of the Cramer’s V test between the number
of stories and the building type was 8%. When it was excluded,

Cramer’s V output jumped to 20%. Although this is still a weak
correlation in statistical terms, in the context of deep learning, even
this small value might have been enough to significantly propel the
performance of minority classes in building type estimations. The
same can be said about the minority classes of foundation type and
number of stories. With slab foundation excluded, the Cramer’s V
value jumped from 13% to 15%. Here, however, the slab founda-
tion prediction has increased in the confusion matrix as well, which
means that the initial high value and the lower increase with the slab
foundation excluded are still consistent with our theory. We could
not perform the same test for foundation and building types because
mobile homes were a part of both tasks.

This study is the first that proposes the inclusion of encoding
and metadata for building attribute estimation in flood risk assess-
ment, and we firmly believe that more room exists for experimenta-
tion. This version of TREncNet and these metadata are only meant as
proofs of concepts rather than ends in themselves. Ultimately, we
hope that the main implication of this paper lies in the message that
both performance and cost-efficiency can be achieved at the same
time when predicting building attributes.

Limitations and Future Work

One of the limitations of this work is that the coverage of the GSV
database may present a problem in certain cases. In much of the
developing world (including most of Africa), GSV is almost non-
existent. Even in parts of major world economies, such as China
and India, GSV images mostly cover only cities and landmarks.
Be that as it may, our approach is broadly applicable in developed
countries due to GSV’s spatial coverage, having photographed
more than 10 million miles of roads (Nieva 2019). Moreover,
GSV’s coverage in developing countries is increasing every day,
and Google has made significant efforts toward providing the
needed resources (for instance, cars and all of the necessary sen-
sors) to motivated native people such that GSV photographs can be
obtained through semicrowdsourced ventures. Such efforts have
been met with marked enthusiasm, primarily on account of the
young and increasingly tech-savvy populace of low- and middle-
income countries. Updates are also relatively frequent, with images
being refreshed approximately every one to three years in coastal
Louisiana (more frequent updates are in urban areas such as New
Orleans). GSV also allows fully crowdsourced contributions in
some cases, enabling researchers doing postevent reconnaissance
after Hurricane Laura in 2020 to publish new imagery within days
to document damage to the western part of the state. Similarly,
although GSV images (where available) are good sources of infor-
mation on a structure’s facade, they are typically information-poor
for its sides and posterior (typically, only a few buildings in the
GSV database have images of multiple sides). Some of the distin-
guishing features that are relevant to building and foundation type
classifications may be apparent from these alternate vantage points as
well; thus, the availability of such views may enhance performance.

One future study could be a data fusion scheme that aggregates
the detection and prediction results from multiple GSV images of
the same building to increase the robustness of the estimation.
Moreover, we used only the camera’s metadata in our feature fusion
scheme; however, other types of information, such as the building’s
zoning and ownership, could also prove advantageous. In addition
to processing only image data, combining data from audio or depth
sensors may also be beneficial (Huang and Kingsbury 2013;
Hazirbas et al. 2016; Wu et al. 2013; Kamel et al. 2018). To cor-
rectly train and evaluate the detection and prediction models,
we manually removed the GSV images with unacceptable views
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(e.g., buildings blocked by trees). Although the quality of the views
can be determined autonomously as well—for instance, a low
detection score or a small bounding box during the inference phase
may be used to filter them out—this is still not efficient. Future

directions building on this work could be to implement an object
recognition model that can estimate the view quality of details.

Last but not least, the performance of our approach in some
of the key tasks and their classes needs further improvement.

Fig. 14. Boxplots for (a) foundation height estimation, and confusion matrices for (b) foundation type; (c) building type; and (d) number of stories
classification for three separate multitask learning settings of MobileNet V1.
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Regarding foundation height, we were able to achieve an MAE
as low as 0.171 m. Although a significant improvement over a
single-task learning approach’s MAE (0.223 m) and a plain MTL
approach’s MAE (0.192 m), it is still quite high considering that the
average foundation height of our data was 0.45 m. The overall
MAE for foundation height is small compared with uncertainty
in flood depth exceedance values arising from factors such as un-
certainty in hydrodynamic models, variability in levee overtopping
volumes, probability of system failures, noise in lidar measure-
ments, and randomness in the characteristics of observed historic
events (for example, studies of flood hazards in Louisiana have
found that 80% confidence intervals for the 100-year flood depth
may be several feet in many locations (Fischbach et al. 2017) but
is not as low as it could be from a computational perspective. Of
particular concern is the fact that our worst relative estimates
(MAE/ground truth) were usually in the lowest foundation (0.153 m;
Table 4) when lower foundations are actually at greater flood risks
than higher ones.

Similarly, in some buildings with a foundation height of
0.153 m, the prediction is as high as 3.0 m (Fig. 14). Still, this study
is the first of its kind for inexpensive and efficient regression of
foundation heights from GSV images using deep learning tech-
niques and in a MTL environment; therefore, we are positive that
improvements will be made in the future by building on it. The
performances in the number of stories task were promising for all
the mentioned approaches. However, they were still heavily skewed
toward the majority class. From a financial planning perspective,
this is inefficient because the classification of a significant propor-
tion of two-storied buildings as one-storied can drastically overesti-
mate flood damage. Ideally, we want a balanced performance if
improving the performances of both classes is not possible, such
that we are neither more conservative nor more generous than op-
timal. The same can be said about foundation type and building
type classification. By erroneously predicting a quarter of commer-
cial buildings as residential, we may be underestimating flood dam-
age (commercial buildings may have more to lose if flooded).
Similarly, the detection of pier foundations might be more impor-
tant than the detection of slab foundations in some areas because
the former is typically located in riskier places (such as immedi-
ately next to coasts within a larger coastal region). The fact that
our approach’s F1 score in pier foundation detection is only slightly
higher than the baseline is a limitation. Overall, we improved the
performances of some classes to an extent, but they still need sig-
nificant improvements if we are to accurately assess flood risks
(i.e., neither overestimate nor underestimate damages). The best
way forward from this research is as follows: for classification
tasks, to find ways to keep the performances in the majority classes
at least at the current level and raise the performances of the minor-
ity classes to the level observed in the majority classes; and for
foundation height, significantly improve the performance for
smaller heights. In summary, a selective approach might be a more
suitable next step to improve the overall performance.

Conclusion

To collect comprehensive and up-to-date structure attribute data to
assess flood risks without labor-intensive street surveys, this study
details a deep learning-based framework that can simultaneously
estimate multiple building attributes from GSV imagery. An exten-
sive evaluation is done to select the optimal building detection
model. Furthermore, a feature fusion scheme is proposed that com-
bines image features with meta information that improves the pre-
diction of foundation heights. Additionally, TREncNet is introduced

to encode task relations as network connections for MTL that
enhance the predictions of classification tasks.

The proposed framework achieves a 0.177-m foundation height
prediction MAE and classification f-scores of 77.96% for founda-
tion type, 83.12% for building type, and 94.60% for building sto-
ries and requires less than five days to predict the attributes of
0.8 million buildings in the coastal Louisiana study region.

Given its capabilities and efficiency, the proposed framework
saves time and money for flood risk studies. The method also has
the potential for predicting other types of building attributes relevant
to estimating hurricane, tornado, or seismic hazards. Consequently,
the data set of inferred foundation heights (Chen et al. 2020) is
planned for direct use by the risk model used in Louisiana’s 2023
Coastal Master Plan (Brown et al. 2020). However, the classification
of nonresidential assets (e.g., distinguishing movie theaters, banks,
and hospitals from each other) would be challenging without much
larger ground-truth training sets, and GSV images often do not cap-
ture the full structure for large, multistory assets such as office towers
or hotels.

Deep learning-based methods have been used in the geospatial
context in the past; however, such methods have primarily focused
on performance at the expense of cost. This study proves that both
inexpensive and accurate building attribute prediction schemes are
possible by combining three methods: MTL, feature fusion, and
TREncNet.
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