Abstract

Three-dimensional (3D) printing applied in architectural engineering is profoundly changing building technologies and construction processes. Indeed, the wide scope of metamaterials and components manufactured with 3D printing provides unprecedented adaptability and customizability in construction. One of the promising applications of such novel technology concerns metamaterial noise barriers that protect buildings from environmental noise. More specifically, sonic crystal noise barriers (SCNBs) are effective solutions with good sound insulation characteristics (with the advantage of letting air/light pass through). Conversely, the limitations of SCNB are related to their design and manufacturing (new complex design approaches are required to maximize the performance of such devices). To overcome such drawbacks, this research proposes a novel methodological approach to design and customize the topology of SCNBs made achievable with additive manufacturing. First, parametric modeling affords design flexibility and adaptability. Second, iterative performance simulations are set to adjust parameters considering target frequencies. Third, 3D printing allows the prototyping of customized barriers. The methodology is applied to the case of train brake noise. A novel SCNB is designed, simulated, and prototyped through 3D-printing technology. Finally, experimental validation is executed according to current international standards.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was funded by the European Union—European Social Fund—PON Research and Innovation 2014–2020 and in part by Grant PID2021-124908NB-I00 founded by MCIN/AEI/10.13039/501100011033 and by the European Regional Development Fund (ERDF) “A way of making Europe.” We acknowledge the EPSG laboratories resources and technicians for all the facilities for the experimental validation of the prototypes. A special thanks is addressed to Romina del Rey, Enrique Anastasio Späth, Jaime Galiana-Nieves, and FabLab Bitonto for supporting the development of the prototype in the laboratory Fablab Poliba.
Author contributions: Conceptualization: David Ramírez-Solana and Valentino Sangiorgio; Data curation: David Ramírez-Solana and Valentino Sangiorgio; Formal analysis: David Ramírez-Solana and Valentino Sangiorgio; Funding acquisition: Valentino Sangiorgio, Javier Redondo, and Nicola Parisi; Investigation: David Ramírez-Solana and Valentino Sangiorgio; Methodology: David Ramírez-Solana and Valentino Sangiorgio; Resources: David Ramírez-Solana, Valentino Sangiorgio, Nicola Parisi, and Maria Pia Fanti; Software: David Ramírez-Solana and Valentino Sangiorgio; Supervision, Valentino Sangiorgio, Maria Pia Fanti, and Nicola Parisi; Validation: David Ramírez-Solana, Valentino Sangiorgio, Javier Redondo, and Maria Pia Fanti; Visualization: David Ramírez-Solana, Valentino Sangiorgio, Javier Redondo, and Nicola Parisi; Writing—original draft: David Ramírez-Solana and Valentino Sangiorgio; Writing—review and editing: Valentino Sangiorgio, Nicola Parisi, Javier Redondo, Agostino Marcello Mangini, and Maria Pia Fanti.

References

Alba, J., R. Del Rey, J. Torres, L. Bertó, and C. Hervás. 2012. “Cámara de transmisión acústica a escala para el estudio de pantallas acústicas.” In Proc., 8th Congresso Ibero-Americanode Acústica. Évora, Portugal: Sociedade Portuguesa de Acústica & Sociedad Española de Acústica.
Alton Everest, F., and K. Pohlmann. 2009. Master handbook of acoustics. 5th ed. New York: McGraw-Hill/TAB Electronics.
Bayar, M. S., and Z. Aziz. 2018. “Rapid prototyping and its role in supporting architectural design process.” J. Archit. Eng. 24 (3): 05018003. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000307.
Berenguer, J.-P. 1994. “A perfectly matched layer for the absorption of electromagnetic waves.” J. Comput. Phys. 114 (2): 185–200. https://doi.org/10.1006/jcph.1994.1159.
Boulvert, J., G. Gabard, V. Romero-García, and J.-P. Groby. 2022. “Compact resonant systems for perfect and broadband sound absorption in wide waveguides in transmission problems.” Sci. Rep. 12 (1): 10013. https://doi.org/10.1038/s41598-022-13944-1.
Bravo, J., F. Buchón-Moragues, J. Redondo, M. Ferri, and J. Sánchez-Pérez. 2019. “Integrated photogrammetric-acoustic technique for qualitative analysis of the performance of acoustic screens in sandy soils.” Sensors 19 (22): 4881. https://doi.org/10.3390/s19224881.
Casarini, C., J. F. Windmill, and J. C. Jackson. 2017. “3D printed small-scale acoustic metamaterials based on Helmholtz resonators with tuned overtones.” In Proc., Institute of Electrical and Electronics Engineers Sensors. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE).
Castiñeira-Ibáñez, S., V. Romero-García, J. V. Sánchez-Pérez, and L. M. García-Raffi. 2015a. “Periodic systems as road traffic noise reducing devices: Prototype and standardization.” Environ. Eng. Manage. J. 14 (12): 2759–2769. https://doi.org/10.30638/eemj.2015.293.
Castiñeira-Ibáñez, S., C. Rubio, V. Romero-García, J. V. Sánchez-Pérez, and L. M. García-Raffi. 2012. “Design, manufacture and characterization of an acoustic barrier made of multi-phenomena cylindrical scatterers arranged in a fractal-based geometry.” Arch. Aust. 37 (4): 455–462. https://doi.org/10.2478/v10168-012-0057-9.
Castiñeira-Ibáñez, S., C. Rubio, and J. V. Sánchez-Pérez. 2015b. “Environmental noise control during its transmission phase to protect buildings. Design model for acoustic barriers based on arrays of isolated scatterers.” Build. Environ. 93: 179–185. https://doi.org/10.1016/j.buildenv.2015.07.002.
Chalmers, L., D. Elford, F. Kusmartsev, and G. Swallowe. 2009. “Acoustic band gap formation in two-dimensional locally resonant sonic crystals comprised of Helmholtz resonators.” Int. J. Mod. Phys. B 23 (21): 4234–4243.
Chen, Y. Y., and Z. Ye. 2001. “Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays.” Phys. Rev. E 64 (3): 036616. https://doi.org/10.1103/PhysRevE.64.036616.
Chiello, O., J.-J. Sinou, N. Vincent, G. Vermot Des Roches, F. Cocheteux, S. Bellaj, and X. Lorang. 2013. “Squeal noise generated by railway disc brakes: Experiments and stability computations on large industrial models.” J. Acoust. Soc. Am. 133 (5): 3461. https://doi.org/10.1121/1.4806160.
Choi, J., J. Hong, H. Kang, T. Hong, H. S. Park, and D.-E. Lee. 2022. “An automatic decision model for optimal noise barrier plan in terms of health impact, productivity, and cost aspects.” Build. Environ. 216: 109033. https://doi.org/10.1016/j.buildenv.2022.109033.
Cingolani, M., G. Fusaro, G. Fratoni, and M. Garai. 2022. “Influence of thermal deformations on sound absorption of three-dimensional printed metamaterials.” J. Acoust. Soc. Am. 151 (6): 3770–3779. https://doi.org/10.1121/10.0011552.
Crocker, M., and A. Price. 1970. “Sound transmission using statistical energy analysis.” J. Sound Vib. 9: 469–486.
del Rey, R., J. Alba, J. Rodríguez, and L. Bertó. 2019. “Characterization of new sustainable acoustic solutions in a reduced sized transmission chamber.” Buildings 9 (3): 60. https://doi.org/10.3390/buildings9030060.
D’Orazio, T., F. Asdrubali, L. Godinho, M. Veloso, and P. Amado-Mendes. 2023. “Experimental and numerical analysis of wooden sonic crystals applied as noise barriers.” Environments 10 (7): 116. https://doi.org/10.3390/environments10070116.
DOT, FHWA (Federal Highway Administration). 2019. Keeping the noise down, highway traffic noise barriers. Washington, DC: Federal Highway Administration.
EC Directive. 2002. Directive 2002/49/EC of the European parliament and of the council of 25 June 2002 relating to the assessment and management of environmental noise. Brussels, Belgium: Official Journal of the European Communities.
Elford, D., L. Chalmers, F. V. Kusmartsev, and G. M. Swallowe. 2012. “Acoustic band gap formation in metamaterials.” Int. J. Mod. Phys. B 24 (25, 26): 4935–4945.
Fredianelli, L., L. Del Pizzo, and G. Licitra. 2019. “Recent developments in sonic crystals as barriers for road traffic noise mitigation.” Environments 6 (2): 14. https://doi.org/10.3390/environments6020014.
Gardiner, A., P. Daly, R. Domingo-Roca, J. Windmill, A. Feeney, and J. Jackson-Camargo. 2021. “Additive manufacture of small-scale metamaterial structures for acoustic and ultrasonic applications.” Micromachines 12 (6): 634. https://doi.org/10.3390/mi12060634.
Han, D., H. Q. Yin, J. Zhu, and A. Wickes. 2020. “Technical analysis and comparison of formwork-making methods for customized prefabricated buildings: 3D printing and conventional methods.” J. Archit. Eng. 26 (2): 04020001. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000397.
Harris, C. M. 1991. Handbook of acoustical measurements and noise control, 3019–3020. New York: McGraw-Hill.
Hassanain, M. A., and E. L. Harkness. 2000. “Noise control and speech privacy guidelines for office building design.” J. Archit. Eng. 6 (2): 52–57. https://doi.org/10.1061/(ASCE)1076-0431(2000)6:2(52).
Hopkins, C. 2007. Sound insulation. Amsterdam, Netherlands: Elsevier/Butterworth-Heinemann.
Iannace, G., G. Ciaburro, and A. Trematerra. 2021. “Metamaterials acoustic barrier.” Appl. Aust. 181: 108172. https://doi.org/10.1016/j.apacoust.2021.108172.
ISO. 2021. “Part 2: Measurement of airborne sound insulation.” In Acoustics—Laboratory measurement of sound insulation of building elements. ISO 10140-2:2021. Geneva, Switzerland: The International Organization for Standardization (ISO).
Jansen, E. H., M. G. Dittrich, and E. L. Sikma. 2008. “Brake noise measurements on mixed freight trains with composite brake blocks.” J. Acoust. Soc. Am. 123 (5): 3266. https://doi.org/10.1121/1.2933586.
Khan, N. A., and B. Bhattacharjee. 2021. “Methodology for simultaneous optimization of the thermal, visual, and acoustic performance of building envelope.” J. Archit. Eng. 27 (3): 04021015. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000474.
Kittel, C. 2004. Introduction to solid state physics. 8th ed. Hoboken, NJ: John Wiley & Sons, Inc.
Kushwaha, M. S. 1997. “Stop-bands for periodic metallic rods: Sculptures that can filter the noise.” Appl. Phys. Lett. 70 (24): 3218–3220. https://doi.org/10.1063/1.119130.
Lagarrigue, C., J. Groby, and V. Tournat. 2013a. “Sustainable sonic crystal made of resonating bamboo rods.” J. Acoust. Soc. Am. 133: 247–254
Lagarrigue, C., J. P. Groby, V. Tournat, O. Dazel, and O. Umnova. 2013b. “Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions.” J. Acoust. Soc. Am. 134: 4670. https://doi.org/10.1121/1.4824843.
Liu, Z., X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng. 2000. “Locally resonant sonic materials.” Science 289 (5485): 1734–1736. https://doi.org/10.1126/science.289.5485.1734.
Lu, C., M. Hsieh, Z. Huang, C. Zhang, Y. Lin, Q. Shen, F. Chen, and L. Zhang. 2022. “Architectural design and additive manufacturing of mechanical metamaterials: A review.” Engineering 17: 44–63. https://doi.org/10.1016/j.eng.2021.12.023.
Martínez-Sala, R., J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, and F. Meseguer. 1995. “Sound attenuation by sculpture.” Nature 378: 241. https://doi.org/10.1038/378241a0.
Miranda, E. J. P. Jr, S. F. Rodrigues, and J. M. C. dos Santos. 2019. “Band structure in a sustainable sonic crystal.” Mater. Sci. Forum 958: 75–80. https://doi.org/10.4028/www.scientific.net/MSF.958.75.
Morandi, F., A. Marzani, S. De Cesari, D. D’Orazio, L. Barbaresi, and M. Garai. 2016a. “Sonic crystals as tunable noise barriers.” Rivista Ital. Acust. 40 (4): 1–19.
Morandi, F., M. Miniaci, A. Marzani, L. Barbaresi, and M. Garai. 2016b. “Standardised acoustic characterisation of sonic crystals noise barriers: Sound insulation and reflection properties.” Appl. Aust. 114: 294–306. https://doi.org/10.1016/j.apacoust.2016.07.028.
Peiró-Torres, M., S. Castiñeira-Ibáñez, J. Redondo, and J. Sánchez-Pérez. 2019. “Interferences in locally resonant sonic metamaterials formed from Helmholtz resonators.” Appl. Phys. 114: 171901.
Prasittisopin, L., T. Sakdanaraseth, and V. Horayangkura. 2021. “Design and construction method of a 3D concrete printing self-supporting curvilinear pavilion.” J. Archit. Eng. 27 (3): 05021006. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000485.
R3direct. 2023. “R3direct—3D technologies for waste reuse.” Accessed November 22, 2023. http://r3direct.it/index.html.
Raw, T. N. 2023. “The new raw.” Accessed November 6, 2023. https://thenewraw.org/work.
Redondo, J., D. Ramírez-Solana, and R. Picó. 2023. “Increasing the insertion loss of sonic crystal noise barriers with Helmholtz resonators.” Appl. Sci. 13 (6): 3662. https://doi.org/10.3390/app13063662.
Rhinoceros 3D. 2022. “Rhinoceros 3D website.” Accessed November 12, 2023. https://www.rhino3d.com/.
Romero-García, V., A. Krynkin, L. M. Garcia-Raffi, O. Umnova, and J. V. Sánchez-Pérez. 2013. “Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial.” J. Sound Vib. 332: 184–198. https://doi.org/10.1016/j.jsv.2012.08.003.
Romero-García, V., J. V. Sánchez-Pérez, and L. M. Garcia-Raffi. 2011. “Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems.” J. Appl. Phys. 110: 014904. https://doi.org/10.1063/1.3599886.
Sánchez-Dehesa, J., V. M. García-Chocano, D. Torrent, F. Cervera, S. Cabrera, and F. Simón. 2011. “Noise control by sonic crystal barriers made of recycled materials.” J. Aust. Soc. Am. 129 (3): 1173. https://doi.org/10.1121/1.3531815.
Sanchez-Perez, J. V., C. Rubio, R. Martinez-Sala, R. Sanchez-Grandia, and V. Gomez. 2002. “Acoustic barriers based on periodic arrays of scatterers.” Appl. Phys. Lett. 81 (27): 5240–5242. https://doi.org/10.1063/1.1533112.
Sangiorgio, V., F. Parisi, F. Fieni, and N. Parisi. 2022. “The new boundaries of 3D-printed clay bricks design: Printability of complex internal geometries.” Sustainability 14 (2): 598. https://doi.org/10.3390/su14020598.
Sigalas, M. M., and E. N. Economou. 1992. “Elastic and acoustic wave band structure.” J. Sound Vib. 158 (2): 377–382. https://doi.org/10.1016/0022-460X(92)90059-7.
Ultimaker. 2022. “Ultimaker website.” Accessed November 12, 2023. https://ultimaker.com.
Umnova, O., K. Attenborough, and C. M. Linton. 2006. “Effects of porous covering on sound attenuation by periodic arrays of cylinders.” J. Acoust. Soc. Am. 119 (1): 278–284. https://doi.org/10.1121/1.2133715.
Vasina, M., K. Monkova, P. P. Monka, D. Kozak, and J. Tkac. 2020. “Study of the sound absorption properties of 3D-printed open-porous ABS material structures.” Polymers 12 (5): 1062. https://doi.org/10.3390/polym12051062.
Volpe, S., V. Sangiorgio, A. Petrella, A. Coppola, M. Notarnicola, and F. Fiorito. 2021. “Building envelope prefabricated with 3D printing technology.” Sustainability 13: 8923. https://doi.org/10.3390/su13168923.
Yamada, A., and M. Toyoda. 2020. “Prediction of bandgap characteristics by sonic crystals.” Aust. Sci. Tech. 41 (6): 815–818.
Zaghi, A. E., S. Soroushian, A. Echevarria Heiser, M. Maragakis, and A. Bagtzoglou. 2016. “Development and validation of a numerical model for suspended-ceiling systems with acoustic tiles.” J. Archit. Eng. 22 (3): 04016008. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000213.

Information & Authors

Information

Published In

Go to Journal of Architectural Engineering
Journal of Architectural Engineering
Volume 30Issue 2June 2024

History

Received: Dec 19, 2022
Accepted: Dec 4, 2023
Published online: Feb 20, 2024
Published in print: Jun 1, 2024
Discussion open until: Jul 20, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italia; Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, Campus de Gandía, C. Paranimf, 1., 46730 Gandía, España. ORCID: https://orcid.org/0000-0002-1964-5023.
INGEO Dept. of Engineering and Geology, D’Annunzio Univ. of Chieti—Pescara, Pescara 65127, Italy (corresponding author). ORCID: https://orcid.org/0000-0002-7534-3177. Email: [email protected]
ArCoD Dipartimento Architettura Costruzione e Design Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italia. ORCID: https://orcid.org/0000-0002-0629-3719.
Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Univ. Politècnica de València, Campus de Gandía, C. Paranimf, 1., 46730 Gandia, España. ORCID: https://orcid.org/0000-0002-5507-7799.
Agostino Marcello Mangini https://orcid.org/0000-0001-6850-6153
Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italia. ORCID: https://orcid.org/0000-0001-6850-6153.
Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italia. ORCID: https://orcid.org/0000-0002-8612-1852.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share